Financial Mathematics: A Comprehensive Treatment
(Campolieti-Makarov)
Solutions to selected exercises

Alan Marc Watson
July 19, 2016

Contents

1 Chapter 4: Primer on Derivative Securities 2
2 Chapter 10: One-dimensional Brownian motion and related processes. 4
3 Chapter 11: Introduction to continuous-time stochastic calculus 13
4 Chapter 12: Risk-Neutral pricing in the Black-Scholes Economy: one underlying stock 25
5 Chapter 13: Risk-Neutral pricing in a Multi-Asset Economy 37
6 Chapter 14: American options 50
7 Chapter 15: Interest rate modeling and derivative pricing 53
Chapter 4: Primer on Derivative Securities

Exercise 1.1. [CM14, Exercise 4.27] A European binary option is a so-called "all-or-nothing” claim on an underlying asset. For example, one share of a cash-or-nothing binary call has a payoff of exactly one dollar if the asset price ends up above the strike and zero otherwise, i.e. the payoff function is $\Lambda(S) = 1_{S \geq K}(S)$.

Similarly, a cash-or-nothing binary put has payoff $1_{S < K}$. Assume that the asset price process $\{S(t)\}_{t \geq 0}$ is a geometric Brownian motion.

(a) Derive the Black-Scholes exact pricing formulas for both the binary call $C(S,T)$ and the put $P(S,T)$.

(b) Give the relationship between the binary call and put price when both options have the same strike K and maturity T.

(c) Derive the exact formula for the Greek delta of the binary call and put: $\Delta_c = \frac{\partial C}{\partial S}$ and $\Delta_p = \frac{\partial P}{\partial S}$.

Solution.

(a) By the risk-neutral pricing formula we have

$$C(t, S) = e^{-r(T-t)} \tilde{E}[\Lambda(S(T)) | S(t) = S]$$

$$= e^{-r(T-t)} \left[\Lambda \left(S(t)e^{(r-\frac{\sigma^2}{2})(T-t)+\sigma \sqrt{T-t}Z} \right) | S(t) = S \right]$$

$$= e^{-r(T-t)} \tilde{E} \left[\frac{1}{Z \geq \frac{1}{\sigma \sqrt{T-t}}} \left(\ln \frac{S}{K} - \frac{(r-\frac{\sigma^2}{2})(T-t)}{2} \right) \right]$$

$$= e^{-r(T-t)} \tilde{P} \left(Z \geq -\frac{1}{\sigma \sqrt{T-t}} \left(\ln \frac{S}{K} + \left(r - \frac{\sigma^2}{2} \right) (T-t) \right) \right)$$

$$= e^{-r(T-t)} \tilde{N}(\alpha)$$

where in the last line we denoted $\alpha = \frac{1}{\sigma \sqrt{T-t}} \left(\ln \frac{S}{K} + \left(r - \frac{\sigma^2}{2} \right) (T-t) \right)$.

(b) The put-call parity relationship for European options reads

$$C(t, S) - P(t, S) = S - Ke^{-r(T-t)}$$

whereby

$$P(t, S) = C(t, S) - S + Ke^{-r(T-t)} = e^{-r(T-t)}[\tilde{N}(\alpha) + K] - S$$

(c) ...

□

Exercise 1.2. [CM14, Exercise 4.28] Consider the European-style option with payoff $\Lambda(S) = 1_{K_1 \leq S \leq K_2}(S)$ and assume the geometric Brownian motion model for the stock price process $\{S(t)\}_{t \geq 0}$.

2
(a) Find the option value by decomposing the payoff in terms of binary options with appropriate indicator functions.

(b) Derive formulas for the following sensitivities of the option value: $\Delta = \frac{\partial V}{\partial S}$, $\Gamma = \frac{\partial^2 V}{\partial S^2}$ and $\Theta = \frac{\partial V}{\partial t}$

Solution.

(a) The payoff can be decomposed in terms of binary options

$$\Lambda(S) = 1_{K_1 \leq S \leq K_2}(S) = 1_{S \geq K_1} - 1_{S \geq K_2}$$

so using the pricing formula (2) from the previous exercise we obtain

$$V(t, S) = e^{-r(T-t)} \mathbb{E}[\Lambda(S(T))|S(t) = S] = e^{-r(T-t)} \mathbb{E}[1_{K_1 \leq S(T) \leq K_2}|S(t) = S]$$

$$= e^{-r(T-t)} \mathbb{E}[1_{S(T) \geq K_1}|S(t) = S] - e^{-r(T-t)} \mathbb{E}[1_{S(T) \geq K_2}|S(t) = S]$$

$$= C^{K_1}(t, S) - C^{K_2}(t, S)$$

where $\alpha(K_i) = \frac{1}{\sigma \sqrt{T-t}} \left(\ln \frac{S}{K_i} + \left(r - \frac{\sigma^2}{2} \right) (T-t) \right)$.

(b) ...

\square
2 Chapter 10: One-dimensional Brownian motion and related processes.

Exercise 2.1. [CM14, Exercise 10.1]

(a) Show that the PDF of a sum of two continuous random variables X and Y is given by the convolution of the PDF’s f_X and f_Y:

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx$$

(b) Use the result in (a) to show that a sum of two independent standard normal random variables results in a normal random variable and find the PDF of such a sum.

(c) Assuming that $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are correlated with $\text{Corr}(X_1, X_2) = \rho$, find the mean and variance of $aX_1 + a_2X_2$ for $a_1, a_2 \in \mathbb{R}$.

Solution.

(a) We start by computing the CDF of the sum: denoting by $f_{X,Y}(x,y)$ the joint density function of X and Y we have

$$P(X + Y \leq z) = P(X \leq z - Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-Y} f_{X,Y}(x,y) \, dx \, dy$$

and differentiating with respect to z we obtain

$$f_{X+Y}(z) = \frac{d}{dz} P(X + Y \leq z) = \int_{-\infty}^{\infty} f_{X,Y}(z-y,y) \, dy \overset{[1]}{=} \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy \overset{[2]}{=} \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx$$

where in [2] we used independence of X and Y and in [2] we changed variables to $x = z - y$.

(b) We compute the sum of two standard normal variables by convolving their density functions: if $X, Y \sim \mathcal{N}(0,1)$, then $f_X(u) = f_Y(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$ so

$$f_{X+Y}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{x^2/2} e^{-(z-x)^2/2} \, dx = \frac{1}{2\pi} e^{-z^2/4} \int_{-\infty}^{\infty} e^{-(x-\frac{z}{2})^2} \, dx$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-z^2/4} \int_{-\infty}^{\infty} e^{-u^2/2} \, du$$

$$= \frac{1}{2\sqrt{\pi}} e^{-z^2/2}$$

which shows that $X + Y$ is a normal variable with mean 0 and variance 2.

□

Exercise 2.2. [CM14, Exercise 10.3] Suppose that $X = (X_1, X_2, X_3)^\top$ be a 3-dimensional Gaussian random vector with mean zero and covariance matrix $\Sigma_X = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$. Set $Y = 1 + X_1 - 2X_2 + X_3$ and $Z = X_1 - 2X_3$.

4
(a) Find the probability distribution of Y.

(b) Find the probability distribution of the vector $(Y, Z)\top$.

Solution. We start by recalling the following facts:

(i) If $X = (X_1, \ldots, X_n)$ is an n-dimensional vector of random variables with covariance matrix Σ_X (namely, $(\Sigma_X)_{ij} = \text{Cov}(X_i, X_j)$) and $Y = MX$ where M is an $m \times n$ matrix and $Y = (Y_1, \ldots, Y_m)$ is an m-dimensional vector of random variables, then

$$\Sigma_Y = M \Sigma_X M\top$$

(ii) If $Y = b + MX$, where Y is an m-dimensional vector of random variables, b is a constant m-dimensional vector and X is an n-dimensional vector of random variables with mean μ_X and covariance Σ_X, then Y has mean vector and covariance matrix given by

$$\mu_Y = b + M\mu_X, \quad \Sigma_Y = M \Sigma_X M\top$$

(iii) An n-dimensional random vector has the n-dimensional multivariate normal distribution if and only if every combination $\sum_{i=1}^n c_i X_i$ is a normal random variable. In particular, it follows from (ii) that if $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ and $Y = b + MX$, then

$$Y \sim \mathcal{N} \left(b + M\mu_X, M \Sigma_X M\top \right)$$

(iv) If Z has the standard n-dimensional normal distribution, $Z \sim \mathcal{N}(0, I_n)$ and A is a symmetric positive definite matrix with Cholesky factorization $A = U\top U$, then $X = U\top Z$ has an n-dimensional normal distribution with covariance matrix $\Sigma_X = A$, so $X \sim \mathcal{N}(0, A)$.

We now solve the exercise.

1. Y has a normal distribution by (iii). If $b = (1, -2, 1)\top$, then

$$Y \sim \mathcal{N} \left(1 + b\top 0, b\top \Sigma_X b \right)$$

with

$$b\top \Sigma_X b = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 11$$

so $Y \sim \mathcal{N}(1, 11)$.

2. Note that

$$\begin{pmatrix} Y \\ Z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + A \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

so by (iii) the vector $W := (Y, Z)\top$ has a bivariate normal distribution with mean $\mu_W = (1, 0)\top + A \cdot 0 = (1, 0)\top$ and covariance matrix $\Sigma_W = A \Sigma_X A\top = \begin{pmatrix} 11 & -2 \\ -2 & 8 \end{pmatrix}$.
Exercise 2.3. [CM14, Exercise 10.8] For a Brownian motion \(\{W(t)\}_{t \geq 0} \) and its natural filtration, calculate \(E_s[W^3(t)] \) for \(0 \leq s \leq t \).

Solution. Method 1. Taking the differential of \(W^3(t) \) and using It’s lemma we see that
\[
dW^3(t) = 3W^2(t)dW(t) + 3W(t)dt
\]
since \(\int_0^t W^2(u) dW(u) \) is a square-integrable martingale, it follows that that so is \(W^3(t) - 3 \int_0^t W(u) du \), whence
\[
E_s[W^3(t)] = E_s\left[W^3(t) - 3 \int_0^t W(u) du\right] + E_s\left[3 \int_0^t W(u) du\right]
\]
As for the last expectation we have
\[
E_s\left[\int_0^t W(u) du\right] = E_s\left[\int_0^s W(u) du + \int_s^t W(u) du\right] = \int_0^s W(u) du + \int_s^t E_s[W(u)] du
\]
so in conclusion
\[
E_s[W^3(t)] = W^3(s) + 3(t - s)W(s)
\]
Method 2. We can also compute the expectation directly:
\[
E_s[W^3(t)] = E_s[(W(t) - W(s) + W(s))^3] = E_s[(W(t) - W(s))^3] + 3E_s[(W(t) - W(s))^2W(s)] + 3E_s[(W(t) - W(s))W^2(s)] + E_s[W^3(s)]
\]
Now note that
\[
E_s[(W(t) - W(s))^3] = 0
E_s[(W(t) - W(s))^2W(s)] = W(s)E_s[(W(t) - W(s))^2W(s)] = W(s)E[(W(t) - W(s))^2] = (t-s)W(s)
E_s[(W(t) - W(s))W^2(s)] = W^2(s)E_s[W(t) - W(s)] = 0
E_s[W^3(s)] = W^3(s)
\]
In the first equation we used that a normal variable has 0 third central moment (in fact it has 0 odd central moments, as the remark below shows). In the second equation, we used the fact that \(W(s) \) is \(\mathcal{F}_s \)-measurable for the first equality (so it can be taken out of the expectation) and also the fact that \(W(t) - W(s) \) is \(\mathcal{F}_s \)-independent for the second equality, so that the conditional expectation \(E_s \) is in fact unconditional. In the third equation we simply used that \(W^2(s) \) is \(\mathcal{F}_s \)-measurable to take it out of the expectation. □
Remark 2.1 (Central moments of a normal random variable). The n-th central moment is by definition $\hat{m}_n = \mathbb{E}((X - \mathbb{E}(X))^n)$. Notice that for the normal distribution $\mathbb{E}(X) = \mu$, and that $Y = X - \mu$ also follows a normal distribution, with zero mean and the same variance σ^2 as X.

Therefore, finding the central moment of X is equivalent to finding the raw moment of Y.

\[
\hat{m}_n = \mathbb{E}((X - \mathbb{E}(X))^n) = \mathbb{E}((X - \mu)^n) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} (x - \mu)^n e^{-(x-\mu)^2/(2\sigma^2)} \, dx
\]

where $\Gamma(n) = \int_{0}^{\infty} u^{n-1} e^{-u} \, du$ stands for the Euler’s Gamma function. Using its properties we obtain

\[
\hat{m}_2n = \sigma^{2n}(2n-1)!! \quad \hat{m}_{2n+1} = 0
\]

Exercise 2.4. [CM14, Exercise 10.9] Find the distribution of $W(1) + \cdots + W(n)$ for $n \in \mathbb{N}$.

Solution. A sum of normal random variables is again normal, so it suffices to compute its mean and variance. Clearly

\[
E[W(1) + \cdots + W(n)] = 0
\]

since each $W(k) \sim \mathcal{N}(0, k)$. As for the variance, recall that

\[
\text{Var}[W(1) + \cdots + W(n)] = \sum_{k=1}^{n} \text{Var}(W(k)) + 2 \sum_{i<j} \text{Cov}(W(i), W(j))
\]

and for $i < j$

\[
\text{Cov}(W(i), W(j)) = E[W(i)W(j)] = E[W(i) \cdot (W(j) - W(i))] + E[W^2(i)] = \text{Var}(W(i)) = i
\]

We hence observe that

\[
\text{Var}[W(1) + W(2)] = (1 + 2) + 2 \cdot 1
\]

\[
\text{Var}[W(1) + W(2) + W(3)] = (1 + 2 + 3) + 2 \cdot [1 + (1+2)]
\]

\[
\text{Var} \left(\sum_{k=1}^{4} W(k) \right) = (1 + 2 + 3 + 4) + 2 \cdot [1 + (1 + 2) + (1+2+3)]
\]

\[
\vdots
\]

\[
\text{Var} \left(\sum_{k=1}^{n} W(k) \right) = \text{Var} \left(\sum_{k=1}^{n-1} W(k) \right) + n + 2 \cdot \frac{(n-1)n}{2} = \text{Var} \left(\sum_{k=1}^{n-1} W(k) \right) + n^2
\]
So
\[\text{Var} \left(\sum_{k=1}^{n} W(k) \right) = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \]
and hence
\[\sum_{k=1}^{n} W(k) \sim \mathcal{N} \left(0, \frac{n(n+1)(2n+1)}{6} \right) \]
\[\Box \]

Exercise 2.5. [CM14, Exercise 10.10] Let \(a_1, \ldots, a_n \in \mathbb{R} \) and \(0 < t_1 < \cdots < t_n \). Find the distribution of \(\sum_{i=1}^{n} a_i W(t_i) \). Note that the choice \(a_k = \frac{1}{n}, 1 \leq k \leq n \), leads to Asian options.

Solution. Arguing as in the previous exercise, we conclude that
\[
\text{Var} \left(\sum_{i=1}^{n} a_i W(t_i) \right) = \text{Var} \left(\sum_{i=1}^{n-1} a_i W(t_i) \right) + a_n^2 t_n + 2a_n \sum_{k=1}^{n-1} a_k t_k
\]
so by induction
\[
\text{Var} \left(\sum_{i=1}^{n} a_i W(t_i) \right) = \sum_{i=1}^{n} \left[a_i^2 t_i + 2a_i \sum_{k=1}^{i-1} a_k t_k \right]
\]
\[\Box \]

Exercise 2.6. [CM14, Exercise 10.11] Suppose that the processes \{\(X(t) \)\}_{t \geq 0} and \{\(Y(t) \)\}_{t \geq 0} are respectively given by \(X(t) = x_0 + \mu x t + \sigma x W(t) \) and \(Y(t) = y_0 + \mu y t + \sigma y W(t) \), where \(x_0, y_0, \mu_x, \mu_y, \sigma_x > 0, \sigma_y > 0 \) are real constants. Find the covariance \(\text{Cov}(X(t), Y(s)) \), for \(s, t \geq 0 \).

Solution.
\[\Box \]

Exercise 2.7. [CM14, Exercise 10.12] Consider the process \(X(t) = x_0 + \mu t + \sigma W(t) \geq 0 \), where \(x_0, \mu \) and \(\sigma \) are real constants. Show that
\[
E[\max(X(t) - K, 0)] = (x_0 + \mu t - K) \mathcal{N} \left(\frac{x_0 + \mu t - K}{\sigma \sqrt{t}} \right) + \sigma \sqrt{t} \ln \left(\frac{x_0 + \mu t - K}{\sigma \sqrt{t}} \right)
\]

Solution.
\[\Box \]

Exercise 2.8. [CM14, Exercise 10.13] By directly calculating partial derivatives, verify that the transition PDF
\[
p_0(t; x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}
\]
of standard Brownian motion satisfies the diffusion equation
\[
\frac{\partial}{\partial t} u(t, x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t, x)
\]
8
Solution. We simply compute the derivatives

\[
\frac{\partial p_0}{\partial t} (t, x) = -\frac{1}{2} \frac{1}{\sqrt{2\pi t^3}} e^{-\frac{x^2}{2t}} + \frac{x^2}{2t^2 \sqrt{2\pi t}} e^{-\frac{x^2}{2t}}
\]

\[
\frac{\partial p_0}{\partial x} (t, x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \left(-\frac{x}{t} \right)
\]

\[
\frac{\partial^2 p_0}{\partial x^2} (t, x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} \frac{x^2}{t^2} - \frac{1}{t \sqrt{2\pi t}} e^{-\frac{x^2}{2t}}
\]

whereby clearly

\[
\frac{\partial}{\partial t} p_0(t, x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} p_0(t, x)
\]

□

Exercise 2.9. [CM14, Exercise 10.14] Find the transition PDF of \(\{W^n(t)\}_{t \geq 0} \) for \(n \in \mathbb{N} \).

Solution.

□

Exercise 2.10. [CM14, Exercise 10.15] Find the transition PDF of \(\{S^n(t)\}_{t \geq 0} \), where

\[S(t) = S_0 e^{\mu t + \sigma W(t)}, \quad t \geq 0, \quad S_0 > 0, \quad n \in \mathbb{N} \]

Solution.

