
Equations in One Variable I

An equation in one variable is an equation of the form f(x) = g(x) where
f(x) and g(x) are functions.

Examples.

• x2−3x+ 2 = loge(x) is an equation in one variable. Both x2−3x+ 2
and loge(x) are functions.

• x− 3 = 2 is an equation in one variable. Both x− 3 and 2 are
functions. The latter is a constant function.

•
√
x = 15x− 4 is an equation in one variable.

• x2+7
x−1 + 27x− 3 = ex

3−18 is an equation in one variable.

All of the examples above are equations, because they are mathematical
formulas that use an equal sign. The are in one variable, because there is
a single variable used in each equation. In all of the examples above, x is
the only variable. We’ll continue to use x as the only variable for a while,
but keep in mind that it’s just a variable, and that we could use any variable
instead. For example, there really isn’t any difference between the equation
x− 3 = 2 and the equation w − 3 = 2. The only difference is the name that
we gave the variable, x or w, but otherwise the equations are the same.

Domain of an equation
If f(x) = g(x) is an equation in one variable, then the implied domain of

the equation is the set of all real numbers that are in both the implied domain
of f and the implied domain of g.

Examples.

• The implied domain of the equation x3−2x+1 = 3x−9 is R. That’s
because x3− 2x+ 1 and 3x− 9 are each polynomials, so they each have R as
their implied domains.

• The equation
√
x = 4 has an implied domain of [0,∞). That’s

because
√
x has an implied domain of [0,∞), while the constant function 4

has an implied domain of R. Therefore, the implied domain of
√
x = 4 is the
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set of all real numbers that are in the set [0,∞) and in the set R, or in other
words, the implied domain of

√
x = 4 is the set [0,∞).

• The implied domain of the equation loge(x) + loge(x − 2) = 1 is
(2,∞). The implied domain of the constant function 1 is R. The implied
domain of loge(x) + loge(x− 2) is a little more tricky. We can only take the
logarithm of a positive number. That means that we want x > 0 and that
we want x− 2 > 0, or equivalently, that x > 2. Of course asking that x > 0
and x > 2 is the same as just asking that x > 2, so the implied domain for
the function loge(x) + loge(x− 2) is (2,∞).

• The implied domain of the equation
√
x = 3x

x−5 is [0,∞) − {5}. We
can only take the square-root of a number if it is greater than or equal to 0,
so x ≥ 0. We can never divide by 0, so x− 5 6= 0, or equivalently x 6= 5. The
set of all real numbers x with x ≥ 0 and x 6= 5 is the set [0,∞)− {5}.

• [3, 5) is the implied domain of the equation loge(5 − x) =
√
x− 3.

We can only take the logarithm of a number if it is positive, so 5 − x > 0,
or equivalently, 5 > x. We can only take the square-root of a number if it is
greater than or equal to 0, so x − 3 ≥ 0, or equivalently, x ≥ 3. The set of
all real numbers x with 5 > x and x ≥ 3 is exactly [3, 5).

Sometimes, you will be given an explicit domain for an equation. For
example, you might be asked to examine the equation x2 − 3x + 1 = ex for
x ∈ [0, 10]. This means that the domain of the equation is the restricted
domain [0, 10]. The domain is restricted, because the implied domain of the
equation x2−3x+1 = ex would have been R if we hadn’t been told otherwise,
but we have been told otherwise. We are told here that the domain of the
equation is just the set [0, 10].

Solutions of equations
If someone writes an equation such as 3x− 2 = 4, they are not saying that

3x− 2 is the same function as the constant function 4. They are clearly not
the same function. One is a constant function and the other one isn’t. Rather,
they are asking you to find the set of all numbers that can be substituted
in for x to make the equation true. For example, we can substitute 2 in the
place of x and we’d be left with the equation 3(2)− 2 = 4, which is true, as
you can check. The equation usually won’t be true for every number that you
substitute for x as we can see by substituting the number 0 in the place of x.
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That would leave us with 3(0) − 2 = 4, which is clearly false. The numbers
that can be substituted for x to make an equation true are called solutions
of the equation.

