
Ellipses and Hyperbolas

In this chapter we’ll see three more examples of conics.

Ellipses
If you begin with the unit circle, C1, and you scale x-coordinates by some

nonzero number a, and you scale y-coordinates by some nonzero number b,
the resulting shape in the plane is called an ellipse.

Let’s begin again with the unit circle C1, the circle of radius 1 centered at
(0, 0). We learned earlier that C1 is the set of solutions of the equation

x2 + y2 = 1

The matrix

(
a 0
0 b

)
scales the x-coordinates in the plane by a, and it scales

the y-coordinates by b. What’s drawn below on the right is

(
a 0
0 b

)
(C1),

which is the shape resulting from scaling C1 horizontally by a and vertically
by b. It’s an example of an ellipse.
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Using POTS, the equation for this distorted circle, the ellipse

(
a 0
0 b

)
(C1),

is obtained by precomposing the equation for C1, the equation x2 + y2 = 1,
by the matrix (

a 0
0 b

)−1
=

(
1
a 0
0 1

b

)

Because

(
1
a 0
0 1

b

)
replaces x with x

a and y with y
b , the equation for the ellipse(

a 0
0 b

)
(C1) is (x

a

)2
+
(y
b

)2
= 1

which is equivalent to the equation

x2

a2
+
y2

b2
= 1

The equation for an ellipse described above is important. It’s repeated at
the top of the next page.
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Suppose a, b ∈ R− {0}. The equation for the ellipse
obtained by scaling the unit circle

by a in the x-coordinate and by b in the y-coordinate is

x2

a2
+
y2

b2
= 1

Example.

• The equation for the ellipse shown below is x2

25 + y2

4 = 1. In this
example, we are using the formula from the top of the page with a = 5 and
b = 2.

* * * * * * * * * * * * *
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Circles are ellipses
A circle is a perfectly round ellipse.
If we scale the unit circle by the same number r > 0 in both coordinates,

then we’ll stretch the unit circle evenly in all directions.

The result will be another circle, one whose equation is

x2

r2
+
y2

r2
= 1

We can multiply both sides of this equation by r2 to obtain the equivalent
equation

x2 + y2 = r2

which we had seen earlier as the equation for Cr, the circle of radius r centered
at (0, 0).

* * * * * * * * * * * * *

Hyperbolas from scaling
We’ve seen one example of a hyperbola, namely the set of solutions of the

equation xy = 1. We’ll call this hyperbola H1, the unit hyperbola.
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Suppose c > 0. We can horizontally stretch the unit hyperbola H1 using

the diagonal matrix

(
c 0
0 1

)
. This is the matrix that scales the x-coordinate

by c and does not alter the y-coordinate. The resulting shape in the plane,(
c 0
0 1

)
(H1), is also called a hyperbola.

The equation for the hyperbola

(
c 0
0 1

)
(H1) is obtained by precomposing

the equation for H1, the equation xy = 1, with

(
c 0
0 1

)−1
=

(
1
c 0
0 1

)
. This is

the matrix that replaces x with x
c and does not alter y. Thus, the equation

for the hyperbola

(
c 0
0 1

)
(H1) is(x

c

)
y = 1

which is equivalent to
xy = c

From now on, we’ll call this hyperbola Hc.

To summarize:
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Let c > 0. Then Hc is the hyperbola
that is the set of solutions of the equation xy = c.

Example.

• The equation for the hyperbola H2, obtained by scaling the unit
hyperbola by 2 in the x-coordinate is xy = 2.

Hyperbolas from flipping

We can flip the hyperbola Hc over the y-axis using the matrix

(
−1 0
0 1

)
,

the matrix that replaces x with −x and does not alter y.
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The shape resulting from flipping the hyperbola Hc over the y-axis is also
called a hyperbola. Its equation is obtained by precomposing the equation

for Hc, the equation xy = c, with the inverse of

(
−1 0
0 1

)
, which is

(
−1 0
0 1

)
itself, the matrix that replaces x with −x.

So the equation for Hc after being flipped over the y-axis is

(−x)y = c

which is equivalent to
xy = −c

To summarize:

Let c > 0. The equation for Hc flipped
over the y-axis is xy = −c.
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Example.

• The equation for H3 after being flipped over the y-axis is xy = −3.

* * * * * * * * * * * * *

Ellipses and hyperbolas are conics
The equations that we’ve seen for ellipses and hyperbolas in this chapter

are quadratic equations in two variables: x2

a2 + y2

b2 = 1, xy = c, and xy = −c.
Thus, the solutions of these equations, the ellipses and hyperbolas above, are
examples of conics.
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Exercises

For #1-6, match the numbered pictures with the lettered equations.

1.) 4.)

2.) 5.)

3.) 6.)

A.) xy = 4 B.) x2 + 4y2 = 1 C.) x2 + y2 = 9

D.) xy = −4 E.) x2

9 + y2

16 = 1 F.) x2

25 + y2 = 1
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For #7-10, write an equation for each of the given shapes in the plane. Your
answers should have the form (y − q) = a(x − p), (x − p)2 + (y − q)2 = r2,

(x − p)(y − q) = c, or (x−p)2
a2 + (y−q)2

b2 = 1. (As with the x- and y-axes, the
dotted lines are not part of the shapes. They’re just drawn to provide a point
of reference.)

7.) 9.)

8.) 10.)

For #11-14, multiply the matrices.

11.)

(
1 −1
−1 1

)(
0 3
2 −3

)
13.)

(
1 0
0 1

)(
5 7
8 9

)

12.)

(
2 0
0 3

)(
1
2 0
0 1

3

)
14.)

(
3 −2
1 0

)(
2 1
0 1

)
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