□

Exercise 2.11. [CM14, Exercise 10.19] Show that the mean and covariance functions of the Brownian bridge from \(a \) to \(b \) on \([0, T]\) are, respectively

\[
m(t) = a + \frac{b - a}{T} t,
\]

\[
c(s, t) = s \wedge t - \frac{st}{T}
\]

for \(s, t \in [0, T] \).

Solution. Recall that if \(X(t) \equiv X^{[0, a]}_{[0, T]} = W(t) - \frac{t}{T} W(T) \) is the Brownian bridge from 0 to 0, then

\[
X^{[0, a]}_{[0, T]} = a + \frac{b - a}{T} t + X(t)
\]

so

\[
m_{X^{[0, a]}_{[0, T]}}(t) = a + \frac{b - a}{T} t + m_X(t)
\]

\[
c_{X^{[0, a]}_{[0, T]}}(t, s) = c_X(t, s)
\]
and it suffices to compute $m_X(t)$ and $c_X(t,s)$.

$$m_X(t) = E[X(t)] = E \left[W(t) - \frac{t}{T} W(T) \right] = 0,$$

$$c_X(t,s) = E [X(t)X(s)] = E \left[\left(W(t) - \frac{t}{T} W(T) \right) \left(W(s) - \frac{s}{T} W(T) \right) \right]$$

$$= E[W(t)W(s)] - \frac{s}{T} E[W(t)W(T)] - \frac{t}{T} E[W(s)W(T)] + \frac{st}{T^2} W^2(T)$$

$$= t \wedge s - \frac{st}{T} \square$$

Exercise 2.12. [CM14, Exercise 10.21] Consider the GBM; process $S(t) = S_0 e^{\mu t + \sigma W(t)}$, $t \geq 0$, $S_0 > 0$. The respective sampled maximum and minimum of this process are defined by

$$M^S(t) = \sup_{0 \leq u \leq t} S(u), \quad m^S(t) = \inf_{0 \leq u \leq t} S(u)$$

and the first hitting time to a level $B > 0$ is defined by

$$T^S_B = \inf \{ t \geq 0 : S(t) = B \}.$$

Derive expressions for the following:

(a) $P(M^S(t) \leq y, S(t) \leq s), t > 0, 0 < x \leq y \leq \infty, S_0 \leq y$.

(b) $P(M^S(t) \leq y), t > 0, S_0 \leq y < \infty$.

(c) $P(T^S_B \leq t), t > 0, S_0 < B$.

Solution.

(a) Let $X(t) = \mu t + \sigma W(t)$. Denoting $M(t) = \sup_{0 \leq s \leq t} W(s)$, We know that

$$f_{M^X(t),X(t)}(w,y) = e^{-\frac{1}{2} \nu^2 + \mu y} f_{M(t),W(t)}(w,y)$$

$$f_{M(t),W(t)}(w,y) = \frac{2(2w-y)}{t \sqrt{2\pi t}} e^{-\frac{(2w-y)^2}{2t}}$$

Note that $S(t) \leq s$ if and only if $X(t) \leq \ln \frac{s}{S_0}$ so

$$P(M^S(t) \leq y, S(t) \leq s) = P \left(M^X(t) \leq \ln \frac{y}{S_0}, X(t) \leq \ln \frac{s}{S_0} \right) \equiv P \left(M^X(t) \leq m, X(t) \leq x \right)$$

and

$$P(M^X(t) \leq m, X(t) \leq x) = \int_0^m \int_0^x f_{M^X(t),X(t)}(w,y) dy dw$$

$$= e^{-\frac{1}{2} \nu^2 t} \int_0^m \int_0^x e^{\mu y} \frac{2(2w-y)}{t \sqrt{2\pi t}} e^{-\frac{(2w-y)^2}{2t}} dy dw$$

And if you have enough patience you can type the computation of the latter integral...
(b) As above note that \(P(M^S(t) \leq y) = P \left(M^X(t) \leq \ln \frac{y}{S_0} \right) \) so it suffices to integrate the joint density

\[
f_{M^X(t),X(t)}(w,y) = e^{-\frac{1}{2}\mu^2+\mu y} \frac{2(2w-y)}{t\sqrt{2\pi t}e^{-(2w-y)^2/2t}}
\]

over the region \(-\infty < y \leq w, 0 \leq w \leq \ln \frac{y}{S_0}\), namely

\[
P \left(M^X(t) \leq \ln \frac{y}{S_0} \right) = \int_0^m \int_{-\infty}^{m} f_{M^X(t),X(t)}(w,y) \, dy \, dw
\]

where the second equality follows from Fubini’s theorem.

(c) To compute that \(P(T^S_B \leq t) \), simply note that

\[
P(T^S_B \leq t) = P(M^S(t) \geq B) = 1 - P(M^S(t) \leq B)
\]

and we computed the latter in part (b).

Remark 2.2. We recall briefly how to obtain

\[
f_{M^X(t),X(t)}(w,y) = e^{-\frac{1}{2}\mu^2+\mu y} f_{M(t),W(t)}(w,y) \tag{3}
\]

\[
f_{M(t),W(t)}(w,y) = \frac{2(2w-y)}{t\sqrt{2\pi t}e^{-(2w-y)^2/2t}} \tag{4}
\]

where, recall \(X(t) = \mu t + \sigma W(t), \ M^X(t) = \sup_{0 \leq s \leq t} X(s) \) and \(M(t) = \sup_{0 \leq s \leq t} W(t) \), where \(W(t) \) is a standard Brownian motion.

The joint density of Brownian motion and its maximum (4) follows from the reflection principle

\[
P(W(t) \leq w, T^W_m \leq t) = P(W(t) \geq 2m - w)
\]

Note on the one hand that for the LHS we have

\[
P(T^W_m \leq t, W(t) \leq w) = P(M(t) \geq m, W(t) \leq w) = \int_{-\infty}^m \int_{-\infty}^w f_{M(t),W(t)}(x,y) \, dy \, dx
\]

As for the RHS, since \(W(t) \sim \mathcal{N}(0, t) \) we have

\[
P(W(t) \geq 2m - w) = \int_{2m-w}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-u^2/2t} \, du
\]

Equating both and differentiating with respect to \(m \) and \(w \) yields (4).

To show (3), assume for simplicity that \(\sigma = 1 \). It then suffices to perform a change of measure that renders the Brownian motion driftless. Assuming that the market price of risk is \(\gamma \) and letting \(\hat{W}(t) = W(t) + \gamma(t) \) we get

\[
dX(t) = (\mu - \gamma)dt + d\hat{W}(t)
\]
which is driftless if $\gamma = \mu$. The change of measure is given by the Radon-Nikodym process

$$\rho_t = \left(\frac{d\hat{P}}{dP}\right)_t = \exp\left(-\frac{1}{2}\int_0^t \frac{\mu^2}{\sigma^2} ds - \int_0^t \mu ds\right) = e^{-\frac{1}{2}\mu^2 t - \mu \hat{W}(t)} = e^{\frac{1}{2}\mu^2 t - \mu \hat{W}(t)}$$

Hence

$$P(M^X(t) \leq m, X(t) \leq x) = E\left[I_{M^X(t) \leq m, X(t) \leq x}\right] = \hat{E}\left[\left(\frac{dP}{d\hat{P}}\right)_t I_{M^X(t) \leq m, X(t) \leq x}\right]$$

$$\leq \hat{E}\left[\rho_t^{-1}I_{M^X(t) \leq m, X(t) \leq x}\right]$$

$$\leq e^{-\frac{1}{2}\mu^2 t} \hat{E}\left[e^{\mu \hat{W}(t)} I_{M^\hat{W}(t) \leq m, \hat{W}(t) \leq x}\right]$$

$$\leq e^{-\frac{1}{2}\mu^2 t} E\left[e^{\mu W(t)} I_{M(t) \leq m, W(t) \leq x}\right]$$

$$= e^{-\frac{1}{2}\mu^2 t} \int_{-\infty}^m \int_{-\infty}^x e^{\mu y} f_{M(t), W(t)}(w, y) dy dw$$

where in [1] we used that $X(t) = \hat{W}(t)$ and in [2] we used the fact that the random variables $M^\hat{W}(t)$ and $\hat{W}(t)$ under measure \hat{P} are the same as $M(t)$ and $W(t)$ under measure P. This shows (3).

□
3 Chapter 11: Introduction to continuous-time stochastic calculus

Exercise 3.1. [CM14, Exercise 11.4] Evaluate the following double stochastic integral

\[\int_0^t \left(\int_0^s dW(u) \right) dW(s) \]

Solution. The inner integral is simply \(\int_0^s dW(u) = W(s) - W(0) = W(s) \) and then \(\int_0^t W(s) dW(s) \) can be computed by applying It’s formula to \(df(W(t)) \) with \(f(x) = x^2 \). Indeed,

\[dW^2(s) = 2W(s)dW(t) + 2ds \]

so integrating over \(0 \leq s \leq t \) and re-arranging we obtain

\[\int_0^t W(s) dW(s) = \frac{1}{2} W^2(t) - t \]

□

Exercise 3.2. [CM14, Exercise 11.5] Show that

\[\int_0^t W^2(s) dW(s) = \frac{1}{3} W^3(t) - \int_0^t W(s) ds \]

by using an appropriate It formula.

Solution. Applying It’s formula to compute \(df(W(s)) \), with \(f(x) = x^3 \) we obtain

\[dW^3(s) = 3W^2(s)dW(s) + 3W(s)ds \]

so re-arranging and integrating over \(0 \leq s \leq t \) yields

\[\int_0^t W^2(s) dW(s) = \frac{1}{3} W^3(t) - \int_0^t W(s) ds \]

as claimed. □

Exercise 3.3. [CM14, Exercise 11.6] Use the It isometry property to calculate the variances of the following It integrals. Also explain why the integrals are well defined.

(a) \(\int_0^t |W(s)|^{1/2} dW(s) \).

(b) \(\int_0^t |W(s) + s|^2 dW(s) \).

(c) \(\int_0^t |W(s) + s|^{3/2} dW(s) \).
Solution. Recall that an It integral \(\int_0^t X(s) \, dW(s) \) is well defined provided that the integrand \(X(s) \) is \(\mathcal{F}(s) \)-measurable (which is obviously satisfied in all three cases) and provided that it satisfies the square integrability condition

\[
E \left[\int_0^t X^2(s) \, ds \right] = \int_0^t E \left[X^2(s) \right] \, ds < \infty
\]

and the It isometry property states that

\[
\text{Var} \left[\int_0^t X(s) \, dW(s) \right] = \int_0^t E \left[X^2(s) \right] \, ds
\]

(a) By It isometry we have

\[
\text{Var} \left[\int_0^t |W(s)|^{1/2} \, dW(s) \right] = \int_0^t E[|W(s)|] \, ds = 0
\]

(b) For the integral \(\int_0^t |W(s) + s|^2 \, dW(s) \) we have that

\[
\text{Var} \left[\int_0^t |W(s) + s|^2 \, dW(s) \right] = \int_0^t E \left[|W(s) + s|^4 \right] \, ds
\]

\[
\overset{[1]}{=} \int_0^t E \left[W^4(s) + 4W^3(s)s + 16W^2(s)s^2 + 4W(s)s^3 + s^4 \right] \, ds
\]

\[
\overset{[2]}{=} \int_0^t \left[3s^2 + 16s^3 + s^4 \right] \, ds = t^3 + 4t^4 + \frac{1}{5} t^5
\]

where in [2] we used the result of Exercise 11.9, to the effect that \(E[W^3(s)] = 0 \) and \(E[W^4(s)] = 6 \int_0^t E[W^2(s)] \, ds = 3t^2 \). This integral is clearly finite, which shows that the square integrability condition is satisfied. This could have been concluded directly from [1], since we are integrating a continuous function \(E \left[|W(s) + s|^4 \right] \) over a compact set.

\[\square \]

Exercise 3.4. [CM14, Exercise 11.8] Using It’s formula, show that the process defined by

\[
X(t) := W^4(t) - 6 \int_0^t W^2(u) \, du, \quad t \geq 0
\]

is a martingale with respect to a filtration for Brownian motion.

Solution. Note that \(X(t) = f(t, W(t)) \), with \(f(t, x) = x^4 - 6 \int_0^t W^2(u) \, du \) so by It’s formula

\[
dX(t) = -6W^2(t) \, dt + 4W^3(t) \, dW(t) + 6W^2(t) \, dt = 4W^3(t) \, dW(t)
\]

so \(X(t) \) is an It integral

\[
X(t) = 4 \int_0^t W^3(s) \, dW(s)
\]

which is a martingale provided that the usual square integrability is satisfied, which trivially is by continuity of Brownian motion

\[
E \left[\int_0^t (W^3(s))^2 \, ds \right] = E \left[\int_0^t W^6(s) \, ds \right] < \infty
\]

\[\square \]
Exercise 3.5. [CM14, Exercise 11.9] Use It’s formula to show that for any integer \(k \geq 2 \)

\[
E[W^k(t)] = \frac{k(k-1)}{2} \int_0^t E\left[W^{k-2}(s)\right] \, ds
\]

and use this to derive a formula for all the moments of the standard normal distribution.

Solution. By It’s formula we have

\[
dW^k(t) = kW^{k-1}(t)dW(t) + \frac{1}{2}k(k-1)W^{k-2}(t)dt
\]

whence

\[
W^k(t) = k \int_0^t W^{k-1}(s) \, dW(s) + \frac{k(k-1)}{2} \int_0^t W^{k-2}(s) \, ds
\]

and taking expectations

\[
E[W^k(t)] = \frac{k(k-1)}{2} \int_0^t E[W^{k-2}(s)] \, ds
\]

as claimed. □

Exercise 3.6. [CM14, Exercise 11.10] Show that \(M(t) = e^{t/2} \sin(W(t)), \ t \geq 0 \) is a martingale with respect to a filtration for Brownian motion.

Solution. By It’s formula

\[
dM(t) = \frac{1}{2}e^{t/2} \sin(W(t)) + e^{t/2} \cos(W(t))dW(t) - \frac{1}{2}e^{t/2} \sin(W(t))dt = e^{t/2} \cos(W(t))dW(t)
\]

and since \(M(0) = 0 \) we have

\[
M(t) = \int_0^t e^{s/2} \cos(W(s)) \, dW(s)
\]

which is an It integral provided that the square integrability condition

\[
\int_0^t e^s E[\cos^2(W(s))] \, ds < \infty
\]

is satisfied (and this is clearly the case, by continuity). □

Exercise 3.7. [CM14, Exercise 11.11] Use It’s formula to show that for any non-random, continuously differentiable function \(f(t) \), the following formula of integration by parts holds:

\[
\int_0^t f(s) \, dW(s) = f(t)W(t) - \int_0^t f'(s)W(s) \, ds
\]

Solution. By It’s formula we have \(d[f(t)W(t)] = f'(t)W(t) \, dt + f(t)dW(t) \) and integrating we conclude

\[
f(t)W(t) = \int_0^t f'(s) \, dW(s) + \int_0^t f(s) \, dW(s)
\]

as claimed. □
Exercise 3.8. [CM14, Exercise 11.15] Let $\mathcal{N}(x)$ be the standard normal CDF and consider the process

$$X(t) \overset{def}{=} \mathcal{N} \left(\frac{W(t)}{\sqrt{T-t}} \right), \quad 0 \leq t < T$$

Express this process as an Itô process and show that it is a martingale with respect to any filtration of BM. Find the limiting value $X(T^-) = \lim_{t \to T^-} X(t)$.

Solution. Consider the function

$$f(t, x) = \mathcal{N} \left(\frac{x}{\sqrt{T-t}} \right) = \int_{-\infty}^{\frac{x}{\sqrt{T-t}}} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

By Itô’s formula we have

$$df(t, W(t)) = \frac{\partial f}{\partial t}(t, W(t))dt + \frac{\partial f}{\partial x}(t, W(t))dW(t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, W(t))dt$$

The derivatives in question are given by

$$\frac{\partial f}{\partial t}(t, x) = \frac{1}{2} \frac{1}{\sqrt{2\pi T-t}} e^{-x^2/(T-t)},$$

$$\frac{\partial f}{\partial x}(t, x) = \frac{1}{\sqrt{2\pi (T-t)}} \frac{1}{\sqrt{2\pi (T-t)}},$$

$$\frac{\partial^2 f}{\partial x^2}(t, x) = - \frac{1}{\sqrt{2\pi (T-t)}} \frac{1}{\sqrt{2\pi (T-t)}}$$

whence

$$dX(t) = \frac{1}{\sqrt{2\pi}} e^{-W^2(t)/2T} \frac{1}{\sqrt{T-t}} dW(t)$$

This is a martingale provided that the square integrability condition is satisfied, namely

$$\int_0^t E \left[\frac{1}{T-u} e^{-W^2(u)/2T} \right] du < \infty$$

However

$$E \left[\frac{1}{T-u} e^{-W^2(u)/2T} \right] = \frac{1}{T-u} \int_{-\infty}^{\infty} e^{-z^2/2T} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \frac{1}{\sqrt{2\pi T-u}} \int_{-\infty}^{\infty} e^{-z^2(1+u/T)} dz < \infty$$

for $u \in [0, T]$. Its integral over $[0, t]$ is thus also finite (being the integral of a continuous function over a compact interval).

Finally, it is clear that

$$\lim_{t \to T^-} X(t) = \mathcal{N} \left(\lim_{t \to T^-} \frac{W(t)}{\sqrt{T-t}} \right) = 1$$

□
Exercise 3.9. [CM14, Exercise 11.16] Suppose that the processes \(\{X(t)\}_{t \geq 0} \) and \(\{Y(t)\}_{t \geq 0} \) have the log-normal dynamics
\[
 dX(t) = X(t) (\mu_X(t) dt + \sigma_X dW(t)) \\
 dY(t) = Y(t) (\mu_Y(t) dt + \sigma_Y dW(t))
\]
Show that the process \(Z(t) = \frac{X(t)}{Y(t)} \) is also log-normal, with dynamics
\[
 dZ(t) = Z(t) (\mu_Z(t) dt + \sigma_Z dW(t))
\]
and determine the coefficients \(\mu_Z \) and \(\sigma_Z \) in terms of those of \(X \) and \(Y \). Solve the same problem now assuming that \(X \) and \(Y \) are governed by two correlated Brownian motions \(W^X \) and \(W^Y \), respectively, where \(\text{Corr}(W^X(t), W^Y(t)) = \rho t \), for a given correlation \(-1 \leq \rho \leq 1\).

Solution.