If f(x) = g(x) is an equation in one variable, and if the equation has the
set D as its domain, then the set of solutions of f(x) = g(x) is the set

S = {α ∈ D | f(α) = g(α) }
Returning to the example above, if S is the set of solutions of the equation

3x − 2 = 4, then 2 ∈ S, but 0 /∈ S. We’d speak this as 2 is a solution of
3x− 2 = 4, but that 0 is not a solution of 3x− 2 = 4.

Examples.

• Suppose that S is the set of solutions of the equation
√
x = 4. We

saw above that this equation has a domain of [0,∞), so

S = {α ∈ [0,∞) |
√
α = 4 }

We see that 16 ∈ S, since 16 ∈ [0,∞) and
√

16 = 4. However, −10 /∈ S since
−10 /∈ [0,∞), and 25 /∈ S, since

√
25 6= 4.

• Now suppose that S is the set of the solutions for the equation x2 = x.
Both x2 and x are polynomials, so the domain of the equation is R and

S = {α ∈ R | α2 = α }
Then 0, 1 ∈ S because 0 and 1 are both real numbers and 02 = 0 and 12 = 1.
However, 3 /∈ S because 32 6= 3.
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• Let’s look at an equation with a restricted domain. Let’s look at the
equation −x2 + 9 = 0 for x ∈ (0,∞). We are told here that the domain is
(0,∞), which means that we are only interested in finding solutions to the
equation if those solutions are positive numbers. That is, if S is the set of
solutions, then

S = {α ∈ (0,∞) | −α2 + 9 = 0 }
Notice that S is the set of all positive numbers that are also roots of the
quadratic polynomial −x2 + 9 = 0. We know how to find roots of quadratic
polynomials, and the roots of −x2 + 9 are −3 and 3. Of these two roots, only
3 is in the domain of the equation. That is, only 3 is positive. Therefore,
S = {3}.
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• The equation
√
x = x+ 5 has an implied domain of [0,∞), since we

can’t take the square-root of a negative number. We can see below that the
graphs of

√
x and x+ 5 do not intersect. That means there isn’t a number α

with
√
α = α + 5. That is to say, there aren’t any solutions of the equation√

x = x+ 5. The set of solutions is ∅.

• An important general example is if p(x) is a polynomial and our
equation is p(x) = 0. Then the set of solutions for this equation is exactly
the set of roots of the polynomial p(x). We know how to find roots of any
linear and quadratic polynomial, but it is extremely difficult to find roots
of most polynomials. A polynomial equation p(x) = 0 is about as nice of
an equation as we can hope to have, and even finding its solutions can be a
nearly impossible task.
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* * * * * * * * * * * * *

In the remainder of this chapter, we’ll cover a few basic rules of algebra that
can be used to help us find solutions of equations. We’ll learn when equations
are equivalent — either by addition, multiplication, or invertible functions —
and we’ll see that equivalent equations have the same solutions. That will
allow us to find solutions of equations by creating a sequence of equivalent
equations that terminates in an equation that’s easy for us to solve.

Equations equivalent by addition
In the definition below, D is a set of real numbers. That is, D ⊆ R.

The equation

f(x) + h(x) = g(x) with domain D

is equivalent to the equation

f(x) = g(x)− h(x) with domain D

Examples.

• The equation x2 + 3x = ex with domain R is equivalent to the
equation x2 = ex− 3x with domain R. Here we are just using the rule above
with f(x) = x2, h(x) = 3x, and g(x) = ex.

• The domains of two equivalent equations must be the same. The
equation x2 + 3x = ex with the restricted domain (0,∞) is equivalent to the
equation x2 = ex − 3x with the restricted domain (0,∞).

• To repeat, the domains of two equivalent equations are equal. The
equation x2 + 3x = ex with domain [−3, 10] is equivalent to the equation
x2 = ex − 3x with domain [−3, 10]. Compare this example to the previous
two examples. Equivalent equations have the same domain.

• x2−loge(x) = 0 is equivalent to x2 = loge(x). To see this, just subtract
− loge(x) (or add loge(x)) to both sides of the equation x2−loge(x) = 0. Both
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equations in this example have an implied domain of (0,∞), because we can
only take the logarithm of a positive number.

