Equations in One Variable II

In this chapter, we'll learn two more techniques for determining solutions of equations in one variable.

No solutions due to the range of a function

If $f(x)$ is a function, and if $c \in \mathbb{R}$ is a number that is not in the range of $f(x)$, then the equation

$$
f(x)=c
$$

has no solution. That is, the set of solutions of the equation $f(x)=c$ is \emptyset.

Examples.

- The range of the exponential function e^{x} is the set of positive numbers. Whatever we choose as an input for the exponential function, the output is always positive. That means that there is no value of x for which e^{x} equals, say, -3 . That is, the equation $e^{x}=-3$ has no solution.

- The equations $e^{x}=-10, e^{x}=-2$, and $e^{x}=0$ each have no solution. That's because $-10,-2$, and 0 are not in the range of the function e^{x}. The exponential function only has positive numbers as outputs.

102

- The equation $x^{2}=-5$ has no solution. That's because you can't square a number to get a negative value. The range of the function x^{2} is $[0, \infty)$, and $-5 \notin[0, \infty)$.

- The range of \sqrt{x} is $[0, \infty)$. Because $-100 \notin[0, \infty)$, the equation $\sqrt{x}=-100$ has no solution.

- No matter what we use as the value for x, e^{x} is always positive. Even if the value we use for x is another function. For example, $e^{x^{2}-3 x+1}$ is always positive. Therefore, the equation $e^{x^{2}-3 x+1}=-1$ has no solution.

- Expanding on the last example:

An equation of the form $e^{f(x)}=c$ has no solution
if c is a number with $c \leq 0$.

- We have a similar rule for squaring and taking square roots:

Equations of the form $f(x)^{2}=c$ or $\sqrt{f(x)}=c$ have no solution if c is a number with $c<0$.

As particular examples of the rule above, $\left(x^{2}+3 x-5\right)^{2}=-1$ and $\sqrt{\log _{e}(x)}=-1$ each have no solution.

- The equation $x^{2}+\log _{e}(x)^{2}+3=x^{2}+1$ is equivalent by addition to the equation $\log _{e}(x)^{2}=-2$. Because -2 is negative, and because the square of a number can never be negative, the equation $\log _{e}(x)^{2}=-2$ has no solution. Because equivalent equations have the same solutions, our original equation $x^{2}+\log _{e}(x)^{2}+3=x^{2}+1$ also has no solution.

Using the quadratic formula as an intermediate step

- The equation $3 x^{2}+4 x-5=0$ is called a quadratic equation in x, meaning that it's a quadratic equation, and x is the variable.
- $3 y^{2}+4 y-5=0$ is a quadratic equation in y, because y is the variable.
- $3 z^{2}+4 z-5=0$ is a quadratic equation in z.
- $3 w^{2}+4 w-5=0$ is a quadratic equation in w.
- $3 \boldsymbol{\varphi}^{2}+4 \boldsymbol{q}-5=0$ is a quadratic equation in
- $3(x-3)^{2}+4(x-3)-5=0$ is a quadratic equation in $(x-3)$.
- $3 \log _{e}(x)^{2}+4 \log _{e}(x)-5=0$ is a quadratic equation in $\log _{e}(x)$.
- $3 f(x)^{2}+4 f(x)-5=0$ is a quadratic equation in $f(x)$.

If we have a quadratic equation in x, a quadratic equation of the form $a x^{2}+b x+c=0($ where $a \neq 0)$, then the quadratic formula tells us that there are no solutions of the equation if $b^{2}-4 a c<0$, and that if $b^{2}-4 a c \geq 0$ then the solutions of the equation are

$$
x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

The quadratic formula is the same regardless of the variable used in a quadratic equation. That is, if we have a quadratic equation in $f(x)$, an equation of the form $a f(x)^{2}+b f(x)+c=0$, then the quadatic formula tells us what $f(x)$ must be. The solutions are

$$
f(x)=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad f(x)=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

It doesn't matter what the function ${ }_{105}(x)$ is.

Examples.

- Let's determine the solutions of the equation $\left(e^{x}\right)^{2}-6 e^{x}+9=0$. This is a quadratic equation in e^{x}, and the quadratic formula tells us that we must have that

$$
e^{x}=\frac{-(-6)-\sqrt{(-6)^{2}-4(1)(9)}}{2(1)}=\frac{6-\sqrt{0}}{2}=3
$$

This is only an intermediate step. Our ultimate goal is not to find values of e^{x} that are solutions to an equation, but rather to find values of x that are solutions to an equation. We now know that $e^{x}=3$, and we must continue.