Exercise 3.10. [CM14, Exercise 11.17] Consider the time-homogeneous diffusion \(X(t) \) have a stochastic differential
\[
 dX(t) = [3X(t) - 1]dt + 2\sqrt{X(t)}dW(t), \quad X(t) \geq 0
\]
Find the stochastic differential for the process \(Y(t) := \sqrt{X(t)} \) and find the generator for \(Y(t) \).

Solution. Note that \(Y(t) = f(X(t)) \) with \(f(t, x) = \sqrt{x} \). By It’s formula we have
\[
 dY(t) = df(X(t)) = \frac{\partial f}{\partial x}(X(t))dX(t) + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(X(t))dX(t)dX(t)
\]
\[
 = \left[\frac{1}{2\sqrt{X(t)}}dX(t) - \frac{1}{24X(t)^{3/2}}dX(t)dX(t) \right]dX(t)
\]
\[
 = \frac{1}{2\sqrt{X(t)}}[3X(t) - 1]dt + dW(t) - \frac{1}{2\sqrt{X(t)}}dt
\]
\[
 = \frac{1}{2\sqrt{X(t)}}[3X(t) - 2]dt + dW(t)
\]
\[
 = \frac{1}{2} \left[3Y(t) - \frac{2}{Y(t)} \right] dt + dW(t)
\]
Recall that given an It process
\[
 X(t) = \mu(t, X(t)) dt + \sigma(t, X(t))dW(t),
\]
its generator is the operator
\[
 \mathcal{G}_{t,x} = \mu(t, x) \frac{\partial}{\partial x} + \frac{1}{2} \sigma^2(t, x) \frac{\partial^2}{\partial x^2}
\]
which acts on functions \(f \in C^{1,2} \). In our case, for the process \(Y(t) \) we have
\[
 \mathcal{G}_{t,x}^Y = \frac{1}{2} \left[3x - \frac{2}{x} \right] \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2}
\]

\[\square\]
Exercise 3.11. [CM14, Exercise 11.18] Let \(X(t) = tW^2(t) \) and \(Y(t) = e^{W(t)} \). Find the stochastic differential of \(Z(t) = \frac{X(t)}{Y(t)} \). Compute the mean and variance of \(Z(t) \).

Solution. By It’s formula, the differentials of the two processes \(X(t) \) and \(Y(t) \) are

\[
\begin{align*}
 dX(t) &= [W^2(t) + t]dt + 2tW(t)dW(t), \\
 dY(t) &= e^{W(t)}dW(t) + \frac{1}{2}e^{W(t)}dt.
\end{align*}
\]

To compute \(dZ(t) = df(X(t), Y(t)) \) we apply the 2-dimensional It’s formula to the function \(f(x, y) = \frac{x}{y} \). Since

\[
\begin{align*}
 f_x &= \frac{1}{y}, & f_y &= -\frac{x}{y^2}, & f_{xx} &= 0, & f_{xy} &= -\frac{1}{y^2}, & f_{yy} &= \frac{2x}{y^3}
\end{align*}
\]

we have (omitting the dependence \((X(t), Y(t)) \) in the first line)

\[
\begin{align*}
 dZ(t) &= f_xdX(t) + f_ydY(t) + \frac{1}{2}f_{xx}dX(t)dX(t) + f_{xy}dX(t)dY(t) + \frac{1}{2}f_{yy}dY(t)dY(t) \\
 &= \frac{1}{Y(t)}dX(t) - \frac{X(t)}{Y^2(t)}dY(t) - \frac{1}{Y^2(t)}dX(t)dY(t) + \frac{X(t)}{Y^3(t)}dY(t)dY(t) \\
 &= e^{-W(t)} \left[(W^2(t) + t)dt + 2tW(t)dW(t) \right] - tW^2(t)e^{-2W(t)} \left[\frac{1}{2}e^{W(t)}dt + e^{W(t)}dW(t) \right] \\
 &\quad - e^{-2W(t)}2tW(t)e^{W(t)}dt + tW^2(t)e^{-3W(t)}e^{2W(t)}dt \\
 &\quad + W(t)e^{-W(t)}t[2 - W(t)]dW(t)
\end{align*}
\]

and I am very likely to have made a mistake somewhere... □

Exercise 3.12. [CM14, Exercise 11.19] Let \(X(t) \) be a time-homogeneous diffusion process solving an SDE \(dX(t) = cX(t) + \sigma dW(t) \) with initial condition \(X(0) = x \in \mathbb{R} \) and where \(c, \sigma \) are constants. Consider the process defined by \(Y(t) = X^2(t) - 2c \int_0^t X^2(s) \ ds - \sigma^2 t, \ t \geq 0 \).

(a) Represent \(Y(t) \) as an It process and show that it is a martingale with respect to any filtration for Brownian motion.

(b) Compute the mean and variance of \(Y(t) \) for all \(t \geq 0 \).

Solution.

(a) By It’s formula we have

\[
\begin{align*}
 dY(t) &= 2X(t)dX(t) + \sigma^2 dt - 2cX^2(t)dt - \sigma^2 dt \\
 &= 2cX^2(t)dt + 2\sigma X(t)dW(t) - 2cX^2(t)dt \\
 &= 2\sigma X(t)dW(t)
\end{align*}
\]

whence

\[
Y(t) = Y(0) + 2\sigma \int_0^t X(s) \ dW(s) = x^2 + 2\sigma \int_0^t X(s) \ dW(s)
\]

which is a martingale provided that the square integrability condition \(\int_0^t E[X^2(s)] \ ds \) is satisfied. We verify this in part (b).
(b) Clearly $E[Y(t)] = x^2$. In order to compute the variance, we start by solving the SDE for $X(t)$ using an integrating factor. Note that
\[
d(e^{-ct}X(t)) = -ce^{-ct}X(t) + ce^{-ct}X(t)dt + \sigma e^{-ct}dW(t) = \sigma e^{-ct}dW(t)
\]
whence
\[
X(t) = xe^{ct} + \sigma \int_0^t e^{c(t-s)} dW(s)
\]
The expected value of $X(t)$ is $E[X(t)] = xe^{ct}$ and by Itô isometry we have
\[
\text{Var}[X(t)] = \int_0^t \sigma^2 e^{2c(t-s)} ds = -\frac{\sigma^2}{2c} e^{2c(t-s)} \bigg|_0^t = \frac{\sigma^2}{2c}[e^{2ct} - 1]
\]
Since we also have $\text{Var}[X(t)] = E[X^2(t)] - E[X(t)]^2$ we conclude that
\[
\text{Var}[Y(t)] = 4\sigma^2 \int_0^t E[X^2(s)] ds = 4\sigma^2 \int_0^t \bigg[\frac{\sigma^2}{2c}(e^{2cs} - 1) + x^2 e^{2cs} \bigg] ds
\]
\[
= \frac{2\sigma^4}{c} \left[(e^{2ct} - 1) \frac{x^2 + 1}{2c} - t \right]
\]
\[\square\]

Exercise 3.13. [CM14, Exercise 11.20] Use the Itô formula to write down stochastic differentials for the following processes.

(a) $Y(t) = \exp\left(\sigma W(t) - \frac{1}{2}\sigma^2 t\right)$. Also find the expectation and variance of the process $X(t) = \int_0^t Y(s) ds$.

(b) $Z(t) = f(t)W(t)$ where f is continuously differentiable.

Solution.

(a) By Itô’s formula we have
\[
dY(t) = e^{\sigma W(t)-\frac{1}{2}\sigma^2 t} \left[-\frac{1}{2} \sigma^2 dt + \sigma dW(t) + \frac{1}{2} \sigma^2 \right] = \sigma e^{\sigma W(t)-\frac{1}{2}\sigma^2 t}dW(t) = \sigma Y(t)dW(t)
\]
If $A(t) = \int_0^t Y(s) ds$, it is clear that
\[
E[A(t)] = \int_0^t E[Y(s)] ds = \int_0^t e^{-\frac{1}{2}\sigma^2 s} E[e^{\sigma W(t)}] ds = \int_0^t e^{-\frac{1}{2}\sigma^2 s} e^{\frac{1}{2}\sigma^2 t} ds = t
\]
As for the variance we have
\[
\text{Var}[A(t)] = E[A^2(t)] - E[A(t)]^2 = E[A^2(t)] - t^2
\]
and
\[
E[A^2(t)] = E \left[\int_0^t Y(u) du \int_0^t Y(v) dv \right] = \int_0^t \int_0^t E[Y(u)Y(v)] du dv
\]
which is computed as on [CM14, Page 413].
(b) By It’s formula we have
\[dZ(t) = d[f(t)W(t)] = f'(t)W(t)dt + f(t)dW(t) \]

Exercise 3.14. [CM14, Exercise 11.22] A time-homogeneous diffusion process \(X \) has stochastic differential \(dX(t) = X(t)(1 - X(t))dW(t) \). Assuming that \(0 < X(t) < 1 \), show that the process \(Y(t) = \ln \left(\frac{X(t)}{1-X(t)} \right) \) has a constant diffusion coefficient.

Solution. Note that \(Y(t) = f(X(t)) \) with \(f(x) = \ln \frac{x}{1-x} \). Clearly \(f'(x) = \frac{1}{x(1-x)} \). By It’s formula we have
\[dY(t) = f'(X(t))dX(t) + \frac{1}{2}f''(X(t))X^2(t)[1 - X(t)]^2dt = dW(t) + O(dt) \]
so that the diffusion term is constant and equal to 1. Since \(f''(x) = \frac{2x-1}{x^2(1-x)^2} \), the drift term will be given by
\[\frac{1}{2}f''(X(t))X^2(t)[1 - X(t)]^2 = \frac{1}{2}(2X(t) - 1). \]

Exercise 3.15. [CM14, Exercise 11.23] Let \(X(t) = (1 - t) \int_0^t \frac{1}{1-s} dW(s) \), where \(0 \leq t < 1 \). Provide the stochastic differential equation for \(X(t) \) and check your answer by solving the SDE obtained subject to the initial condition \(X(0) = 0 \).

Solution. Note that \(X(t) = f(t,Y(t)) \) where \(f(t,y) = (1-t)y \) and \(Y(t) = \int_0^t \frac{1}{1-s} dW(s) \). By It’s formula we have
\[
\begin{align*}
 dX(t) &= f_t(t,Y(t))dt + f_y(t,Y(t))dY(t) + \frac{1}{2}f_{yy}(t,Y(t))dY(t)dY(t) \\
 &= -Y(t)dt + (1-t)dY(t) \\
 &= -\left[\int_0^t \frac{dW(s)}{1-s} \right] dt + (1-t)\left[\frac{dW(t)}{1-t} \right] \\
 &= -\left[\int_0^t \frac{dW(s)}{1-s} \right] dt + dW(t) \\
 &= -\frac{X(t)}{1-t} dt + dW(t)
\end{align*}
\]

Exercise 3.16. [CM14, Exercise 11.25] Let \(g(y) \) be a given function of \(y \), and suppose that \(f(x) \) is a solution of \(f'(x) = g(f(x)) \). Show that \(X(t) = f(W(t)) \) is a solution of the SDE
\[dX(t) = \frac{1}{2}g(X(t))g'(X(t))dt + g(X(t))dW(t) \]
Solution. Since $f'(x) = g(f(x))$, clearly $f''(x) = g'(f(x))f'(x)$. By It’s formula we have that
\[
\begin{align*}
 dX(t) &= df(W(t)) = f'(W(t))dW(t) + \frac{1}{2}f''(W(t))dt \\
 &= g(f(W(t)))dW(t) + \frac{1}{2}g'(f(W(t))f'(W(t)) \\
 &= g(X(t))dW(t) + \frac{1}{2}g'(X(t))g(X(t))dt
\end{align*}
\]
as claimed. □

Exercise 3.17. [CM14, Exercise 11.26] Use Exercise 11.25 to solve the following non-linear SDE
\[
dX(t) = X^3(t)dt + X^2(t)dW(t), \quad X(0) = x_0
\]

Solution. By Exercise 11.25, the solution is given by
\[
X(t) = f(W(t)), \quad \text{where } \begin{cases}
 f'(x) = g(f(x)) = |f(x)|^2, \\
 f(0) = x_0
\end{cases}
\]

Separating variables one immediately obtains
\[
f(x) = \frac{x_0}{1 - xx_0}
\]
which is singular at $x = \frac{1}{x_0}$. □

Exercise 3.18. [CM14, Exercise 11.32] Consider the boundary value problem for the heat equation
\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2(t,x) \frac{\partial^2 V}{\partial x^2} = 0, \quad V(T,x) = f(x)
\]

Show that the solution is given by
\[
V(t,x) = \frac{1}{\sqrt{2\pi(T-t)}} \int_{-\infty}^{\infty} f(y)e^{-\frac{(y-x)^2}{2(T-t)}} dy
\]

Solution. This is essentially identical to [CM14, Example 11.10]. By the Feynman-Kac theorem [CM14, Theorem 11.7], if a stochastic process $\{X(t)\}_{t \geq 0}$ satisfies the SDE
\[
dX(t) = \mu(t, X(t))dt + \sigma(t, X(t))dW(t), \quad (5)
\]
then the $C^{1,2}$ function $V(t,x)$ solving the PDE
\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2(t,x) \frac{\partial^2 V}{\partial x^2} + \mu(t,x) \frac{\partial V}{\partial x} = 0, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}^+
\]

admits a representation
\[
V(t,x) = E[f(X(T))|X(t)=x] \quad (6)
\]
provided that $E[|f(X(T))|] < \infty$.

21
In our case, \(\mu(t, x) \equiv 0 \) and \(\sigma(t, x) = 1 \) so the SDE (5) becomes \(dX(t) = dW(t) \) and has a solution \(X(T) = X(t) + [W(T) - W(t)] \). The representation (6) then reads

\[
V(t, x) = E[f(X(T))|X(t) = x] = E[f(X(t) + W(T) - W(t)|X(t) = x]
\]

\[
= E[f(x + W(T) - W(t))]|x] = \int_{-\infty}^{\infty} f(y)\varphi_{x,T-t}(y) dy
\]

\[
= \frac{1}{\sqrt{2\pi(T-t)}} \int_{-\infty}^{\infty} f(y)e^{-\frac{(y-x)^2}{2(T-t)}} dy
\]

where in \([\ast]\) we used the fact that \(E[\phi(X)] = \int_{-\infty}^{\infty} \phi(y)\varphi_X(y) dy \), where \(\varphi_X(\cdot) \) denotes the PDF of \(X \), and also that \(x + [W(T) - W(t)] \sim \mathcal{N}(x, T-t) \). \(\square \)

Exercise 3.19. [CM14, Exercise 11.34] Determine \(f(t, x) \) satisfying the following boundary value problem

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2(x, t) \frac{\partial^2 V}{\partial x^2} + \mu(x, t) \frac{\partial V}{\partial x} = 0, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}^+, \quad f(T, x) = 1_{[K_1, K_2]}(x)
\]

Solution. Write \(\phi(x) = 1_{[K_1, K_2]}(x) \) more generally to begin with and we will specialize at the end. By the Feynman-Kac theorem [CM14, Theorem 11.7], if a stochastic process \(\{X(t)\}_{t \geq 0} \) satisfies the SDE

\[
dX(t) = \mu(t, X(t)) dt + \sigma(t, X(t)) dW(t), \quad (7)
\]

then the \(C^{1,2} \) function \(f(t, x) \) solving the PDE

\[
\frac{\partial f}{\partial t} + \frac{1}{2} \sigma^2(t, x) \frac{\partial^2 f}{\partial x^2} + \mu(x, t) \frac{\partial f}{\partial x} = 0, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}^+, \quad f(T, x) = \phi(x)
\]

admits a representation

\[
f(t, x) = E[\phi(X(T))|X(t) = x] \quad (8)
\]

provided that \(E[|\phi(X(T))|] < \infty \).

In this case, the drift and volatility are \(\mu(t, x) = \mu x \) and \(\sigma(t, x) = \sigma x \), for real constants \(\mu, \sigma > 0 \) and the SDE (7) reads \(dX(t) = \mu X(t) dt + \sigma X(t) dW(t) \). This is a linear SDE with solution (c.f. [CM14, Equation 11.27])

\[
X(T) = X(t) \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T-t) + \sigma(W(T) - W(t)) \right]
\]

The representation (8) then reads

\[
f(t, x) = E[\phi(X(T))|X(t) = x]
\]

\[
= E[\phi(X(t)) \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T-t) + \sigma(W(T) - W(t)) \right] |X(t) = x]
\]

\[
= E \left[\phi \left(x \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T-t) + \sigma y \right] \right) \right]
\]

\[
= \int_{-\infty}^{\infty} \phi \left(x \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T-t) + \sigma y \right] \right) \frac{1}{\sqrt{2\pi(T-t)}} e^{-\frac{y^2}{2(T-t)}} dy \quad (9)
\]
We now specialize to $\phi(x) = 1_{[K_1, K_2]}(x)$. Note that

$$K_1 \leq x \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T - t) + \sigma y \right] \leq K_2$$

if and only if

$$\frac{1}{\sigma} \ln \left(\frac{K_1}{x} \right) - \left(\mu - \frac{\sigma^2}{2} \right) (T - t) \leq y \leq \frac{1}{\sigma} \ln \left(\frac{K_2}{x} \right) - \left(\mu - \frac{\sigma^2}{2} \right) (T - t)$$

so that $\phi \left(x \exp \left[\left(\mu - \frac{\sigma^2}{2} \right) (T - t) + \sigma y \right] \right) \neq 0$ if and only if $y \in [\alpha_1, \alpha_2]$ whence the integral in (9) becomes

$$f(t, x) = \int_{\alpha_1}^{\alpha_2} \frac{1}{\sqrt{2\pi(T-t)}} e^{-\frac{y^2}{2(T-t)}} dy = N(\alpha_2) - N(\alpha_1)$$

Exercise 3.20. [CM14, Exercise 11.36] Assume that a stock price process $\{S(t)\}_{t \geq 0}$ satisfies the SDE

$$dS(t) = rS(t)dt + \sigma S(t)d\tilde{W}(t)$$

with constants $r, \sigma > 0$, and where $\{\tilde{W}(t)\}_{t \geq 0}$ is a standard \tilde{P}-BM. By using Girsanov’s theorem, find the explicit expression for the Radon-Nikodym derivative process

$$\rho_t = \left(\frac{d\hat{P}}{dP} \right)_t$$

such that the process defined by $\hat{S}(t) = \frac{e^{rt}}{S(t)}$, $t \geq 0$ is a \hat{P}-martingale. Give the SDE satisfied by the stock price $S(t)$ with respect to the \hat{P}-BM.

