Practice First Midterm Exam

Conics

For #1-8, match the numbered quadratic equations in two variables with their lettered sets of solutions.

1.) $x^2 = -1$ B.) A.) 2.) $x^2 = 0$ 3.) $x^2 = 1$ 4.) xy = 15.) $y = x^2$ 6.) $x^2 + y^2 = -1$ C.) D.) 7.) $x^2 + y^2 = 0$ 8.) $x^2 - y^2 = 0$ E.) F.) G.)

Linear algebra

For #9-15, give the vector, written as a \mathbf{ROW} vector.

9.)
$$A_{(-2,4)}(3,-5)$$

$$10.) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 8 \end{pmatrix}$$

$$11.) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$12.) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -5 \\ -2 \end{pmatrix}$$

$$13.) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$14.) \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

$$15.) \begin{pmatrix} 2 & -4 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

16.) Find the product
$$\begin{pmatrix} -2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -5 & 1 \\ -2 & 3 \end{pmatrix}$$

17.) Give the determinant of
$$\begin{pmatrix} 2 & 8 \\ 7 & 3 \end{pmatrix}$$

18.) Give the inverse of
$$\begin{pmatrix} 3 & 8 \\ -9 & -20 \end{pmatrix}$$

Lines

19.) Give an equation for a line in the plane that has slope -6 and passes through the point (0,0).

20.) Give an equation for a line in the plane that has slope 3 and passes through the point (4, 8).

21.) Give the slope of the line that passes through the points (2, -4) and (-3, 2).

22.) Give an equation for the line that passes through the points (2, -4) and (-3, 2).

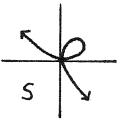
Equations in One Variable

23.) Give the implied domain of the equation $48x^2 + 3x + \sqrt{x} = e^x + 7$.

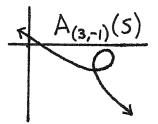
For #24-26, find the solutions of the given equations, and explain your answers. #24-26 are worth 2 points each.

24.) $(e^x)^2 + 2e^x - 3 = 0$

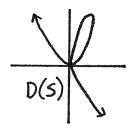
25.) $x \log_e(3x - 2) = x$ where $x > \frac{2}{3}$

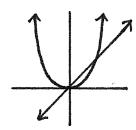

26.)
$$\sqrt{3x+2} = -1$$

Equations in two variables and their solutions


27.) Suppose $p(x,y) = 2xy - 5y^2 - x + 11$. Find $p \circ A_{(2,-3)}(x,y)$. (You don't have to simplify your answer.)

#28-30 are worth 2 points each.


The "Folium of Descartes" is the set of solutions, S, of the polynomial equation $x^3 + y^3 = xy$.


28.) Give an equation for $A_{(3,-1)}(S)$, the Folium of Descartes shifted right 3 and down 1. (You don't have to simplify your answer.)

29.) Let $D = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 4 \end{pmatrix}$. Give an equation for D(S), the Folium of Descartes scaled by $\frac{1}{2}$ in the *x*-coordinate and 4 in the *y*-coordinate. (You don't have to simplify your answer.)

30.) Give an equation whose set of solutions is the union of the parabola $y = x^2$ and the line x = y. (You don't have to simplify your answer.)

1.)	14.)
2.)	15.)
3.)	
4.)	16.)
5.)	17.)
6.)	
7.)	18.)
8.)	19.)
9.)	20.)
10.)	21.)
11.)	22.)
12.)	23.)
13.)	