• Whenever you add or subtract a function from both sides of an
equation, you’ll obtain an equivalent equation. Thus, 7x3 − 5 = x2 + 2x is
equivalent to 7x3 − x2 − 2x − 5 = 0. Just subtract x2 + 2x from both sides
of 7x3 − 5 = x2 + 2x.

•
√

3x = 2x2 is equivalent to
√

3x + x − 2 = 2x2 + x − 2. Just add
x− 2 to both sides of

√
3x = 2x2.

The importance of equivalent equations is that they have the same sets of
solutions.

Equivalent equations
have the same sets of solutions.

Examples.

• The equations x2 = −x + 5 and x2 + x − 5 = 0 are equivalent. To
get the second equation from the first, just add the function x− 5.

Because these two equations are equivalent, they have the same set of
solutions. We know how to find the solutions of x2+x−5 = 0. These are just
the roots of the quadratic polynomial x2 +x− 5, which are 1

2(−1−
√

21) and
1
2(−1+

√
21). In other words, the set of solutions of the equation x2+x−5 = 0

is the set {12(−1 −
√

21), 12(−1 +
√

21)}. Therefore, the set of solutions of

x2 = −x+ 5 is also {12(−1−
√

21), 12(−1 +
√

21)}.

• To find the set of solutions of x2 + x − 4 = x2, just subtract x2

from both sides of the equation. We’ll be left with the equivalent equation
x−4 = 0. The set of solutions of this latter equation is {4}. Because the two
equations in this example are equivalent, the set of solutions of x2+x−4 = x2

is also {4}.

• To find the solutions of
√
x − x = 5, we can add the function x

to both sides of the equation and we’d be left with the equivalent equation√
x = x+ 5. We saw earlier in this chapter that

√
x = x+ 5 has no solutions.

Therefore,
√
x− x = 5 has no solutions.
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* * * * * * * * * * * * *

Equations equivalent by multiplication
We say that the number α ∈ R is a zero of the function h(x) if h(α) = 0.

Examples.

• 2 is a zero of h(x) = x2 − 4 because h(2) = 22 − 4 = 0. The number
−2 is also a zero of h(x) = x2 − 4.

• 3 is a zero of h(x) = x− 3 since h(3) = 3− 3 = 0.

• In the previous two examples, h(x) was a polynomial. If h(x) is a
polynomial then we usually call a zero of h(x) a root of h(x) instead.
It’s just a different name for the same thing.

• 5 is a zero of
√
x− 5 because

√
5− 5 =

√
0 = 0.

• 1 is a zero of loge(x).

• 4 is not a zero of 2x− 5 because 2(4)− 5 = 8− 5 = 3 6= 0.

We say that h(x) has no zeros in a set D ⊆ R if none of the numbers in D
is a zero for h(x).

Examples.

• The linear polynomial h(x) = x − 3 has no zeros in [5,∞). That’s
because if α ∈ [5,∞), then α ≥ 5. Therefore, h(α) = α− 3 ≥ 5− 3 = 2, and
if h(α) ≥ 2, then h(α) 6= 0. That is, α is not a zero of h(x) if α ∈ [5,∞).

The function h(x) = x− 3 does have a zero. It’s 3. But h(x) has no zeros
in [5,∞).
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• The function h(x) = x2−4 has two zeros, 2 and −2. Neither of these
zeros are in the set [−1, 1], so h(x) = x2 − 4 has no zeros in [−1, 1].

• 4 − 2x has exactly one zero, the number 2. Because 2 is the only
zero, 4− 2x has no zeros in R− {2}.

• ex has no zeros. It has no zeros in R.

• x is a function. It’s the identity function. It only has one zero, the
number 0 itself. Thus, x has a zero in R, but it has no zeros in R − {0}.
Neither does it have zeros in (0,∞), for example.
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In the definition below, D is a subset of real numbers.

The equation

h(x)f(x) = g(x) with domain D

is equivalent to the equation

f(x) = g(x)
h(x) with domain D

as long as h(x) has no zeros in D.

The definition above tells us that we can multiply or divide both sides of an
equation by a function—as long as the function has no zeros in the domain—
and obtain an equivalent equation.