Solution. We start by computing the differential of the process $\hat{S}(t)$.

$$d\hat{S} = d \left(\frac{e^{rt}}{S(t)} \right) = \frac{e^{rt}}{S(t)} \left(r \frac{e^{rt}}{S^2(t)} dt - \frac{e^{rt}}{S^2(t)} dS(t) + \frac{1}{2} \frac{2e^{rt}}{S^3(t)} \sigma^2 S^2(t) dt \right) = \sigma \hat{S}(t) \left[-\sigma dt + d\tilde{W}(t) \right]$$

Define $\hat{W}(t) := \tilde{W}(t) - \sigma t$. By Girsanov’s theorem, \hat{W} is a \hat{P}-BM under the measure defined by the Radon-Nikodym derivative process

$$\rho_t = \left(\frac{d\hat{P}}{dP} \right)_t = \exp \left(-\frac{1}{2} \int_0^t \sigma ds + \int_0^t \sigma d\hat{W}(s) \right) = e^{-\frac{1}{2} \sigma^2 t + \sigma \hat{W}(t)}$$

and the SDE satisfied by the stock price $S(t)$ with respect to the \hat{P}-BM is

$$d\hat{S}(t) = \sigma d\hat{W}(t)$$
Exercise 3.21. [CM14, Exercise 11.38] Consider a one-dimensional general diffusion process \(\{X(t)\}_{t \geq 0} \) having a transition PDF \(p(s, t; x, y), s < t \), with respect to a given probability measure \(P \), for all \(x, y \) in the state space of the process. Assume a change of measure \(P \rightarrow \hat{P} \) is defined by the Radon-Nikodym derivative process

\[
\rho_t = \left(\frac{d\hat{P}}{dP} \right)_t = h(t, X(t)), \quad \forall t \geq 0
\]

Let \(\hat{p}(s, t; x, y) \) denote the PDF with respect to the measure \(\hat{P} \). Show that the two transition PDF’s are related by

\[
\hat{p}(s, t; x, y) = \frac{h(t, y)}{h(s, x)} p(s, t; x, y)
\]

Solution.

\[
\hat{P}(s, t; x, y) = \hat{P}(X(t) \leq y|X(s) = x) = \hat{E}[1_{X(t) \leq y}|X(s) = x]
\]

\[
= \frac{1}{\rho_s} \hat{E}[\rho_t 1_{X(t) \leq y}|X(s) = x]
\]

\[
= \frac{1}{h(s, X(s))} \hat{E}[h(t, X(t))1_{X(t) \leq y}|X(s) = x]
\]

\[
= \frac{1}{h(s, x)} \int_{-\infty}^{\infty} h(t, u)1_{u \leq y}p(s, t; x, u) \, du
\]

\[
= \frac{1}{h(s, x)} \int_{-\infty}^{y} h(t, u)p(s, t; x, u) \, du
\]

so by the first fundamental theorem of calculus

\[
\hat{p}(s, t; x, y) = \frac{\partial \hat{P}}{\partial y}(s, t; x, y) = \frac{h(t, y)}{h(s, x)} \hat{p}(s, t; x, y)
\]

as claimed. □
Chapter 12: Risk-Neutral pricing in the Black-Scholes Economy: one underlying stock

Exercise 4.1. [CM14, Exercise 12.4] Assume the standard Black-Scholes model in an economy with constant continuously compounded interest rate r and with stock price process $\{S(t)\}_{t \geq 0}$ as a GBM with constant volatility σ and constant continuous dividend yield q. Let $S(t) = S > 0$ be the spot at time $t < T$, where T is the expiry date. Derive the corresponding arbitrage-free time-t pricing formula $V(t, S)$ for a European option with the following payoffs:

(a) $\Lambda(S(T)) = \sum_{n=0}^{N} a_n S^n(T)$, $N \geq 1$, $a_n \in \mathbb{R}$.

(b) $\Lambda(S(T)) = (S^\alpha(T) - K)1_{S(T) > K}$, $\alpha \in \mathbb{R} \setminus 0$.

Solution.

(a) Denote as usual $\tau = T - t$. Clearly

\[V(t, S) = e^{-rt} \tilde{E}_{t,S} [\Lambda(S(T))] = e^{-rt} \tilde{E}_{t,S} \left[\sum_{n=0}^{N} a_n S^n(T) \right] = e^{-rt} \sum_{n=0}^{N} a_n \tilde{E}_{t,S} [S^n(T)] \]

These expectations are computed in [CM14, Equation 12.40]. Writing

\[S(T) = S(t)e^{(r-q-\frac{1}{2}\sigma^2)\tau + \sigma\sqrt{T}Z}, \quad Z = \frac{1}{\sqrt{T}}(W(T) - W(t)) \sim N(0, 1) \]

we have:

\[\tilde{E}_{t,S} [S^n(T)] = \tilde{E}_{t,S} \left[S^n e^{(r-q-\frac{1}{2}\sigma^2)\tau + n\sigma\sqrt{T}Z} \right] = S^n e^{(r-q-\frac{1}{2}\sigma^2)\tau} E \left[e^{n\sigma\sqrt{T}Z} \right] \]

\[\overset{(*)}{=} S^n e^{(r-q+\frac{1}{2}\sigma^2(n-1))\tau} \]

where in $[*]$ we used [CM14, Formula A.2]. Putting everything together we conclude that

\[V(t, S) = e^{-rt} \sum_{n=0}^{N} a_n S^n e^{(r-q+\frac{1}{2}\sigma^2(n-1))\tau} \]

(b) In this case we have

\[V(t, S) = e^{-rt} \tilde{E}_{t,S} [(S^\alpha(T) - K)1_{S(T) > K}] = e^{-rt} \tilde{E}_{t,S} [S^\alpha(T)1_{S(T) > K}] - Ke^{-rt} \tilde{E}_{t,S} [1_{S(T) > K}] \]

Write as usual

\[S(T) = S(t)e^{(r-q-\frac{1}{2}\sigma^2)\tau + \sigma\sqrt{T}Z}, \quad Z = \frac{1}{\sqrt{T}}(W(T) - W(t)) \sim N(0, 1) \]
The second expectation above is simply
\[
\tilde{E}_{t,S}[\mathbb{I}_{S(T)>K}] = \tilde{P}\left(S e^{(r-q+\frac{1}{2}\sigma^2)\tau+\sigma\sqrt{\tau}Z} > K\right) = \tilde{P}\left(Z > \frac{\ln{\frac{S}{K}} - (r-q+\frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}\right)
\]
\[= \tilde{P}\left(Z < -\frac{\ln{\frac{S}{K}} + (r-q+\frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}\right) = \tilde{P}\left(Z < -\ln{\frac{S}{K}} + \frac{1}{2}\sigma^2\tau\right) = \tilde{P}\left(Z > \ln{K} - \frac{1}{2}\sigma^2\tau\right)\]

The first expectation is computed in [CM14, Equation 12.41]:
\[
\tilde{E}_{t,S}\left[\mathbb{I}_{S(T)>K}\right] = S^n e^{n(r-q+\frac{1}{2}\sigma^2)\tau} \tilde{E}_{t,S}\left[e^{\sigma\sqrt{\tau}Z} \mathbb{I}_{Z > \frac{\ln{\frac{S}{K}} - (r-q+\frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}}\right]
\]
\[= S^n e^{n(r-q+\frac{1}{2}\sigma^2)(n-1)\tau} \mathcal{N}\left(\frac{\ln{\frac{S}{K}} + (r-q + \frac{2n-1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}\right)\]

so in conclusion we have:
\[
V(t,S) = e^{-r\tau} S^n e^{n(r-q+\frac{1}{2}\sigma^2(n-1)\tau)} \mathcal{N}\left(\frac{\ln{\frac{S}{K}} + (r-q + \frac{2n-1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}\right) - Ke^{-r\tau} \mathcal{N}\left(-d_-\right)
\]
\[d_- = \frac{\ln{\frac{S}{K}} + (r-q+\frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}\]

Exercise 4.2. [CM14, Exercise 12.5] Assume the standard Black-Scholes model in an economy with constant continuously compounded interest rate \(r\) and with stock price process \(\{S(t)\}_{t \geq 0}\) as a GBM with constant volatility \(\sigma\) and constant continuous dividend yield \(q\). A European call spread has payoff
\[
\Lambda(S(T)) \begin{cases}
0, & S(T) \leq K, \\
S(T) - K, & K < S(T) < K + \epsilon, \\
\epsilon, & S(T) \geq K + \epsilon
\end{cases}
\]
where \(K, \epsilon\) are positive real constants.

(a) Give a sketch of the payoff function.

(b) Derive a formula for the option’s present value \(V(t,S)\) and \(\Delta(t,S) = \frac{\partial V}{\partial S}\).

(c) Find \(\lim_{\epsilon \to 0} V(t,S)\) and \(\lim_{\epsilon \to \infty} V(t,S)\) and explain your results.

Solution.

(a)
(b) The payoff can be decomposed as a combination of call payoffs

\[\Lambda(S(T)) = (S(T) - K)^+ - (S(T) - K - \epsilon)^+ \]

so

\[
V(t, S) = \tilde{E}_{t, S} [(S(T) - K)^+] - \tilde{E}_{t, S} [(S(T) - K - \epsilon)^+]
\]

\[
= e^{-qt} N\left(d_+\left(\frac{e^{-qt} S}{K}, \tau\right)\right) - e^{-rt} K N\left(d_-\left(\frac{e^{-qt} S}{K}, \tau\right)\right)
\]

\[
- e^{-qt} N\left(d_+\left(\frac{e^{-qt} S}{K + \epsilon}, \tau\right)\right) + e^{-rt} K N\left(d_-\left(\frac{e^{-qt} S}{K + \epsilon}, \tau\right)\right)
\]

As for the delta we have

\[
\frac{\partial V}{\partial S}(t, S) = e^{-qt} \left[N\left(d_+\left(\frac{e^{-qt} S}{K}, \tau\right)\right) - N\left(d_+\left(\frac{e^{-qt} S}{K + \epsilon}, \tau\right)\right)\right]
\]

(c) Obviously \(\lim_{\epsilon \to 0} V(t, S) = 0 \) since the terms in the second line of equation (10) then equal those in the first one and have opposite sign. Note that for \(\epsilon = 0 \) the option payoff is identically zero.

As \(\epsilon \to \infty \), the option becomes a simple call struck at \(K \) whence

\[
\lim_{\epsilon \to \infty} V(t, S) = e^{-qt} N\left(d_+\left(\frac{e^{-qt} S}{K}, \tau\right)\right) - e^{-rt} K N\left(d_-\left(\frac{e^{-qt} S}{K}, \tau\right)\right)
\]

This can also be seen by taking the limit in equation (10) and noting that

\[
\lim_{\epsilon \to \infty} N\left(d_+\left(\frac{e^{-qt} S}{K + \epsilon}, \tau\right)\right) = N\left(d_+\left(0, \tau\right)\right) = N(-\infty) = 0
\]

since recall \(d_+(x, \tau) = \frac{\ln x - (r + \frac{1}{2} \sigma^2) \tau}{\sigma \sqrt{\tau}} \).

\[\square \]

Exercise 4.3. [CM14, Exercise 12.7]

Solution.

\[\square \]

Exercise 4.4. [CM14, Exercise 12.8]

Solution.

\[\square \]

Exercise 4.5. [CM14, Exercise 12.9] A so-called pay-later European option costs the holder nothing (i.e. zero premium) to set up at present time \(t = 0 \). The payoff to the holder is \((S(T) - K)^+ \). Moreover, the holder must pay out \(X \) dollars to the writer in the case that \(S(T) \geq 0 \). Derive an expression fr the fair value of \(X \). Determine the fair value in the limit of infinite volatility \(\lim_{\sigma \to \infty} X(\sigma) \). Assume the standard Black-Scholes model in an economy with constant continuously compounded interest rate \(r \) and with stock price process \(\{S(t)\}_{t \geq 0} \) as a GBM with constant volatility \(\sigma \) and constant continuous dividend yield \(q \).
Solution. The effective payoff of the pay-later option is

\[\Lambda^\text{eff}(S(T)) = (S(T) - K)^+ - X\mathbb{I}_{\{S(T) \geq K\}} \]

and we need to determine the fair value of \(X \) such that the time-0 expected value of the latter is zero, namely

\[\tilde{E}_{0,S}[\Lambda^\text{eff}(S(T))] = \tilde{E}_{0,S}[(S(T) - K)^+ - X\mathbb{I}_{\{S(T) \geq K\}}] = 0 \]

Clearly

\[\tilde{E}_{0,S}[\Lambda^\text{eff}(S(T))] = e^{-rT}\tilde{E}_{0,S}[(S(T) - K)^+] - Xe^{-rT}\tilde{E}_{0,S}[(1 - X)\mathbb{I}_{\{S(T) \geq K\}}] \]

\[= S e^{-qT}N\left(d_+(\frac{e^{-qT}S}{K}, T)\right) - K e^{-rT}N\left(d_-(\frac{e^{-qT}S}{K}, T)\right) \]

where as usual \(d_\pm = \frac{\ln x + (r - q \pm \frac{1}{2} \sigma^2)T}{\sigma \sqrt{T}} \).

Imposing \(\tilde{E}_{0,S}[\Lambda^\text{eff}(S(T))] = 0 \) and solving for \(X \) yields

\[X = S e^{(r-q)T} \frac{N\left(d_+(\frac{e^{-qT}S}{K}, T)\right)}{N\left(d_-(\frac{e^{-qT}S}{K}, T)\right)} - K \]

Note that

\[\lim_{\sigma \to \infty} d_\pm(x, \tau) = \lim_{\sigma \to \infty} \frac{\ln x + (r - q \pm \frac{1}{2} \sigma^2)T}{\sigma \sqrt{T}} \equiv \pm \lim_{\sigma \to \infty} \frac{\sigma \sqrt{T}}{2} = \pm \infty \]

so

\[\lim_{\sigma \to \infty} N(d_+) = 1, \quad \lim_{\sigma \to \infty} N(d_-) = 0 \]

whence \(\lim_{\sigma \to \infty} X = \infty \). \(\square \)

Exercise 4.6. [CM14, Exercise 12.10] Let \(C(S, \tau) \) be the Black-Scholes pricing formula of a standard call option with spot \(S \), strike \(K \), fixed interest rate \(r \), zero stock dividend, constant volatility \(\sigma \) and time to maturity \(\tau > 0 \).

(a) Show that the respective limiting values of the call price for vanishing and infinite volatility are given by

\[\lim_{\sigma \to 0} C(S, \tau) = (S - Ke^{-r\tau})^+, \quad \lim_{\sigma \to +\infty} C(S, \tau) = S \]

(b) Give a financial interpretation of both limits. Note that the second limit is independent of the strike value \(K \); give a financial intuition for this fact.

Solution.
(a) We performed an identical computation in the previous exercise. The Black-Scholes formula for a call option is

\[C(S, \tau) = SN\left(d_+\left(\frac{S}{K}, \tau\right)\right) - Ke^{-r\tau}N\left(d_-\left(\frac{S}{K}, \tau\right)\right), \quad d_\pm(x, \tau) = \frac{\ln x + \left(r \pm \frac{1}{2} \sigma^2\right) \tau}{\sigma \sqrt{\tau}} \]

Also note that

\[\lim_{\sigma \to \infty} d_\pm \equiv \pm \lim_{\sigma \to \infty} \frac{\sigma \sqrt{\tau}}{2} = \pm \infty \]

whence

\[\lim_{\sigma \to \infty} N(d_+) = 1, \quad \lim_{\sigma \to \infty} N(d_-) = 0 \]

so

\[\lim_{\sigma \to \infty} C(S, \tau) = \lim_{\sigma \to \infty} SN\left(d_+\left(\frac{S}{K}, \tau\right)\right) - Ke^{-r\tau}N\left(d_-\left(\frac{S}{K}, \tau\right)\right) = S \]

On the other hand,

\[\lim_{\sigma \to 0} d_\pm\left(\frac{S}{K}, \tau\right) \equiv \lim_{\sigma \to 0} \frac{\ln \frac{S}{K} + r\tau}{\sigma \sqrt{\tau}} = \begin{cases} +\infty, & \ln \frac{S}{K} + r\tau \geq 0, \\ -\infty, & \ln \frac{S}{K} + r\tau < 0 \end{cases} \]

Note further that \(\ln \frac{S}{K} + r\tau \geq 0 \) if and only if \(S - e^{-r\tau} \geq 0 \). Hence

\[\lim_{\sigma \to 0} C(S, \tau) = \lim_{\sigma \to 0} SN\left(d_+\left(\frac{S}{K}, \tau\right)\right) - Ke^{-r\tau}N\left(d_-\left(\frac{S}{K}, \tau\right)\right) = 0 \cdot \mathbb{1}_{\{\ln \frac{S}{K} + r\tau < 0\}} + (S - Ke^{-r\tau}) \cdot \mathbb{1}_{\{\ln \frac{S}{K} + r\tau \geq 0\}} = (S - Ke^{-r\tau})^+ \]

(b) The more volatile the market is, the more expensive an option is. In the absence of arbitrage, time-\(t \) value of a call is bounded above by the spot, so as the volatility grows indefinitely, the call value converges to its no-arbitrage maximum \(S \)...

\[
\square
\]

Exercise 4.7. [CM14, Exercise 12.11] Consider the value of a European call option written by an issuer who only has a fraction \(0 \leq \alpha < 1 \) of the underlying asset. That is, at expiration time \(T \) the payoff of this type of call is given by

\[V_T = (S(T) - K)^+\mathbb{1}_{\{\alpha S(T) \geq S(T) - K\}} + \alpha S(T)\mathbb{1}_{\{\alpha S(T) < S(T) - K\}} \]

Let \(C_L(S, \tau; K, \alpha) \) denote the value of a European call, where \(\tau = T - t \) is the time to expiry, \(K > 0 \) is the strike, \(S(t) = S \) is the spot of the underlying. Show that

\[C_L(S, \tau; K, \alpha) = C(S, K, \tau) - (1 - \alpha)C\left(S, \frac{K}{1 - \alpha}, \tau\right) \]

29
What is the position held in the stock at time t?

The value of an option with payoff $(S(T) - K)^+\mathbb{1}_{\{S(T) \geq K\}} + \alpha S(T)\mathbb{1}_{\{S(T) < K\}}$

so the no-arbitrage price of the options is given by the usual risk-neutral formula

$$C_L(S, \tau; K, \alpha) = e^{-rt} \mathbb{E}[V_T] = e^{-rt} \mathbb{E}\left[(S(T) - K)^+\mathbb{1}_{\{S(T) \geq K\}} + \alpha S(T)\mathbb{1}_{\{S(T) < K\}}\right]$$

We seek to show that $C(S, K, \tau) - (1 - \alpha)C(S, \frac{K}{1-\alpha}, \tau)$ indeed represents the above time-t value (11) of an option with payoff V_T. Indeed:

$$C(S, K, \tau) = (1 - \alpha)C \left(S, \frac{K}{1-\alpha}, \tau \right)$$

Note: the option value is dependent on $(S, K, \tau, T, r, \sigma, \alpha)$

and the last expression is precisely (11).