The equation $e^{x}=3$ is equivalent by invertible function to the equation $x=\log _{e}(3)$. Thus, our original equation $\left(e^{x}\right)^{2}-6 e^{x}+9=0$ has $\log _{e}(3)$ as its one and only solution.

$$
\left(e^{x}\right)^{2}-6 e^{x}+9=0 \rightarrow e^{x}=3 \rightarrow x=\log _{e}(3)
$$

- Let's determine the solutions of the equation $\log _{e}(x)^{2}=\log _{e}(x)+2$. We begin by noting that the domain of the given equation is $(0, \infty)$, because we can only take a logarithm of a positive number.

The given equation is equivalent by addition to $\log _{e}(x)^{2}-\log _{e}(x)-2=0$. This is a quadratic equation in $\log _{e}(x)$. The quadratic formula tells us either

$$
\log _{e}(x)=\frac{-(-1)-\sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}=\frac{1-\sqrt{1+8}}{2(1)}=\frac{1-3}{2}=-1
$$

or

$$
\log _{e}(x)=\frac{-(-1)+\sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}=\frac{1+\sqrt{1+8}}{2(1)}=\frac{1+3}{2}=2
$$

To find all of the solutions to our original equation, we'll now have to find the solutions to two different equations: $\log _{e}(x)=-1$ and $\log _{e}(x)=2$.

$$
\log _{e}(x)^{2}=\log _{e}(x)+2 \longrightarrow \log _{e}(x)=-1 \longrightarrow x=\frac{1}{e}
$$

The only solution to the equation $\log _{e}(x)=-1$ is $x=e^{-1}=1 / e$. The only solution to the equation $\log _{e}(x)=2$ is $x=e^{2}$. Both $1 / e$ and e^{2} are in the domain of our original equation, $(0, \infty)$, so they are both solutions of our original equation. That is, the set of solutions of the equation $\log _{e}(x)^{2}=$ $\log _{e}(x)+2$ is $\left\{1 / e, e^{2}\right\}$.

107

- To determine the solutions of the equation $x^{4}-2=x^{2}$, first write the equation in its equivalent form as $x^{4}-x^{2}-2=0$. Second, notice that $x^{4}=\left(x^{2}\right)^{2}$, so that we can write the equation as $\left(x^{2}\right)^{2}-\left(x^{2}\right)-2=0$. This is a quadratic equation in x^{2}, and the quadratic formula tells us that $x^{2}=-1$ or $x^{2}=2$.

Now we have to find solutions for both $x^{2}=-1$ and $x^{2}=2$. The former has no solutions, since squares can not be negative. The latter has solutions $x=-\sqrt{2}$ and $x=\sqrt{2}$. Thus, our original equation $x^{4}-2=x^{2}$ has exactly two solutions, $-\sqrt{2}$ and $\sqrt{2}$.

Exercises

Find the solutions of the equations given in \#1-8.
1.) $e^{x^{2}}=-1$
5.) $\log _{e}(4-3 x)=-1$ where $x>0$
2.) $\log _{e}(x)^{2}=-10$
6.) $e^{-3 x+2}=4$
3.) $e^{x^{2}-2}=5$ where $x<0$
7.) $x+\sqrt{x}+2=x$
4.) $\sqrt{\log _{e}(x)}=-4$
8.) $\left(5 x^{3}-4 x+1\right)^{2}=-3$

For \#9-15, find the set of solutions for the given equations. You can use the quadratic formula to help you with each of these problems.
9.) $x^{2}=4 \quad$ with $x<0$
10.) $\left(e^{x}\right)^{2}-4=0$
11.) $\log _{e}(x)+1=-\log _{e}(x)^{2}$
12.) $x^{4}-2 x^{3}+x^{2}=2\left(x^{2}-x\right) \quad$ (Hint: What's $\left(x^{2}-x\right)^{2}$?)
13.) $9+\left(3^{x}\right)^{2}=6\left(3^{x}\right)$
14.) $x^{4}+3 x^{2}-4=0$
15.) $\log _{2}(x)^{2}+4=5 \log _{2}(x) \quad$ where $x>10$

Let's look at the following piecewise defined function

$$
f(x)= \begin{cases}x-4 & \text { if } x \neq 2 ; \\ 279 & \text { if } x=2\end{cases}
$$

The function $f(x)$ is comprised of two pieces. The first is $f(x)=x-4$ as long as $x \neq 2$. The second is $f(x)=279$ when $x=2$.

For \#16-21 match the number, x, on the left to piece of f on the right that you would use to determine $f(x)$.
16.) 3
A.) $f(x)=x-4$ as long as $x \neq 2$
17.) -1
B.) $f(x)=279$ when $x=2$
18.) 0
19.) 4
20.) 2
21.) 5

Use the piecewise defined function $f(x)$ given above, and your answers from \#16-21, to find the following values.
22.) $f(3)$
23.) $f(-1)$
24.) $f(0)$
25.) $f(4)$
26.) $f(2)$
27.) $f(5)$