Examples.

• If h(x) is a constant function, and not the constant 0, then it has no
zeros. Therefore, we can always divide both sides of an equation by h(x) to

obtain an equivalent equation. Thus, 3x = x4 + 1 is equivalent to x = x4+1
3 .

The equation 2
√
x = 8 is equivalent to

√
x = 4.

• If we multiply both sides of an equation by a constant that’s not zero
then we’ll also obtain an equivalent equation. x

4 = log5(x) is equivalent to

x = 4 log5(x). 1
3

√
x = 4 is equivalent to

√
x = 12.

• The equation x loge(x) = x has a domain of (0,∞). Because the
function x has no zeros in (0,∞), we can divide both sides of the equation
x loge(x) = x by x to obtain the equivalent equation loge(x) = 1.

• This is an example of something that can’t be done. If you have the
equation x2 = x, then you might be inclined to divide by x, similar to the
previous example. We can’t do that here though. The implied domain of the
equation x2 = x is R, and x has a zero in R. It has the number 0 as its zero.

The two equations x2 = x and x = 1 (which is what we would get by
dividing x2 = x by x) are very different equations. The former has two
solutions, 0 and 1, while the latter has a single solution, 1.
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Equivalent equations
have the same solutions.

Examples.

• The equation 2
√
x = 8 is equivalent by multiplication to

√
x = 4.

We know the set of solutions of
√
x = 4 is {2}, so 2

√
x = 8 also has 2 as its

only solution.

• The equation x loge(x) = x is equivalent to loge(x) = 1. The only
solution of loge(x) = 1 is the number e. Therefore, e is the only solution of
the equation x loge(x) = x.

* * * * * * * * * * * * *

Equations equivalent by invertible function
Once again, in the definition below D ⊆ R.

The equation

h(f(x)) = g(x) with domain D

is equivalent to the equation

f(x) = h−1(g(x)) with domain D

The above definition says that we can erase a function, h, on one side of an
equation if we apply its inverse, h−1 to the other side of the equation. Both
equations have to have the same domain. Equivalent equations always have
the same domain.
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Examples.

• loge(x) = 5 has an implied domain of (0,∞), because we can only
take the logarithm of a positive number. We could erase logarithm base e
on the left side of loge(x) = 5 by applying its inverse, exponential base e to
the right side. We’d be left with the equation x = e5 with the same domain
that we started with, the set (0,∞). These two equations, loge(x) = 5 and
x = e5, with the same domain, (0,∞), are equivalent.

Equivalent equations always have the same domain.

• The functions 3
√
x and x3 are inverse functions. Therefore, 3

√
x− 2 = 7

is equivalent to x− 2 = 73. (Both equations have a domain of R because we
can cube or cube-root any number.) We erased the cube root from the left
side of 3

√
x− 2 = 7 by applying its inverse to the right side.

Again, what’s important about equivalent equations is the following fact:

Equivalent equations
have the same solutions

Example.

• We’ll continue from the previous example. If we have the equation
3
√
x− 2 = 7, then we know it’s equivalent to the equation x − 2 = 73. Now

73 = 343, so the previous equation is x− 2 = 343. The only solution of this
equation is x = 343 + 2 = 345.

Because 3
√
x− 2 = 7 and x − 2 = 343 are equivalent, they have the same

solutions. Therefore, 345 is the only solution of 3
√
x− 2 = 7.

* * * * * * * * * * * * *

Finding solutions of equations
To find the solutions of an equation f(x) = g(x), first write down its

domain D. Next, find a sequence of equivalent equations, either equivalent
by addition, or by multiplication, or by invertible function. The goal is to
have the last equation in this sequence have a set of solutions that is easy to
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find. It might be really easy, such as in the equation x = 2, or it might be
somewhat easy to find, as in the equation x2+2x−5 = 0, where you can apply
the quadratic formula to the quadratic polynomial x2+2x−5. Whatever easy
equation you are left with, find its set of solutions S, but remember to only
include in the set S those solutions that are in the domain D of your original
equation. Because equivalent equations have the same set of solutions, S will
be the set of solutions of your original equation f(x) = g(x).