Exercise 4.9. [CM14, Exercise 12.20] Assume the stock price $\{S(t)\}_{t \geq 0}$ is a GBM with constant volatility σ and zero dividend in an economy with constant interest rate r. Let $t < T_0 < T$, i.e. T_0 is an arbitrary intermediate time before expiry time T, and consider a European-style option with payoff at time T given by

$$V_T = \min\{S(T_0), S(T)\}$$

(a) Show that the value V at time $t \leq T_0$ of this option is given by

$$V = S(t) \left[\mathcal{N}(-d_+) + e^{-r(T-T_0)}\mathcal{N}(d_-) \right], \quad d_+ = \frac{r + \frac{1}{2}\sigma^2}{\sigma}\sqrt{T-t}$$

Note: the option value is dependent on $T - T_0$ and does not depend on t.

(b) What is the position held in the stock at time $t \leq T_0$ in a self-financing replicating strategy?
Solution.

(a) We may write the payoff as

\[V_T = \min\{S(T_0), S(T)\} = S(T) \mathbb{I}_{\{S(T) < S(T_0)\}} + S(T_0) \mathbb{I}_{\{S(T_0) < S(T)\}} \]

and the option price is given by the usual risk-neutral pricing formula

\[V(t, S) = e^{-r(T-t)} \tilde{E}_t[V_T] = e^{-r(T-t)} \left[\tilde{E}_t[S(T) \mathbb{I}_{\{S(T) < S(T_0)\}}] + \tilde{E}_t[S(T_0) \mathbb{I}_{\{S(T_0) < S(T)\}}] \right] \]

(12)

In order to compute these expectations we condition first on \(S(T_0) \) and use iterated conditioning, namely

\[
\tilde{E}_t[S(T) \mathbb{I}_{\{S(T) < S(T_0)\}}] = \tilde{E}_t\left[E\left[S(T) \mathbb{I}_{\{S(T) < S(T_0)\}} | S(T_0) \right] \right] \\
= e^{(r- \frac{1}{2} \sigma^2)(T-T_0) + \sigma \sqrt{T-T_0} Z_1} \begin{cases} \\ \tilde{E}_t[S(T_0) \mathbb{I}_{\{Z_1 < -d_-\}}] \end{cases} \\
= \left[e^{(r- \frac{1}{2} \sigma^2)(T-T_0) \tilde{E}_t[S(T_0)N(-d_+)]} \right] \\
= \left[e^{(r(T-T_0)-t) S(t)N(d_+)} \right] \\
= e^{r(T-t)} S(t) N(d_+)
\]

Here [1] follows from the fact that \(S(T) < S(T_0) \) if and only if

\[
Z < -\frac{(r- \frac{1}{2} \sigma^2)(T-T_0)}{\sigma \sqrt{T-T_0}} = -\frac{r- \frac{1}{2} \sigma^2}{\sigma} \sqrt{T-T_0}.
\]

In [2] we used [CM14, Formula A.2] to write

\[
E\left[e^{\sigma \sqrt{T-T_0} Z_1} I_{\{Z_1 < -d_-\}} \right] = e^{\frac{1}{2} \sigma^2 (T-T_0)} N(-d_+)
\]

and in [3] we used that \(e^{-rS(t)} \) is a \(\tilde{P} \)-martingale. The first summand in equation (12) is thus

\[
e^{-r(T-t)} \tilde{E}_t[S(T) \mathbb{I}_{\{S(T) < S(T_0)\}}] = S(t) N(-d_+)
\]

An identical computation shows that the second expectation in equation (12) is

\[
\tilde{E}_t[S(T_0) \mathbb{I}_{\{S(T_0) < S(T)\}}] = \tilde{E}_t\left[E\left[S(T_0) \mathbb{I}_{\{S(T_0) < S(T)\}} | S(T_0) \right] \right] \\
= \tilde{E}_t[S(T_0)N(d_-)] = e^{r(T-t)} S(t) N(d_-)
\]

whence

\[
e^{-r(T-T_0)} \tilde{E}_t[S(T_0) \mathbb{I}_{\{S(T_0) < S(T)\}}] = e^{-r(T-T_0)} S(t) N(d_-)
\]

Adding up both expressions we conclude that

\[
V = S(t) \left[N(-d_+) + e^{-r(T-T_0)} N(d_-) \right]
\]

as claimed.
(b) The Delta of this option is
\[\frac{\partial V}{\partial S} = \mathcal{N}(-d_+) + e^{-r(T-T_0)} \mathcal{N}(d_-) \]
which remains static over time.

Exercise 4.10. [CM14, Exercise 12.22]

Solution.

Exercise 4.11. [CM14, Exercise 12.25] Consider the discrete geometric averaging of a stock price process at evenly distributed discrete times \(t_j = t_0 + j\delta t, \ j = 1, 2, \ldots, n \), with a time step \(\delta t = \frac{T-t_0}{n} \); \(t_n = T \) is the time of expiration. Define the discretely monitored geometric averaging by
\[G_k = \left(\prod_{j=1}^{k} S(t_j) \right)^{1/k}, \quad k = 1, \ldots, n \]

(a) Assuming that the stock price follows a GBM process, show that \(G_n \) is a log-normal random variable. Find the mean and variance of \(\ln G_n \).

(b) Derive the risk-neutral time-\(t_0 \) prices of the fixed strike Asian call and put options with respective payoff functions \((G_n - K)^+ \) and \((K - G_n)^+ \), where \(K > 0 \) is a strike price.

Solution.

(a) Since \(S(t) \) follows a GBM (assume zero dividends) we have
\[S(t_j) = S(t_0) e^{(r - \frac{1}{2}\sigma^2) t_j + \sigma W(t_j)}, \quad j = 1, \ldots, n \]
whence
\[G_n = \left(\prod_{j=1}^{n} S(t_j) \right)^{1/n} = S(t_0) e^{(r - \frac{1}{2}\sigma^2) (\frac{1}{n} \sum_{j=1}^{n} t_j) + \frac{\sigma}{n} \sum_{j=1}^{n} W(t_j)} \]

Recall that from [CM14, Exercise 10.10] we have that\(^1\)
\[\sum_{j=1}^{n} W(t_j) \sim \mathcal{N}(0, \sum_{j=1}^{n} (2j - 1)t_{n+1-j}) \] \[\frac{d}{\sqrt{\sum_{j=1}^{n} (2j - 1)t_{n+1-j}}} \cdot Z, \quad Z \sim \mathcal{N}(0, 1) \]

\[^1\] This follow from the transformation rule: if \(X, Y \) are a \(p \)-dimensional and \(m \)-dimensional random vectors, with respective covariance matrices \(\Sigma_X \) and \(\Sigma_Y \), and \(Y = AX \), then \(\Sigma_Y = A \Sigma_X A^\top \). In our case \(X = (W(t_1), \ldots, W(t_n))^\top \) and \(A = (1, \ldots, 1) \), so \(\sigma_{i,j} = \operatorname{Cov}(W(t_i), W(t_j)) = \min\{i,j\} \) and \(\operatorname{Var}(Y) = A \Sigma_X A^\top = \sum_{j=1}^{n} (2j - 1)t_{n+1-j} \).
and therefore

\[\frac{\sigma}{n} \sum_{j=1}^{n} W(t_j) = \frac{\sigma}{n \sqrt{T}} \sum_{j=1}^{n} (2j - 1)t_{n+1-j} \cdot \sqrt{T}Z \]

with \(Z \sim \mathcal{N}(0, 1) \) and \(T = \frac{1}{n} \sum_{j=1}^{n} t_j \).

With regards to the drift term, note that

\[(r - \frac{1}{2} \sigma^2) \left(\frac{1}{n} \sum_{j=1}^{n} t_j \right) = (r - \frac{1}{2} \sigma^2)T = \left(r - \frac{\bar{\sigma}^2}{2} + \frac{\bar{\sigma}^2}{2} - \frac{\sigma^2}{2} \right) T = \left(r - \frac{\sigma^2}{2} + \delta \right) T \]

so that equation (13) becomes

\[G_n(T) = S(t_0)e^{(r-\delta-\frac{1}{2} \bar{\sigma}^2)T + \bar{\sigma} \sqrt{T}Z} \]

and clearly

\[\ln G_n(T) \sim \mathcal{N} \left(\ln S(t_0) + (r - \delta - \frac{1}{2} \bar{\sigma}^2)T, \bar{\sigma}^2 T \right) \]

There was no need to do all this to conclude normality, but now we have \(G_n \) written as a GBM (with constant dividend \(\delta \)), so that we can apply the Black-Scholes formula directly in order to price fixed strike Asian calls and puts as though they were ordinary calls and puts on the underlying \(G_n(T) \).

(b) Since from part (a) we have that \(G_n(T) \) follows a GBM

\[G_n(T) = S(t_0)e^{(r-\delta-\frac{1}{2} \bar{\sigma}^2)T + \bar{\sigma} \sqrt{T}Z} \]

with

\[T = \frac{1}{n} \sum_{j=1}^{n} t_j, \quad \bar{\sigma} = \frac{\sigma}{n \sqrt{T}} \sum_{j=1}^{n} (2j - 1)t_{n+1-j}, \quad \delta = \frac{\sigma^2}{2} - \frac{\bar{\sigma}^2}{2} \]

the Black-Scholes formula yields that time-\(t_0 \) value of a fixed-strike Asian call with payoff \((G_n(T) - K)^+ \) is

\[C(t_0, S) = e^{-\delta(T-t_0)} S \mathcal{N}(d_+) - e^{-r(T-t_0)} K \mathcal{N}(d_-) \]

with

\[d_\pm = d_\pm \left(\frac{e^{-\delta(T-t_0)} S}{K}, T - t_0 \right), \quad d_\pm(x, \tau) = \frac{\ln x - (r - \delta \pm \frac{1}{2} \bar{\sigma}^2)\tau}{\bar{\sigma} \sqrt{\tau}} \]

The time-\(t_0 \) value of a put can be obtained by put-call parity.
Exercise 4.12. [CM14, Exercise 12.26] Let the stock price process follow the GBM model
\[
dS(t) = S(t)[(r-q)dt + \sigma d\tilde{W}(t)],
\]
\[
S(T) = S(t)e^{(r-q-\frac{1}{2}\sigma^2)(T-t) + \sigma(W(T)-W(t))} \stackrel{d}{=} S(t)e^{(r-q-\frac{1}{2}\sigma^2)(T-t) + \sigma \sqrt{T-t}Z}, \quad Z \sim N(0,1)
\]
Define the continuously monitored geometric average of \(S(t)\) over a time period \([0,t]\) by
\[
G(t) = \exp \left(\frac{1}{t} \int_0^t \ln S(u) \, du \right).
\]
(a) Show that the process \(\ln G(t)\) is Gaussian.
(b) Find the mean and variance of \(G(T)\) conditional on \(G(t)\) and \(S(t)\), for \(0 \leq t \leq T\).
(c) Show that \(G(T)\) can be written as
\[
G(T) = G(t)^{\frac{1}{t}} S(t)^{\frac{T-t}{t}} e^{\mu + \sigma \dot{Z}}
\]
for some \(\mu, \sigma \in \mathbb{R}\), and where \(\dot{Z} \sim N(0,1)\) under measure \(\tilde{P}\). Find the values of \(\mu\) and \(\sigma\).
(d) Derive the risk-neutral time-\(t\) pricing functions for the fixed strike Asian call and put options with respective payoff functions \((G(T) - K)^+\) and \((K - G(T))^+\) for \(0 \leq t \leq T\). Express the pricing functions in terms of the spot values \(G(t) = G > 0, S(t) = S > 0\), and times \(t\) and \(T\).
(e) Establish the put-call parity relation for the fixed strike Asian call and put options.

Solution.
(a) Since \(S(t) = S(0)e^{(r-q-\frac{1}{2}\sigma^2)t + \sigma W(t)}\), we have that
\[
\ln G(t) = \frac{1}{t} \int_0^t \ln S(u) \, du = \frac{1}{t} \int_0^t \left[\ln S(0) + (r-q-\frac{1}{2}\sigma^2)u \right] \, du + \sigma \int_0^t W(u) \, du
\]
From [CM14, Proposition 11.1] we know that \(\int_0^t W(u) \, du \sim \mathcal{N}(0, \frac{t^3}{3})\) whence
\[
\ln G(t) \sim \mathcal{N} \left(\ln S(0) + \frac{1}{2}(r-q-\frac{1}{2}\sigma^2)t, \frac{\sigma^2t}{3} \right)
\]
(b) First note that
\[
\ln G(T) = \frac{1}{T} \int_0^T \ln S(u) \, du = \frac{1}{T} \int_0^t \ln S(u) \, du + \frac{1}{T} \int_t^T \ln S(u) \, du
\]
\[
= \frac{1}{T} \ln G(t) + \frac{1}{T} \int_t^T \ln S(u) \, du
\]
(14)
Now write \(S(u) = S(t)e^{(r-q-\frac{1}{2}\sigma^2)(u-t) + \sigma(W(u)-W(t))}\) whence
\[
\frac{1}{T} \int_t^T \ln S(u) \, du = \frac{1}{T} \int_t^T \left[\ln S(t) + (r-q-\frac{1}{2}\sigma^2)(u-t) \right] \, du + \frac{\sigma}{T} \int_t^T [W(u)-W(t)] \, du
\]
For the first integral we have
\[
\frac{1}{T} \int_t^T \left[\ln S(t) + (r - q - \frac{1}{2} \sigma^2)(u - t) \right] du = \ln S(t) \frac{T - t}{T} + \frac{1}{2} (r - q - \frac{1}{2} \sigma^2) \frac{(T - t)^2}{T}
\]
and as for the second one
\[
\int_t^T [W(u) - W(t)] du = \int_0^T W(u) du - \int_0^t W(u) du - W(t)(T - t)
\]
Note that
\[
\text{Var} \left(\int_0^T W(u) du - \int_t^T W(u) du \right) = \frac{T^3}{3} + \frac{t^3}{3} - 2 \text{Cov} \left(\int_0^t W(u) du, \int_0^T W(u) du \right)
\]
\[
= \frac{T^3}{3} + \frac{t^3}{3} - 2 \left(\frac{t^3}{3} - (T - t) \frac{t^2}{2} \right)
\]
\[
= \frac{T^3}{3} - \frac{t^3}{3} + t^2(T - t)
\]
where the covariance computation can be found on [CM14, Page 413]. Since \(W(u), u \in [t, T] \) is independent of \(W(t) \) we conclude that
\[
\text{Var} \left(\int_t^T [W(u) - W(t)] du \right) = \text{Var} \left(\int_t^T W(u) du \right) + \text{Var} (W(t)(T - t))
\]
\[
= \frac{T^3}{3} - \frac{t^3}{3} + t^2(T - t) + t(T - t)^2
\]
= \[
\frac{1}{3}(T - t)^3
\]
Putting everything together, from (14) we obtain
\[
\ln G(T) = \frac{t}{T} \ln G(t) + S(t) \frac{T - t}{T} + \frac{1}{2} (r - q - \frac{1}{2} \sigma^2) \frac{(T - t)^2}{T} + \frac{1}{3} \sigma^2 \frac{(T - t)^3}{T^2} \tilde{Z}
\]
for \(\tilde{Z} \sim \mathcal{N}(0, 1) \). In conclusion
\[
\ln G(T) | \ln G(t) \sim \mathcal{N} \left(\frac{t}{T} \ln G(t) + \ln S(t) \frac{T - t}{T} + \frac{1}{2} (r - q - \frac{1}{2} \sigma^2)(T - t)^2, \frac{1}{3} \sigma^2 \frac{(T - t)^3}{T^2} \right)
\]
(c) Exponentiating (15) we obtain
\[
G(T) = G(t)^\frac{1}{T} S(t)^\frac{T - t}{T} \exp \left(\frac{1}{2} (r - q - \frac{1}{2} \sigma^2)(T - t)^2 + \frac{1}{3} \sigma^2 \frac{(T - t)^3}{T^2} \tilde{Z} \right)
\]
\[
= G(t)^\frac{1}{T} S(t)^\frac{T - t}{T} e^{\mu + \sigma \tilde{Z}}
\]
where
\[
\mu = \frac{1}{2} (r - q - \frac{1}{2} \sigma^2)(T - t)^2,
\]
\[
\sigma = \frac{1}{3} \sigma^2 \frac{(T - t)^3}{T^2}
\]
(d) In order find the time-t value of an Asian call with payoff \((G(T) - K)^+\) we proceed as usual:

\[
V(t, S(t), G(t)) = e^{-r(T-t)} \tilde{E}_{t, S, G} \left[(G(T) - K)^+ \right]
\]

\[
= e^{-r(T-t)} \tilde{E}_{t, S, G} \left[\left(G(t)^+ S(t) \frac{T-t}{\sigma} e^{\bar{\mu} + a \tilde{Z}} - K \right) 1_{G(t) > K} \right]
\]

\[
\leq e^{\bar{\mu} - r(T-t)} G(t)^+ S(t) \frac{T-t}{\sigma} \tilde{E}_{t, S, G} \left[e^{\bar{\mu} + a \tilde{Z}} 1_{\tilde{Z} > \alpha(t, S, G)} \right] - K e^{-r(T-t)} \tilde{P}_{t, S, G} \left(\tilde{Z} > \alpha \right)
\]

\[
= e^{\bar{\mu} + \frac{1}{2} r(T-t)} G(t)^+ S(t) \frac{T-t}{\sigma} N \left(\frac{1}{\sigma} \left(\sigma^2 + \ln \frac{G(t)^+ S(t)}{K} \right) + \bar{\mu} \right)
\]

\[
-K e^{-r(T-t)} N \left(\frac{1}{\sigma} \left(\ln \frac{G(t)^+ S(t)}{K} \right) + \bar{\mu} \right)
\]

where in [1] we denoted

\[
\alpha(t, S, G) = \frac{\ln K - \frac{1}{2} \ln G - \frac{T-t}{\sigma} \ln S - \bar{\mu}}{\sigma} = \frac{1}{\sigma} \left[-\bar{\mu} + \ln \left(\frac{K}{G(t)^+ S(t)} \right) \right]
\]

(e) To derive a put-call parity relation (and the time-t value of a put from it) note that

\[
(G(T) - K)^+ - (K - G(T))^+ = G(T) - K
\]

Discounting and taking expectations yields

\[
\underbrace{e^{-r(T-t)} \tilde{E}_{t, S, G} [(G(T) - K)^+]}_{C(t, S, G)} - \underbrace{e^{-r(T-t)} \tilde{E}_{t, S, G} [(K - G(T))^+]}_{P(t, S, G)} = e^{-r(T-t)} \tilde{E}_{t, S, G} [G(T)] - K e^{-r(T-t)}
\]

whence

\[
P(t, S, G) = C(t, S, G) - e^{-r(T-t)} \tilde{E}_{t, S, G} [G(T)] + K e^{-r(T-t)}
\]

and where

\[
e^{-r(T-t)} \tilde{E}_{t, S, G} [G(T)] = e^{\bar{\mu} - r(T-t)} G(t)^+ S(t) \frac{T-t}{\sigma} \tilde{E} [e^{\bar{\mu} + a \tilde{Z}}] = e^{\bar{\mu} + \frac{1}{2} \sigma^2 - r(T-t)} G(t)^+ S(t) \frac{T-t}{\sigma}
\]
Chapter 13: Risk-Neutral pricing in a Multi-Asset Economy

Exercise 5.1. [CM14, Exercise 13.4] A plain currency call option on a foreign exchange rate has payoff

\[C_T = (X(T) - \kappa)^+ \]

(a) Derive the pricing function \(C(t, x), t < T \) for this call by evaluating the risk-neutral expectation formula

\[C(t, x) = e^{r(T-t)} \tilde{E} \left[(X(T) - \kappa)^+ | X(t) = x \right] \]

(b) Give the BSPDE for the pricing function \(C(t, x) \).

