1. (a) Prove or disprove the statement:

If \(d \mid a\) and \(d \mid b\), then \(d \mid (a + b)\).

Solution. The statement is true. Suppose that \(d \mid a\) and \(d \mid b\). Then \(a = dm\) for some integer \(m\) and \(b = dn\) for some integer \(n\). Adding them together, we get

\[a + b = dm + dn = d(m + n),\]

which means that \(a + b\) is divisible by \(d\).

(b) Prove or disprove the statement:

If \(d \mid (a + b)\), then \(d \mid a\) and \(d \mid b\).

Solution. The statement is false. For example, take \(d = 5\), \(a = 2\) and \(b = 8\). Then \(5 \mid (2 + 8)\), but \(5 \nmid 2\) and \(5 \nmid 8\).

2. (a) Use the Euclidean algorithm to find \(d = \gcd(225, 70)\).

Solution. \(\gcd(225, 70) = 5\):

\[
225 = 3 \cdot 70 + 15 \\
70 = 4 \cdot 15 + 10 \\
15 = 1 \cdot 10 + 5 \\
10 = 2 \cdot 5 + 0
\]

(b) Use part (a) to find an integer solution to \(225x + 70y = d\).

Solution.

\[
\begin{align*}
5 &= 15 - (70 - 4 \cdot 15) = -70 + 5 \cdot 15 \\
5 &= -70 + 5(225 - 3 \cdot 70) = 5 \cdot 225 - 16 \cdot 70
\end{align*}
\]

So \(x = 5\) and \(y = -16\) is a solution to \(225x + 70y = 5\).

3. Consider the statement \(p(n)\) given by the equation

\[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}.\]

(a) Verify directly that \(p(n)\) is true for \(n = 1, 2, 3, 4\).

Solution.

\[
\begin{array}{c|c|c}
\hline
n & 1^2 = 1 & \frac{1(2)(3)}{6} = 1 \\
\hline
n = 2 & 1^2 + 2^2 = 5 & \frac{2(3)(5)}{6} = 5 \\
\hline
n = 3 & 1^2 + 2^2 + 3^2 = 14 & \frac{3(4)(7)}{6} = 14 \\
\hline
n = 4 & 1^2 + 2^2 + 3^2 + 4^2 = 30 & \frac{4(5)(9)}{6} = 30 \\
\hline
\end{array}
\]
(b) Use mathematical induction to prove that \(p(n) \) is true for all integers \(n \geq 1 \).

Solution. The base case is handled in part (a). For the inductive step, we assume the statement is true for \(n = k \); that is, we assume that

\[
1^2 + 2^2 + 3^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6}.
\]

Our goal is to prove the statement is true for \(n = k+1 \), i.e., that

\[
1^2 + 2^2 + 3^2 + \cdots + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}.
\]

To do this, we take the equation for \(n = k \) and add \((k+1)^2\) to both sides. The left-hand side becomes

\[
(1^2 + 2^2 + 3^2 + \cdots + k^2) + (k+1)^2,
\]

which is exactly the left-hand side for the \(n = k+1 \) equation. The right-hand side becomes

\[
\frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k+1}{6} [k(2k+1) + 6(k+1)]
\mathrel{=} \frac{k+1}{6} [2k^2 + 7k + 6]
\mathrel{=} \frac{k+1}{6} [(k+2)(2k+3)]
\mathrel{=} \frac{(k+1)(k+2)(2k+3)}{6}
\]

which is precisely the right-hand side for the \(n = k+1 \) equation. This completes the inductive step, so the statement \(p(n) \) is true for all \(n \geq 1 \).

4. A PIN for an account consists of 5 characters composed of lower-case letters and numbers.

(a) How many PINs are there that consist of all distinct characters?

Solution. There are 36 total characters than can be used. Therefore, there are

\[
\frac{36!}{31!} = 36 \cdot 35 \cdot 34 \cdot 33 \cdot 32
\]

possible PINs that have distinct characters.

(b) How many PINs are there that have at least one number.

Solution. Here are two ways to do this.

First method. There are \(36^5 \) total PINs including all possible characters. There are \(26^5 \) total PINs consisting of only letters. So, there are

\[36^5 - 26^5 = 48,584,800\]

total PINs that have at least one number.

Second method. If a PIN has exactly one number and four letters, then there are \(\binom{5}{1} = 5 \) locations for the number, 10 choices for the number, and \(26^4 \) choices for the four letters, so there are a total of \(5 \cdot 10 \cdot 26^4 \) PINs with exactly one number. We do the similar computation for two numbers,
three numbers, four numbers, and five numbers.

one number, four letters: \(\binom{5}{1} \cdot 10 \cdot 26^4 \)

two numbers, three letters: \(\binom{5}{2} \cdot 10^2 \cdot 26^3 \)

three numbers, two letters: \(\binom{5}{3} \cdot 10^3 \cdot 26^2 \)

four numbers, one letter: \(\binom{5}{4} \cdot 10^4 \cdot 26^1 \)

five numbers, no letters: \(\binom{5}{5} \cdot 10^5 \)

We add these up to get

\[
5(10)(26^4) + 10(10^2)(26^3) + 10(10^3)(26^2) + 5(10^4)(26) + 10^5 = 48,584,800
\]
total PINs that have at least one number.