Examples.

• Let’s find the solutions of the equation ex
2+x−6 = 1 where the domain

of the equation is the set D = (0,∞). That means we are only interested in
those solution of ex

2+x−6 = 1 that are positive.
Using loge, the inverse function of exponential base e, the equation ex

2+x−6 =
1 is equivalent to x2+x−6 = loge(1), which is the equation x2+x−6 = 0. To
find the solutions of this quadratic equation, we use the quadratic formula
to find the roots of the quadratic polynomial x2 + x − 6. In doing so, we
would find that the solutions of x2 + x − 6 = 0 are −3 and 2. However,
the domain of our original equation is (0,∞), and −3 /∈ (0,∞). Therefore,
the only relevant solution for us is 2, because 2 ∈ (0,∞). That means that
S = {2} is the set of solutions for our original equation ex

2+x−6 = 1 with a
domain of (0,∞).
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• Let’s find the solutions of x − 1 = 1
x . If we aren’t told what the

domain of the equation is, then we have to find its implied domain. For this
equation, the implied domain is R−{0}, because we can’t divide by 0. That
means that we should only search for solutions of the equation that aren’t
zero.

We can multiply by the function x to obtain the equivalent equation x2−x =
1. We can add −1 to obtain the equivalent equation x2 − x − 1 = 0. The
quadratic formula tells us that the solutions to this quadratic equation are
1
2(1−

√
5) and 1

2(1 +
√

5). Neither of these numbers are 0, so they are both
in the domain of our original equation, and they are both solutions of our
original equation, x− 1 = 1

x . They are the only solutions of x− 1 = 1
x .

• The equation 3
√

5x− 2 = 5 has an implied domain of R. We can
obtain the equivalent equation 5x − 2 = 53 = 125 by erasing the cube-root
from the left and applying the cube to the right. Now we can add 2 to obtain
5x = 127, and divide by 5 to have x = 127

5 .

Of course 127
5 is in the domain of our original function, since 127

5 is a real

number. Therefore, the only solution of 3
√

5x− 2 = 5 is 127
5 .
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• The equation 3
p
5x� 2 = 5 has an implied domain of R. We can

obtain the equivalent equation by invertible function 5x�2 = 53 = 125. Now
we can add 2 to obtain 5x = 127, and divide by 5 to have x = 127

5

.
Of course 127

5

is in the domain of our original function, since 127

5

is a real
number. Therefore, the set of solutions of 3

p
5x� 2 = 5 is the set {127

5

}.

• The equation 3x � 2 = 0, has a solution. It’s 2

3

. However, if we are
told to find the solutions of 3x� 2 = 0 with a domain of (�1, 0), then there
are no solutions. The set of solutions is ;. That’s because 2

3

isn’t a negative
number.
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• The equation 3x − 2 = 0, has a solution. It’s 2
3 . However, if we are

told to find the solutions of 3x− 2 = 0 with a domain of (−∞, 0), then there
are no solutions. The set of solutions is ∅. That’s because 2

3 isn’t a negative
number.
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Exercises
For #1-13, match the numbered equations on the left to their lettered

implied domains on the right.

1.) loge(x)− loge(x) = 4 A.) R

2.) x2 − 45 = x7 − 3x− 6 B.) (0,∞)

3.) e−7x
2−3x = x3 C.) [0,∞)

4.)
√
x√
x

= 3x− 2 D.) [2,∞)

5.) loge(x− 5) = 23x9 E.) [0,∞)− {2}

6.) 171
√

3x− 5 = 2x+ 3 F.) (5,∞)

7.) 2x2−7x+3
x−5 = 3x+ 4 G.) R− {5}

8.) loge(x+ 7) =
√
x− 2

9.) 3
√
x− 7 = 3x+ 4

10.) x5 + 7x+3
x2−4 =

√
x

11.) 20
√
x− 2 = 3x+ 6

12.) 3x− 4x6 = x3 − 13x+ 56

13.)
√
x = 3x2 − 5

66



For #14-19, match the numbered equations on the left to their lettered sets
of solutions on the right.