Solution.

(a) Suppose that the exchange rate process is a GBM driven by a \(d \)-dimensional Brownian motion, namely (c.f. [CM14, Equation 13.102])

\[
X(T) = X(t) e^{(r - r_f - \frac{1}{2} \sigma_X^2)(T-t) + \sigma_X \sqrt{T-t} \tilde{Z}}
\]

\[\tilde{Z} = \frac{1}{\sigma_X \sqrt{T-t}} \sigma(X) \cdot (\tilde{W}(T) - \tilde{W}(t)) \]

where \(\tilde{W}(t) = (W_1(t), \ldots, W_d(t)) \) and \(\sigma(X) = (\sigma_X, \ldots, \sigma_X) \).

The pricing function

\[C(t, x) = e^{r(T-t)} \tilde{E} \left[(X(T) - \kappa)^+ | X(t) = x \right] \]

\[= e^{r(T-t)} \tilde{E} \left[\left(X(t) e^{(r - r_f - \frac{1}{2} \sigma_X^2)(T-t) + \sigma_X \sqrt{T-t} \tilde{Z}} - \kappa \right)^+ | X(t) = x \right] \]

can be obtained using the standard Black-Scholes formula for the price of a call, with interest \(r - r_f \), volatility \(\sigma_X \), time-to-expiry \(T - t \) and strike \(\kappa \), namely

\[C(t, x) = e^{r(T-t)} \left[X(t) N \left(d_+ \left(\frac{X(t)}{\kappa}, T-t \right) \right) - \kappa N \left(d_- \left(\frac{X(t)}{\kappa}, T-t \right) \right) \right] \]

where as usual

\[d_\pm(x, \tau) = \frac{\ln x + (r - r_f \pm \frac{1}{2} \sigma_X^2) \tau}{\sigma_X \sqrt{\tau}} \]

\[\square \]

Exercise 5.2. [CM14, Exercise 13.5] Assume that a foreign stock price process \(\{S^f(t)\}_{t \geq 0} \) and the exchange rate \(\{X(t)\}_{t \geq 0} \) are correlated geometric Brownian motions with respective log-volatility vectors \(\sigma(S) = [\sigma_S, 0] \) and \(\sigma(X) = [\rho \sigma_X, \sqrt{1 - \rho^2} \sigma_X] \). Assume the domestic and foreign interest rates \(r \) and \(r_f \) are constants an that foreign stock pays no dividend.

(a) Derive a formula for the current time \(t < T \) price \(C_t \) of a call option on foreign stock denominated in domestic currency with domestic payoff

\[C_T = \left(X(T) S^f(T) - K \right)^+ \]
(b) Similarly, derive a formula for the current time $t < T$ price P_t of a put option with domestic payoff

$$C_T = \left(K - X(T)S^f(T)\right)^+$$

(c) Derive a put-call parity formula relating the call and put prices C_t and P_t.

Solution.

(a) We know (c.f. [CM14, Equations 13.1000 and 13.104]) that the process $(X(t)S^f(t))_{t \geq 0}$ satisfies the SDE

$$d[X(t)S^f(t)] = (r - q_S)dt + (\sigma^{(X)} + \sigma^{(S)}) \cdot dW(t)$$

with solution

$$X(T)S^f(T) = X(t)S^f(t)e^{(r - q_S - \frac{1}{2}\sigma^2_{XS})\tau + (\sigma^{(X)} + \sigma^{(S)}) \cdot (W(T) - W(t))}$$

where

$$\sigma_X = \|\sigma^{(X)}\|, \quad \sigma_S = \|\sigma^{(S)}\|, \quad \sigma_{XS} = \|\sigma^{(X)} + \sigma^{(S)}\| = \sqrt{\sigma^2_X + \sigma^2_S + 2\rho\sigma_X\sigma_S}$$

and

$$\hat{X} = \frac{1}{\sigma_{XS}\sqrt{T - t}}(\sigma^{(X)} + \sigma^{(S)}) \cdot (W(T) - W(t)) \sim N(0, 1)$$

The call option can thus be priced by using the standard Black-Scholes formula $C_{BS}(S, K, \tau; r, q, \sigma)$ with spot $S = XS^f$, strike K, time to maturity $\tau = T - t$, interest rate r, no dividends $q = q_S = 0$ and volatility $\sigma = \sigma_{XS}$, whence

$$C(t, S^f(t), X(t)) = e^{-r(T-t)} \left[S^f(t)X(t)N \left(d_+ \left(\frac{X(t)S^f(t)}{K}, T - t \right) \right) - K N \left(d_- \left(\frac{X(t)S^f(t)}{K}, T - t \right) \right) \right]$$

with

$$d_\pm(x, \tau) = \frac{\ln x + (r - r^f \pm \frac{1}{2}\sigma^2_X)\tau}{\sigma X \sqrt{\tau}}$$

(b) Since we are using the standard Black-Scholes formula, the standard put-call parity relation holds, namely

$$C(t, S^f(t), X(t)) - P(t, S^f(t), X(t)) = S^f(t)X(t) - Ke^{-r(T-t)}$$

□

Exercise 5.3. [CM14, Exercise 13.6]
Solution. This call option can be priced as a standard call using the Black-Scholes formula.

Exercise 5.4. [CM14, Exercise 13.7] Consider the foreign equity call struck in foreign currency with payoff

\[C_T = X(T) \left(S^f(T) - K_f \right)^+. \]

Assume the foreign stock price is a GBM with constant log-volatility \(\sigma^{(S)} \) and having a dividend yield \(q_S \) and the exchange rate is a GBM with constant log-volatility \(\sigma^{(X)} \). Derive its pricing function \(C(t, S, S) \).

Solution. This exercise is identical to [CM14, Example 13.4], with the roles of \(S^f(T) \) and \(X(T) \) exchanged. We will be reproducing most of the argument in [CM14, Exercise 13.9(c)] below, so we don’t duplicate it here.

Exercise 5.5. [CM14, Exercise 13.9] Assume that a foreign stock price \(\{S^f(t)\}_{t \geq 0} \), a foreign exchange rate process \(\{X(t)\}_{t \geq 0} \) and a domestic asset price process \(\{A(t)\}_{t \geq 0} \) are all geometric Brownian motions with respective constant log-volatility vectors \(\sigma^{(S)}, \sigma^{(X)} \) and \(\sigma^{(A)} \):

\[
\begin{align*}
 dA(t) &= \mu_A dt + \sigma^{(A)} \cdot dW(t), \\
 dS^f(t) &= \mu_{S^f(t)} dt + \sigma^{(S)} \cdot dW(t), \\
 dX(t) &= \mu_X dt + \sigma^{(X)} \cdot dW(t)
\end{align*}
\]

\(W(t) \) is a 3-dimensional standard \(P \)-Brownian motion in the physical measure \(P \) and the assets are correlated, where \(\sigma_S = \|\sigma^{(S)}\|, \sigma_X = \|\sigma^{(X)}\|, \sigma_A = \|\sigma^{(A)}\|, \sigma^{(S)} \cdot \sigma^{(A)} = \rho_{S^f S^A} \sigma_S \sigma_A, \sigma^{(X)} \cdot \sigma^{(A)} = \rho_{X^A X^S} \sigma_X \sigma_S, \sigma^{(X)} \cdot \sigma^{(S)} = \rho_{X^S X^S} \sigma_X \sigma_S \). Assume a domestic and foreign economy with respective interest rates \(r \) and \(r^f \) as constants, zero dividends on all assets, and let \(A(t) = A, S^f(t) = S \) and \(X(t) = X \) be the spot values.

(a) Derive the time \(t < T \) pricing function for a domestic European option with payoff

\[V_T = \max\{X(T)S^f(T), A(T)\} \]

(b) Derive the time \(t < T \) pricing function for a domestic European-style option with payoff

\[V_T = X(T)S^f(T)1_{X(T) \geq X_0} + A_T1_{X(T) < X_0} \]

where \(X(0) = X_0 \) is a fixed positive initial exchange rate.

(c) Derive the time \(t < T \) pricing function for a domestic European-style option with payoff

\[V_A = \left(aX(T)S^f(T) - bA(T) \right)^+ \]

with positive constants \(a, b \).

Solution.
(a) Recalling that \(\max\{x, y\} = (x - y)^+ + y \) we can rewrite the payoff as

\[
V_T = \max\{X(T)S^f(T), A(T)\} = \left(X(T)S^f(T) - A(T) \right)^+ + A(T)
\]

so (see [CM14, Equation 13.67])

\[
V(t, S, X, A) = e^{-r(T-t)} E_{t,S,X,A}\left[\left(X(T)S^f(T) - A(T) \right)^+ \right] + e^{-r(T-t)} E_{t,S,X,A}[A(T)]
\]

and these two expectations have been computed in the exchange option example on [CM14, Section 13.2.2.1] with \(X(T)S^f(T) \leftrightarrow S_2(T) \) and \(A(T) \leftrightarrow S_1(T) \). We simply need to establish the correlation coefficient between both processes. Recall that the processes \(X(t)S^f(t) \) and \(A(t) \) satisfy

\[
X(T)S^f(T) = X(t)S^f(t) e^{(r-\frac{1}{2}\sigma^2_X)(T-t) + \sigma_X W(T) - W(t)}
\]

\[
A(T) = A(t) e^{(r-\frac{1}{2}\sigma^2_A)(T-t) + \sigma_A W(T) - W(t)}
\]

where

\[
\sigma_{XS} = \|\sigma^{(X)} + \sigma^{(S)}\| = \sqrt{\sigma_X^2 + \sigma_S^2 + 2\rho\sigma_X\sigma_S}
\]

The correlation between these two processes is given by

\[
\frac{\sigma^{(A)} \cdot (\sigma^{(X)} + \sigma^{(S)})}{\sigma_A \cdot \sigma_{XS}} = (\rho_{AX} + \rho_{AS}) \frac{\sigma_S}{\sigma_{XS}} = \rho
\]

so we have the following equivalent expressions:

\[
X(T)S^f(T) = X(t)S^f(t) e^{(r-\frac{1}{2}\sigma^2_X)(T-t) + \sigma_X \sqrt{T-t} Z_{XS}}
\]

\[
A(T) = A(t) e^{(r-\frac{1}{2}\sigma^2_A)(T-t) + \sigma_A \sqrt{T-t} \left[\rho Z_{XS} + (1-\rho^2) Z_A \right]}
\]

where \(Z_{XS} \) and \(Z_A \) are independent standard normal variables.

Now we are in a position to apply the expression obtained in the aforementioned example: concretely, [CM14, Equation 13.70] reads in our case

\[
C(t, S, X, A) = A N\left(d_+ \left(\frac{XS}{A}, T - t \right) \right) + X S N\left(d_- \left(\frac{XS}{A}, T - t \right) \right)
\]

where

\[
d_\pm(x, \tau) = \frac{\ln x \pm \frac{1}{2} \nu^2 \tau}{\nu \sqrt{\tau}}, \quad \nu = \|\sigma^{(A)} - (\sigma^{(S)} + \sigma^{(X)})\| = \sqrt{\sigma_A^2 + \sigma_X^2 - 2\rho\sigma_A\sigma_X}
\]

(c) By the risk-neutral pricing formula we have that

\[
V(t, X(t), S^f(t), A(t)) = e^{-r(T-t)} \tilde{E}_{t} \left[X(T)S^f(T) 1_{X(T) \geq X_0} \right] + e^{-r(T-t)} \tilde{E}_{t} \left[A_T 1_{X(T) < X_0} \right]
\]

We compute each expectation separately using an appropriate change of numeraire. For the first one, using \(X(t)S^f(t) \) as numeraire we are reduced to

\[
e^{-r(T-t)} \tilde{E}_{t} \left[X(T)S^f(T) 1_{X(T) \geq X_0} \right] = X(t)S^f(t) \tilde{E} \left[1_{X(T) \geq X_0} \right] = X(t)S^f(t) \tilde{P}(X(T) \geq X_0)
\]
In conclusion, the first expectation we needed to compute is a GBM random variable involving the P-BM, exactly as it is done in [CM14, Example 13.4].

Recall that by [CM14, Equation 13.102] we have

$$X(T) = X(t)e^{(r-r^f-\frac{1}{2}\sigma^2)(T-t)+\sigma^X(t)(\hat{W}(T)-\hat{W}(t))}$$

Recall that the Brownian increments in the risk-neutral measure and the measure under numraire g are related by

$$\hat{W}(T) - \hat{W}(t) = \tilde{W}^{(g)}(T) - \tilde{W}^{(g)}(t) + \sigma^{(g)}(T-t)^{\text{not}} \equiv \hat{W}(T) - \hat{W}(t) + \sigma^{(XSf)}(T-t)$$

Substituting this in the representation for $X(T)$ above we obtain

$$X(T) = X(t)e^{(r-r^f-\frac{1}{2}\sigma^2)(T-t)+\sigma^X(t)(\hat{W}(T)-\hat{W}(t)) + \sigma^{(XSf)}(T-t)}$$

where recall that $\sigma^{(XSf)} = \sigma^X + \sigma^{Sf}$ and where $\hat{Z} \sim \mathcal{N}(0,1)$. Therefore we have that

$$X(T) \geq X_0 \iff X(t)e^{(r-r^f+\sigma^X(t)\sigma^X(t)+\frac{1}{2}\sigma^2)(T-t)+\sigma_X \sqrt{T-t}\hat{Z}} \geq X_0$$

$$\iff \hat{Z} \geq \frac{\ln \frac{X_0}{X(t)} - (r-r^f+\sigma^X(t)\sigma^X(t)+\frac{1}{2}\sigma^2)(T-t)}{\sigma_X \sqrt{T-t}}$$

In conclusion, the first expectation we needed to compute is

$$e^{-r(T-t)}\hat{E}_t[X(T)S^f(T)\mathbb{I}_{X(T)\geq X_0}] = X(t)S^f(t)\hat{P}(X(T) \geq X_0) = X(t)S^f(t)\mathcal{N}\left(\frac{\ln \frac{X_0}{X(t)} + (r-r^f+\sigma^X(t)\sigma^X(t)+\frac{1}{2}\sigma^2)(T-t)}{\sigma_X \sqrt{T-t}}\right)$$

The second expectation we compute analogously, but now using $A(t)$ as numraire, namely:

$$e^{-r(T-t)}\hat{E}_t[A_T\mathbb{I}_{X(T)\geq X_0}] = A(t)\hat{E}_t^{(A)}[\mathbb{I}_{X(T)\geq X_0}] \text{not} \equiv A(t)\hat{P}(X(T) < X_0)$$

Proceeding as above, we may relate the Brownian motion increments in the risk-neutral measure and our new measure \hat{P} in numraire $A(t)$ to obtain (we skip the details)

$$X(T) = X(t)e^{(r-r^f+\frac{1}{2}\sigma^2)(T-t)+\sigma^X(t)(\hat{W}(T)-\hat{W}(t))}$$

whereby

$$e^{-r(T-t)}\hat{E}_t[A_T\mathbb{I}_{X(T)\geq X_0}] = A(t)\hat{P}(X(T) < X_0) = A(t)\mathcal{N}\left(\frac{\ln \frac{X_0}{X(t)} - (r-r^f+\frac{1}{2}\sigma^2)(T-t)}{\sigma_X \sqrt{T-t}}\right)$$
In conclusion, adding up both expectation we have shown that

\[V(t, X(t), S^f(t), A(t)) = e^{-r(T-t)} \hat{E}_t \left[X(T)S^f(T)1_{X(T) \geq X_0} \right] + e^{-r(T-t)} \hat{E}_t \left[A_T1_{X(T) < X_0} \right] \]

\[= X(t)S^f(t)N \left(\frac{\ln \frac{X(t)}{X_0} + (r - r^f + \sigma^{(S)} \cdot \sigma^{(S)} + \frac{1}{2} \sigma^2_X)(T - t)}{\sigma_X \sqrt{T - t}} \right) \]

\[+ A(t)N \left(\frac{\ln \frac{X(t)}{X_0} - (r - r^f + \frac{1}{2} \sigma^2_X)(T - t)}{\sigma_X \sqrt{T - t}} \right) \]

(d) This exercise is just [CM14, Exercise 13.16] with \(X(T)S^f(T) \leftrightarrow S_2(T) \) and \(A(T) \leftrightarrow S_1(T) \) so we may just apply the formulas obtained therein after computing the correlation between the processes \(X(t)S^f(t) \) and \(A(t) \) as in part (a).

\[\square \]

Exercise 5.6. [CM14, Exercise 13.11]

Solution.

\[\square \]

Exercise 5.7. [CM14, Exercise 13.12] Assume as in [CM14, Exercise 13.5] that a foreign stock price process \(\{S^f(t)\}_{t \geq 0} \) and the exchange rate \(\{X(t)\}_{t \geq 0} \) are correlated geometric Brownian motions with respective log-volatility vectors \(\sigma^{(S)} = [\sigma_S, 0] \) and \(\sigma^{(X)} = [\rho \sigma_X, \sqrt{1 - \rho^2} \sigma_X] \) and with time-0 (spot) values \(S^f(0) = S, X(0) = X \). Assume the domestic and foreign interest rates \(r \) and \(r^f \) are constants an that foreign stock pays no dividend. Derive the time-0 pricing formula as a function of \(S, T, X \), for a domestic European option having payoff at maturity \(T > 0 \) given by

\[V_T = X(T)S^f(T)1_{\{M(T) < K\}} \]

where \(M(T) \) is the maximum realized value of the exchange rate up to time \(T \):

\[M(T) = \max_{0 \leq t \leq T} X(t) \]

Solution. Using \(g(t) = X(t)S^f(t) \) as numeraire, we need to compute

\[e^{-r(T-t)} \hat{E}_t \left[X(T)S^f(T)1_{\{M(T) < K\}} | \mathcal{F}(t) \right] = X(t)S^f(t)\hat{P}(M(T) < K | \mathcal{F}(t)) \]

and it hence suffices to obtain the PDF of the sampled maximum \(M(T) \) in measure \(\hat{P} \).