14.) 4x− 3 = 0 A.)
{

3
4

}
15.) 2x− 6 = 0 B.) {−1− 2

√
2 , −1 + 2

√
2 }

16.) x+ 4 = 0 C.) ∅

17.) x2 − 2x+ 3 = 0 D.) {−4}

18.) 2x2 − 12x+ 18 = 0 E.) {3}

19.) −x2 − 2x+ 7 = 0

For #20-24, match the numbered equations on the left to the lettered equa-
tions on the right that they are equivalent to by addition.

20.) x2 + x = 3 A.) 5 = 3x+
√
x+ 2

21.) loge(x) + 2x− 3 = 0 B.) 2x2 − 7x+ 3 = 0

22.) 5−
√
x = 3x+ 2 C.) x2 + x− 3 = 0

23.) 3x2 − 4x+ 5 = x2 + 3x+ 2 D.) −x2 − 3x+ 3 = 0

24.) −x2 − 4 = 3x− 7 E.) 2x− 3 = − loge(x)
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If you ever have an equation p(x) = q(x) where both p(x) and q(x) are
polynomials, it’s almost always best to begin by writing the equivalent equa-
tion p(x)− q(x) = 0, and then to search for solutions of p(x)− q(x) = 0. Use
this method to find the solutions of the equations in problems #25-28.

25.) x2 − 3x+ 2 = 3x2 + x− 4

26.) x3 + 3x− 2 = x3 + x2 + x+ 1

27.) x2 − 2x+ 3 = x2 − x+ 4

28.) x− 2 = 3x2 − 5x+ 1

For #29-35, match the numbered functions on the left with their lettered
set of zeros on the right.

29.) x− 7 A.) {−1, 1}

30.) x+ 5 B.) {0}

31.) x2 − 1 C.) {−5}

32.) loge(x) D.) {1}

33.)
√
x E.) ∅

34.) x2 + 1 F.) {7}

35.) x
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For each equation given in #36-40, decide whether dividing by the function
x on both sides of the equation would result in an equivalent equation. For
each of these, you’ll want to check whether x has zeros in the implied domain
of the given equation.

36.) 3x2 − 5 = 2x+ 8

37.) loge(x) = 3x− 5

38.) 1
x−7 = 3x

39.)
√
−x = 4x3 − 5x

40.) x2(x− 7) = x(x− 7)2

For each equation given in #41-45, decide whether dividing by the function
x − 7 on both sides of the equation would result in an equivalent equation.
For each of these, you’ll want to check whether x− 7 has zeros in the implied
domain of the given equation.

41.) 3x2 − 5 = 2x+ 8

42.) loge(x) = 3x− 5

43.) 1
x−7 = 3x

44.)
√
−x = 4x3 − 5x

45.) x2(x− 7) = x(x− 7)2

For #46-48, match the numbered equations on the left to the lettered equa-
tions on the right that they are equivalent to by multiplication.

46.) x2 + x = 3 A.) 5−
√
x

x+2 = 3x+2
x+2

47.) loge(x) = 2 B.) 1
x loge(x) = 2

x

48.) 5−
√
x = 3x+ 2 C.) ex(x2 + x) = 3ex
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For #49-52, match the numbered equations on the left to the lettered equa-
tions on the right that they are equivalent to by invertible function.

49.) e3x+5 = e2x−3 A.) 3x+ 5 = x
2
3

50.) loge(x
2 + 1) = 2 B.) x2 − 3x+ 1 = 8x3

51.) (3x+ 5)3 = x2 C.) 3x+ 5 = 2x− 3

52.) 3
√
x2 − 3x+ 1 = 2x D.) x2 + 1 = e2

Find the set of solutions of each of the equations given in #53-61.

53.) x2 − 3 = x2 + x

54.) loge(x
2) = 2 where x ∈ [0,∞)

55.) 4x2 + 2x+ 3 = 3x2 + 2x+ 2

56.) 3
√

4x+ 2 = 4

57.) 3x2 − 6 = x2 − 4x with x > 10

58.) e3x+3 = 1

59.) x5(x2 + 3x− 2) = 0 where x < 0

60.) (log2(2x+ 1))3 = 8

61.) 455
x2−9 = 5 where x < 5
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