Recall that by [CM14, Equation 13.102] we have

\[X(T) = X(t)e^{(r - r^f - \frac{1}{2} \sigma^2_X)r + \sigma^{(X)} \cdot (W(T) - W(t))} \]

The Brownian motion increments \(W(T) - W(t) \) and \(\hat{W}(T) - \hat{W}(t) \) are related via

\[W(T) - W(t) = \hat{W}(T) - \hat{W}(t) - \sigma^{(XS)}(T - t), \quad \sigma^{(XS)} = \sigma^{(X)} + \sigma^{(S)} \]

42
so the expression for $X(t)$ becomes

$$X(T) = X(t)e^{(r-r_f+\sigma(X),\sigma(S)+\frac{1}{2}\sigma_X^2)\tau+\sigma_X\sqrt{\tau}\bar{Z}}$$

where $\bar{Z} = \frac{1}{\sigma_X\sqrt{\tau}}\sigma(X) \cdot (\bar{W}(T) - \bar{W}(t)) \sim \mathcal{N}(0, 1)$. We can further write

$$X(t) = X(0)e^{\sigma_X X(t)} \text{ where } X(t) = \mu t + \sqrt{t}\bar{Z}, \quad \mu = \frac{r - r_f + \sigma(X) \cdot \sigma(S) + \frac{1}{2}\sigma_X^2}{\sigma_X}$$

and

$$M^X(t) = \max_{0 \leq u \leq t} X(u) = X(0)e^{\sigma_M X(t)}, \quad M^X(t) = \max_{0 \leq u \leq t} X(u)$$

Similarly, since we will be conditioning on $\mathcal{F}(t)$ we have

$$M^X(T) = \max_{0 \leq u \leq T} X(u) = \max \left\{ M^X(t), X(t)e^{\sigma_M X(t)} \right\}, \quad M^X(\tau) = \max_{t \leq u \leq \tau} X(u)$$

We are now in the context of [CM14, Section 12.3.1], whereby the joint density function of $M^X(\tau)$ and $X(\tau)$ in measure \hat{P} is given by [CM14, Equation 12.108], namely

$$f_{M^X(\tau), X(\tau)}(w, x) = \frac{2(2w - x)}{\tau\sqrt{2\pi}\tau}\exp\left(-\frac{1}{2}\frac{\ln^2 r + \ln \tau - (2w - x)^2}{\tau}\right), \quad \mu = \frac{r - r_f + \sigma(X) \cdot \sigma(S) + \frac{1}{2}\sigma_X^2}{\sigma_X}$$

Our expectation is hence either 0 if $M^X(t) \geq K$ or else is given by

$$X(t)S^f(t)\hat{P}(M(T) < K | \mathcal{F}(t)) = X(t)S^f(t)\hat{P}\left(X(t)e^{\sigma_M X(t)} < K | \mathcal{F}(t)\right)$$

$$= X(t)S^f(t)\hat{P}\left(M^X(\tau) < \frac{1}{\sigma_X}\ln\frac{K}{X(t)} | \mathcal{F}(t)\right)$$

$$= X(t)S^f(t)\int_0^\infty \frac{1}{\tau}\ln\frac{K}{X(t)} \int_{-\infty}^w f_{M^X(\tau), X(\tau)}(w, x) \, dx \, dw$$

Exercise 5.8. [CM14, Exercise 13.13] Consider a domestic economy with constant interest rate r and two correlated GB stock price processes given by

$$S_1(T) = S_1(t)e^{(\mu_1 - \frac{1}{2}\sigma_1^2)\tau + \sigma_1\sqrt{\tau}Z_1},$$

$$S_2(T) = S_2(t)e^{(\mu_2 - \frac{1}{2}\sigma_2^2)\tau + \sigma_2\sqrt{\tau}(\rho Z_1 + \sqrt{1-\rho^2}Z_2)}$$

where Z_1, Z_2 are independent standard normal random variables. let $S_1(t) = S_1$, $S_2(t) = S_2$, $0 \leq t \leq T$, be the stock spot values. Derive the pricing function $V(t, S_1, S_2)$ for a European chooser max call with payoff

$$V_T = (\max\{S_1(T), S_2(T)\} - K)^+$$

Solution. Re-write the payoff as

$$\Lambda_T = (S_1(T) - K)^+1_{\{S_1(T) > S_2(T)\}} + (S_2(T) - K)^+1_{\{S_2(T) > S_1(T)\}}$$

43
Then

\[V(t, S_1, S_2) = e^{-rt} \hat{E} \left[(S_1(T) - K)^+ \mathbb{1}_{S_1(T) > S_2(T)} + (S_2(T) - K)^+ \mathbb{1}_{S_2(T) > S_1(T)} \right] \]

We illustrate how to compute

\[\hat{E} \left[(S_1(T) - K)^+ \mathbb{1}_{S_1(T) > S_2(T)} \right] \]

We have that

\[\hat{E} \left[(S_1(T) - K)^+ \mathbb{1}_{S_1(T) > S_2(T)} \right] = e^{(r - q_1 - \frac{1}{2} \sigma_1^2)T} \hat{E} \left[(e^{\sigma_1 \sqrt{T} Z_1} - K)^+ \mathbb{1}_{Z_1 > \alpha, f(Z_1) > Z_2} \right] \]

\[= \int_{\alpha}^{\infty} \int_{-\infty}^{f(x)} \left[e^{\sigma_1 \sqrt{T} x} - K \right] \eta_2(x, y; \rho) \, dy \, dx \]

\[= \cdots \]

where

\[\alpha = \frac{\ln K}{\sigma_1} - (r - q_1 - \frac{1}{2} \sigma_1^2)T \]

\[f(Z_1) = \cdots \]

\[\eta_2(x, y; \rho) = \frac{1}{2\pi \sqrt{1 - \rho^2}} e^{-(x^2 + y^2 - 2\rho xy)/2(1 - \rho^2)} \]

\[\square \]

Exercise 5.9. [CM14, Exercise 13.15] Consider three stocks with GBM price dynamics as in [CM14, Exercise 13.1] with constant interest rate \(r \) and constant dividend yield \(q_i \) on each stock \(i = 1, 2, 3 \).

(a) Derive the pricing function \(V(t, S_1, S_2, S_3), t < T \) for a European option with payoff

\[V_T = S_3(T)\mathbb{1}_{S_3(T) > S_1(T), S_3(T) > S_2(T)} \]

(b) Derive the pricing function for a European option with payoff

\[V_T = \max\{S_1(T), S_2(T), S_3(T)\} \]

Solution. For a derivation using the change of numeraire technique, see [OW06, Section 6.1].

(b) Part (b) is straightforward once we have established (a), since

\[\max\{S_1(T), S_2(T), S_3(T)\} = S_1(T)\mathbb{1}_{S_1(T) > S_2(T), S_1(T) > S_3(T)} \\
+ S_2(T)\mathbb{1}_{S_2(T) > S_1(T), S_2(T) > S_3(T)} \\
+ S_3(T)\mathbb{1}_{S_3(T) > S_1(T), S_3(T) > S_2(T)} \]
(a) Part (a) is a generalization of [CM14, Equation 13.72], whereby if
\[S_1(T) = S_1(t) e^{\left(\mu_1 - \frac{1}{2}\sigma_1^2\right)\tau + \sigma_1^2}, \quad S_2(T) = S_2(t) e^{\left(\mu_2 - \frac{1}{2}\sigma_2^2\right)\tau + \sigma_2^2}, \]
with
\[\sigma_1 = \|\sigma^{(1)}\|, \quad \sigma^{(1)} \cdot \sigma^{(2)} = \rho \sigma_1 \sigma_2, \quad \nu^2 = \|\sigma^{(1)} - \sigma^{(2)}\|^2 = \sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2 \]
then
\[E \left[S_1(T) I_{\{S_1(T) > S_2(T)\}} | S_1(t) = S_1, S_2(t) = S_2 \right] = S_1 e^{\mu_1 \tau} \mathcal{N} \left(\frac{\ln \frac{S_1}{S_2} + (\mu_1 - \mu_2 + \frac{1}{2}\nu^2)\tau}{\nu \sqrt{\tau}} \right) \]

We first show this 2-dimensional case and we will then indicate how to extend it to 3 stocks (even though computations are tedious). Start by writing
\[S_1(T) = S_1(t) e^{\left(\mu_1 - \frac{1}{2}\sigma_1^2\right)\tau + \sigma_1 \sqrt{\tau} Z_1}, \]
\[S_2(T) = S_2(t) e^{\left(\mu_2 - \frac{1}{2}\sigma_2^2\right)\tau + \sigma_2 \sqrt{\tau} (\rho Z_1 + \sqrt{1 - \rho^2} Z_2)} \]
where \(Z_1, Z_2 \) are independent standard normal random variables. Then we have
\[E \left[S_1(T) I_{\{S_1(T) > S_2(T)\}} | S_1(t) = S_1, S_2(t) = S_2 \right] = S_1 e^{\mu_1 \tau} \mathcal{N} \left[e^{\sigma_1 \sqrt{\tau} Z_1} I_{\{Z_1 > f(Z_2)\}} \right] \]
where
\[f(Z_2) = \frac{\ln \frac{S_1}{S_2} + \left[\mu_2 - \mu_1 - \frac{1}{2}(\sigma_2^2 - \sigma_1^2)\right] \tau + \sigma_2 \sqrt{\tau} \sqrt{1 - \rho^2} Z_2}{(\sigma_1 - \rho \sigma_2) \sqrt{\tau}} \]
We now use iterated conditioning
\[E \left[S_1(T) I_{\{S_1(T) > S_2(T)\}} | S_1(t) = S_1, S_2(t) = S_2 \right] = S_1 e^{\mu_1 \tau} E \left[\mathcal{N} \left(\frac{\ln \frac{S_1}{S_2} + (\mu_1 - \mu_2 + \frac{1}{2}\nu^2)\tau - \sigma_2 \sqrt{\tau} \sqrt{1 - \rho^2} Z_2}{(\sigma_1 - \rho \sigma_2) \sqrt{\tau}} \right) I_{\{Z_1 > f(Z_2)\}} \right] \]
Recalling that for \(X \sim \mathcal{N}(0, 1) \) we have \(E[e^{BX} I_{X > A}] = e^{B^2/2} \mathcal{N}(B - A) \) we have
\[E \left[S_1(T) I_{\{S_1(T) > S_2(T)\}} | S_1(t) = S_1, S_2(t) = S_2 \right] = S_1 e^{\mu_1 \tau} E \left[\mathcal{N} \left(\frac{\sigma_1 \sqrt{\tau} - f(Z_2)}{(\sigma_1 - \rho \sigma_2) \sqrt{\tau}} \right) \right] \]
Recalling that for \(X \sim \mathcal{N}(0, 1) \) we have \(E[\mathcal{N}(AX + C)] = \mathcal{N} \left(\frac{C}{\sqrt{1 + A^2}} \right) \) we conclude that
\[E \left[S_1(T) I_{\{S_1(T) > S_2(T)\}} | S_1(t) = S_1, S_2(t) = S_2 \right] = S_1 e^{\mu_1 \tau} \mathcal{N} \left(\frac{\ln \frac{S_1}{S_2} + (\mu_1 - \mu_2 + \frac{1}{2}\nu^2)\tau}{\nu \sqrt{\tau}} \right) \]
In dimension 3 we start by computing the lower Cholesky factorization \(U \) of the correlation matrix
\[
\begin{pmatrix}
1 & \rho_{12} & \rho_{13} \\
\rho_{12} & 1 & \rho_{23} \\
\rho_{13} & \rho_{23} & 1
\end{pmatrix} = U U^T, \quad U = \begin{pmatrix}
1 & 0 & 0 \\
\rho_{12} & \sqrt{1 - \rho_{12}^2} & 0 \\
\rho_{13} & \alpha & \beta
\end{pmatrix}
\]
where
\[\alpha = \frac{\rho_{23} - \rho_{12}\rho_{13}}{\sqrt{1 - \rho_{12}^2}}, \quad \beta = \sqrt{1 - \rho_{12}^2 - \frac{(\rho_{23} - \rho_{12}\rho_{13})^2}{1 - \rho_{12}^2}} \]

Write
\[
S_1(T) = S_1(t) e^{(\mu_1 - \frac{1}{2}\sigma_1^2) T + \sigma_1 \sqrt{T} Z_1}, \\
S_2(T) = S_2(t) e^{(\mu_2 - \frac{1}{2}\sigma_2^2) T + \sigma_2 \sqrt{T} (\rho_{12} Z_1 + \sqrt{1 - \rho_{12}^2} Z_2)}, \\
S_3(T) = S_3(t) e^{(\mu_3 - \frac{1}{2}\sigma_3^2) T + \sigma_3 \sqrt{T} (\rho_{13} Z_1 + \rho_{12}\rho_{13} Z_2 + \beta Z_1)}
\]

where \(Z_1, Z_2, Z_3 \) are independent standard normal random variables. Now we proceed as in the 2-dimensional case by iterated conditioning
\[
e^{-\tau T} E_{t,S_1,S_2,S_3} \left[S_3(T) I_{\{S_3(T) > S_1(T), S_3(T) > S_2(T)\}} \right] \\
= e^{-\tau T} S_3(t) e^{(\mu_3 - \frac{1}{2}\sigma_3^2) T} E \left[e^{\sigma_3 \sqrt{T} (\rho_{13} Z_1 + \rho_{12}\rho_{13} Z_2 + \beta Z_3)} I_{\{Z_3 > f(Z_1), Z_3 > f(Z_2)\}} \right] \\
= e^{-\tau T} S_3(t) e^{(\mu_3 - \frac{1}{2}\sigma_3^2) T} E \left[e^{\sigma_3 \sqrt{T} (\rho_{13} Z_1 + \rho_{12}\rho_{13} Z_2)} E \left[e^{\beta Z_3 I_{\{Z_3 > f(Z_1), Z_3 > f(Z_2)\}}} | Z_1, Z_2 \right] \right] \\
= e^{-\tau T} S_3(t) e^{(\mu_3 - \frac{1}{2}\sigma_3^2) T} E \left[e^{\beta Z_3 I_{\{Z_3 > \max\{f(Z_1), f(Z_2)\}\}}} | Z_1, Z_2 \right]
\]

The inner expectation
\[E \left[e^{\beta Z_3 I_{\{Z_3 > \max\{f(Z_1), f(Z_2)\}\}}} | Z_1, Z_2 \right]
\]
can be computed using once again that \(E[e^{B^2/2} 1_{X > A}] = e^{B^2/2} N(B - A) \) for \(X \sim N(0,1) \).

Alternatively: if we instead use \(S_3(t) \) as numéraire, so are reduced to computing
\[
e^{-\tau(T-t)} \hat{E}_t \left[S_3(T) I_{\{S_3(T) > S_1(T), S_3(T) > S_2(T)\}} \right] = S_3(t) \hat{P} \left(1 > \frac{S_1(T)}{S_3(T)}, 1 > \frac{S_2(T)}{S_3(T)} \right)
\]

and it now suffices to express \(\frac{S_1(T)}{S_3(t)} \) and \(\frac{S_2(T)}{S_3(T)} \) as GBM’s generated by two correlated standard normal variables and to integrate the corresponding bivariate normal density function. Again, by [CM14, Equation 13.122] we have
\[
\frac{S_i(T)}{S_3(t)} = \frac{S_i(t)}{S_3(t)} e^{-\frac{1}{2}||\sigma_i - \sigma_3||^2(T-t) + (\sigma_i - \sigma_3) (W(T) - W(t))} = \frac{S_i(t)}{S_3(t)} e^{-\frac{1}{2} \nu_i^2 (T-t) + \nu_i \sqrt{T} \tilde{Z}_i}
\]
for \(i = 1, 2 \), where \(\nu_i = ||\sigma_i - \sigma_3|| \) and
\[
\hat{Z}_i = \frac{1}{\nu_i \sqrt{T-t}} (\sigma_i - \sigma_3) \cdot (\hat{W}(T) - \hat{W}(t)), \quad \hat{\rho}_{12} := \text{Corr}(\hat{Z}_1, \hat{Z}_2) = \frac{(\sigma_1 - \sigma_3) \cdot (\sigma_2 - \sigma_3)}{\nu_1 \cdot \nu_2}
\]
Moreover note that
\[
\frac{S_i(T)}{S_3(t)} = \frac{S_i(t)}{S_3(t)} e^{-\frac{1}{2} \nu_i^2 (T-t) + \nu_i \sqrt{T} \tilde{Z}_i} < 1 \iff \hat{Z}_i < \frac{\ln \frac{S_i(t)}{S_3(t)} + \frac{1}{2} \nu_i^2 (T-t)}{\nu_i \sqrt{T-t}} \Rightarrow d_i, \quad i = 1, 2
\]

46
and hence our expectation is

\[S_3(t) \bar{P} \left(1 > \frac{S_1(T)}{S_3(T)}, 1 > \frac{S_2(T)}{S_3(T)} \right) = S_3(t) \int_{-\infty}^{d_1} \int_{-\infty}^{d_2} \eta_2(x_1, x_2; \hat{\rho}_{12}) \, dx_2 \, dx_1 \]

where

\[\eta_2(x_1, x_2; \hat{\rho}_{12}) = \frac{1}{2\pi \sqrt{1 - \hat{\rho}^2_{12}}} \exp \left(-\frac{x_1^2 - 2\hat{\rho}_{12}x_1x_2 + x_2^2}{2(1 - \hat{\rho}^2_{12})} \right) \]

\[\square \]

Exercise 5.10. [CM14, Exercise 13.16] Consider an exchange option on two stocks having payoff

\[V_T = (aS_2(T) - bS_1(T))^+, \quad a, b > 0. \]

Assume the stocks are GB; processes

\[S_1(T) = S_1(t) e^{(\mu_1 - \frac{1}{2}\sigma_1^2)\tau + \sigma_1 \sqrt{\tau} Z_1}, \]
\[S_2(T) = S_2(t) e^{(\mu_2 - \frac{1}{2}\sigma_2^2)\tau + \sigma_2 \sqrt{\tau}(\rho Z_1 + \sqrt{1-\rho^2} Z_2)} \]

where \(Z_1, Z_2 \) are independent standard normal random variables. Derive the time-\(t \) price \(V_t \) for this option by explicitly using one of the stocks as numraire asset and by implementing the risk-neutral pricing [CM14, Formula 13.149]. Note: the derivation is similar to that in [CM14, Example 13.3].

Solution. This exercise is identical to [CM14, Example 13.3]. Working with numraire \(g(t) = S_1(t) \) and denoting \(\bar{E} \equiv \bar{E}^{S_1} \), the time-\(t \) value of the option is given by

\[V_t = S_1(t) \bar{E} \left[\frac{V_T}{S_1(T)} \bigg| \mathcal{F}_t \right] = S_1(t) \bar{E} \left[(a \frac{S_2(T)}{S_1(T)} - b)^+ \bigg| \mathcal{F}_t \right] = a S_1(t) \bar{E} \left[\left(\frac{S_2(T)}{S_1(T)} - \frac{b}{a} \right)^+ \bigg| \mathcal{F}_t \right] \]

\[\equiv a S_1(t) \bar{E} \left[\left(Y(T) - \frac{b}{a} \right)^+ \bigg| \mathcal{F}_t \right] \]

where in the last equality we denoted \(Y(T) = \frac{S_2(T)}{S_1(T)} \).

It is easy to see\(^2\) that the process \(Y(t) = \frac{S_2(t)}{S_1(t)} \) is a \(\bar{P} \)-martingale

\[Y(t) = \frac{S_2(t)}{S_1(t)} = Y(0) \mathcal{E}_t \left((\sigma_2 - \sigma_1) \cdot \bar{W} \right) \]

As in [CM14, Example 13.3] we can write

\[Y(t) = Y(0) e^{X(t)} \]

where

\[X = -\frac{1}{2} \|\sigma_2 - \sigma_1\|^2 t + (\sigma_1 - \sigma_1) \cdot \bar{W}(t) = -\frac{1}{2} \nu^2 t + \nu \sqrt{t} \bar{Z} \]

\(^2\)Either see [CM14, Equation 13.122] or directly compute the stochastic differential \(d \left(\frac{S_2(t)}{S_1(t)} \right) \).
with \(\hat{Z} = \frac{(\sigma_2 - \sigma_1) \hat{W}(t)}{\nu \hat{Y}(t)} \sim \mathcal{N}(0, 1) \) and \(\nu^2 := \|\sigma_2 - \sigma_1\|^2 = \sigma_1^2 + \sigma_2^2 - 2 \rho \sigma_1 \sigma_2 \). We can thus compute

\[
V_t = S_1(t) \tilde{E} \left[\left(Y(T) - \frac{b}{a} \right)^+ | \mathcal{F}_t \right] = S_1(t) \tilde{E} \left[\left(Y(0) e^{-\frac{1}{2} \nu^2 T + \nu \sqrt{T} \hat{Z}} - \frac{b}{a} \right)^+ | \mathcal{F}_t \right], \quad \hat{Z} \sim \mathcal{N}(0, 1)
\]

by using the Black-Scholes formula with zero interest rate and dividend, volatility \(\nu \), time to maturity \(T \), spot \(Y(t) \) and strike \(\frac{b}{a} \). In other words:

\[
V(T, S_1(0), S_2(0)) = S_1(0) \left[Y(0) \mathcal{N}(d_+(Y(0), T)) - \frac{b}{a} \mathcal{N}(d_-(Y(0), T)) \right]
\]

\[
= S_2(0) \mathcal{N}(d_+(Y(0), T)) - \frac{b}{a} S_1(0) \mathcal{N}(d_-(Y(0), T))
\]

Exercise 5.11. [CM14, Exercise 13.17] Consider a domestic economy with constant interest rate \(r \) and two domestic stock price processes

\[
\begin{align*}
S_1(T) &= S_1(t) e^{(\mu_1 - \frac{1}{2} \sigma_1^2)T + \sigma_1 \sqrt{T} Z_1}, \\
S_2(T) &= S_2(t) e^{(\mu_2 - \frac{1}{2} \sigma_2^2)T + \sigma_2 \sqrt{T} (\rho Z_1 + \sqrt{1-\rho^2} Z_2)}
\end{align*}
\]

where \(Z_1, Z_2 \) are independent standard normal random variables. Derive the time-0 pricing function \(V_0 = V(T, S_1, S_2) \) in the spot variables \(S_1(0) = S_1, S_2(0) = S_2 \), for a European path-dependent option with payoff at maturity \(T \) given by

\[
V_T = S_1(T) \min_{0 \leq t \leq T} \frac{S_2(t)}{S_1(t)}
\]

Solution. Recall the numeraire invariant form of the risk-neutral pricing formula: for an attainable payoff \(V_T \) and numeraire \(g(t) \) we have

\[
V_t = g(t) \tilde{E}_t \left[\frac{V_T}{g(T)} | \mathcal{F}(t) \right], \quad \tilde{E}^\text{not} = \tilde{E}(g)
\]

Picking \(g(t) = S_1(t) \) as numeraire we thus have

\[
V_t = S_1(t) \tilde{E} \left[\min_{0 \leq t \leq T} \frac{S_2(t)}{S_1(t)} | \mathcal{F}(t) \right]
\]

It is easy to see\(^3\) that the process \(Y(t) = \frac{S_2(t)}{S_1(t)} \) is a \(\tilde{P} \)-martingale

\[
Y(t) = \frac{S_2(t)}{S_1(t)} = Y(0) \mathcal{E}_t ((\sigma_2 - \sigma_1) \cdot \hat{W})
\]

As in [CM14, Example 13.3] we can write

\[
Y(t) = Y(0) e^{X(t)}
\]

\(^3\)Either see [CM14, Equation 13.122] or directly compute the stochastic differential \(d \left(\frac{S_2(t)}{S_1(t)} \right) \).
where
\[X = -\frac{1}{2} \|\sigma_2 - \sigma_1\|^2 t + (\sigma_1 - \sigma_1) \cdot \hat{W}(t) = -\frac{1}{2} \nu^2 t + \nu \sqrt{t} \hat{Z} \]

with \(\hat{Z} = \frac{(\sigma_2 - \sigma_1)\hat{W}(t)}{\nu \sqrt{t}} \sim \mathcal{N}(0, 1) \) and \(\nu^2 := \|\sigma_2 - \sigma_1\|^2 = \sigma_1^2 + \sigma_2^2 - 2 \rho \sigma_1 \sigma_2 \). We are thus reduced to computing the expectation
\[
V_t = S_1(t) \hat{E} \left[\min_{0 \leq t \leq T} Y(t) \right] = S_1(t) \hat{E} \left[\min_{0 \leq t \leq T} Y(0)e^{X(t)} \right]
\]
\[
= S_1(t) \hat{E} \left[\min_{0 \leq t \leq T} Y(0)e^{-\frac{1}{2} \nu^2 t + \nu \sqrt{t} \hat{Z}} \right] \equiv S_1(t) \hat{E} \left[\min_{0 \leq t \leq T} Y(0)e^{\nu Z(t)} \right] \not= S_1(t) \hat{E} \left[Y(0)e^{\nu \cdot mZ(t)} \right]
\]

where \(Z(t) = \sqrt{t} \hat{Z} - \frac{1}{\nu^2} \) and \(mZ(t) = \min_{0 \leq u \leq t} Z(u) \) (see [CM14, Section 12.3.1]). The last expectation can be computed by integrating against the joint density function of the sampled minimum \(mZ(t) \) and \(Z(t) \) (c.f. [CM14, Equation 12.109]), namely
\[
\hat{E} \left[Y(0)e^{\nu \cdot mZ(t)} \right] = Y(0) \int_{-\infty}^{0} \int_{w}^{\infty} e^{\nu w} f_{mZ(t),Z(t)}(w,x) \, dx \, dw,
\]
\[
f_{mZ(t),Z(t)}(w) = \frac{2(x - 2w)}{\tau \sqrt{2\pi \tau}} e^{-\frac{1}{2} \nu^2 + \nu x - \frac{(x - 2w)^2}{\tau}}
\]

which is a bit tedious to type. □
6 Chapter 14: American options

Exercise 6.1. [CM14, Exercise 14.1] Prove [CM14, Proposition 14.3] for an arbitrary American option with a differentiable payoff function Λ. In particular show the following.

(a) At any point (t, S^*_t) of the early-exercise boundary, the American option pricing function V satisfies the smooth pasting condition

$$\frac{\partial V(t, S)}{\partial S} \bigg|_{S=S^*_t} = \Lambda'(S^*_t)$$

(b) The option value V satisfies the zero time-decay condition on the early-exercise domain

$$\frac{\partial V(t, S)}{\partial t} = 0, \quad \forall S \in D_t = \{(t, s) : V(t, s) = \Lambda(S(t))\}$$

Solution.

(a) We proceed as in [CM14, Section 14.2.2]. Suppose the American options has not been exercised at time t and let B denote the collection of all possible early-exercise boundaries defined by continuous functions $b : [t, T] \rightarrow \mathbb{R}^+$, so that for each $b \in B$ there is an exercise policy T_b. Then

$$V(t, S) = \sup_{b \in B} V(t, S; b), \quad V(t, S; b) = \mathcal{E}_{t, S} \left[e^{-r(T_b-t)} \Lambda(S(T_b)) \right]$$

The total derivative of the function $V(t, S; b)$ along the boundary is given by

$$\frac{dV}{db} = \left. \frac{\partial V(t, S; b)}{\partial S} \frac{\partial S}{\partial b} \right|_{S=b} + \left. \frac{\partial V(t, S; b)}{\partial b} \right|_{S=b}$$

• Along the curve $S = b(t)$ it is clear that $\frac{\partial S}{\partial b} = 1$
• When $b = S^*$, we have $\left. \frac{\partial V(t, S; b)}{\partial b} \right|_{S=b} = 0$ (by optimality).

Therefore

$$\frac{dV}{db} = \left. \frac{\partial V(t, S; b)}{\partial S} \right|_{S=S^*}. \quad (17)$$

On the other hand, the option value is equal to the payoff function when $S = b$, that is $V(t, b; b) = \Lambda(b)$ whence

$$\left. \frac{\partial V(t, S)}{\partial S} \right|_{S=S^*} \overset{\text{def}}{=} \left. \frac{\partial V(t, S; S^*)}{\partial S} \right|_{S=S^*} \overset{\text{by (17)}}{=} \left. \frac{dV(t, S; b)}{db} \right|_{b=S^*} = \left. \frac{d\Lambda(b)}{db} \right|_{b=S^*} = \Lambda'(S^*)$$

(b) The total derivative of $V(t, S)$ with respect to time is

$$\frac{dV}{dt} = \frac{\partial V(t, S)}{\partial t} + \frac{\partial V(t, S)}{\partial S} \frac{\partial S}{\partial t}$$
On the other hand, on the early-exercise domain D_t we have $V(t, S(t)) = \Lambda(S(t))$, so
\[
\frac{dV}{dt} = \frac{\partial \Lambda}{\partial S} \frac{\partial S}{\partial t} = \frac{\partial V}{\partial S} \frac{\partial S}{\partial t}
\]
and clearly
\[
\left. \frac{\partial V}{\partial t} \right|_{S \in D_t} = 0
\]

Exercise 6.2. [CM14, Exercise 14.2] Let $P(S; K, r, q)$ and $C(S; K, r, q)$, respectively, denote the price functions of the perpetual American put and call options struck at K. The underlying asset price follows a geometric Brownian motion
\[
S(t) = S(0)e^{(r-q-\frac{1}{2}\sigma^2)t+\sigma W(t)}
\]
Using the closed-form pricing formulas below, show that the option prices satisfy the put-call symmetry relation
\[
P(K; S, q, r) = C(S; K, r, q)
\]
where (c.f. [CM14, Equations 14.25 and 14.28])

\[
\begin{align*}
P(S; K, r, q) &= \begin{cases}
\frac{K}{\lambda_-} \left(\frac{\lambda_--1}{\lambda_-} \right)^{\lambda_-} \left(\frac{S}{K} \right)^{\lambda_-} = -S^* \left(\frac{S}{S^*} \right)^{\lambda_-}, & S^* < S, \\
\frac{K}{\lambda_-} \left(\frac{\lambda_--1}{\lambda_-} \right)^{\lambda_-} \left(\frac{S}{K} \right)^{\lambda_-} = -S^* \left(\frac{S}{S^*} \right)^{\lambda_-}, & 0 < S \leq S^*.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
C(S; K, r, q) &= \begin{cases}
\frac{K}{\lambda_+} \left(\frac{\lambda_+-1}{\lambda_+} \right)^{\lambda_+} \left(\frac{S}{K} \right)^{\lambda_+} = -S^* \left(\frac{S}{S^*} \right)^{\lambda_+}, & 0 < S \leq S^*, \\
\frac{K}{\lambda_+} \left(\frac{\lambda_+-1}{\lambda_+} \right)^{\lambda_+} \left(\frac{S}{K} \right)^{\lambda_+} = -S^* \left(\frac{S}{S^*} \right)^{\lambda_+}, & S^* < S.
\end{cases}
\end{align*}
\]

\[
\lambda_\pm = \frac{-(r-q-\frac{\sigma^2}{2}) \pm \sqrt{(r-q-\frac{\sigma^2}{2})^2 + 2\sigma^2 r}}{\sigma^2}
\]

Solution. Recall how the pricing formulas for the perpetual American call and put are derived: ...

Exercise 6.3. [CM14, Exercise 14.3]

Solution.

Exercise 6.4. [CM14, Exercise 14.4]

Solution.

Exercise 6.5. [CM14, Exercise 14.5]
Exercise 6.6. [CM14, Exercise 14.6]

Solution.

Exercise 6.7. [CM14, Exercise 14.7]

Solution.

Exercise 6.8. [CM14, Exercise 14.8]

Solution.

Exercise 6.9. [CM14, Exercise 14.9]

Solution.
Chapter 15: Interest rate modeling and derivative pricing

Exercise 7.1. [CM14, Exercise 15.1] Suppose that the continuously compounded spot rates for the next three years are

\[
\begin{array}{c|ccc}
T & y(0, T) & 1 & 2 & 3 \\
\hline
1 & 3\% & 3.0\% & 3.25\% & 3.5\%
\end{array}
\]

Find the forward rates \(f(0; 1, 2), f(0; 1, 3) \) and \(f(0; 2, 3) \).

Solution. Recall the relation between yield and forward rates. From no-arbitrage, we have

\[
f(t, T, T') = \frac{1}{T' - T} \ln \frac{P(t, T)}{P(t, T')}
\]

and by definition of bond yield \(y(t, T) \) we have \(P(t, T) = e^{-y(t, T)(T - T)} \) whence

\[
f(t, T, T') = \frac{1}{T' - T} \ln \frac{P(t, T)}{P(t, T')} = \frac{1}{T' - T} \ln e^{-y(t, T)(T - T)}
\]

so

\[
f(0; 1, 2) = y(0, 2) \cdot \frac{2}{1} - y(0, 1) \cdot \frac{1}{1} = 0.0325 \cdot 2 - 0.03 \cdot 1,
\]

\[
f(0; 1, 3) = y(0, 3) \cdot \frac{3}{2} - y(0, 1) \cdot \frac{1}{2} = 0.035 \cdot 1.5 - 0.03 \cdot 0.5,
\]

\[
f(0; 2, 3) = y(0, 3) \cdot \frac{3}{1} - y(0, 2) \cdot \frac{2}{1} = 0.035 \cdot 3 - 0.0325 \cdot 2
\]

□

Exercise 7.2. [CM14, Exercise 15.3] Consider the Hull-White model

\[
dr(t) = [\alpha(t) - \beta(t)r(t)] dt + \sigma(t)dW(t)
\]

Show that the short rate is a Gaussian process. Find the mean and variance of \(r(T) \) conditional on \(r(t) \) for \(0 \leq t \leq T \).

Solution. Given the market price of risk \(\gamma(t) \), the Hull-White model has risk-neutral dynamics

\[
dx(t) = [\tilde{\alpha}(t) - \beta(t)r(t)] dt + \sigma(t)d\tilde{W}(t), \quad \tilde{\alpha}(t) = \alpha(t) - \lambda(t)\sigma(t)
\]

Integrating this SDE (c.f. [CM14, Equation 11.31] or [CM14, Example 11.9]) we obtain

\[
r(T) = r(t)e^{-\int_t^T \beta(s) ds} + \int_t^T e^{-\int_s^T \beta(u) du} \alpha(s) ds + \int_t^T e^{-\int_s^T \beta(u) du} \sigma(s) dW(s)
\]

53
The integrand in the It integral is non-random, so \(r(T) \) is indeed Gaussian conditional on \(r(t) \) and has mean and variance

\[
E[r(T)|r(t) = r] = re^{-\int_t^T \beta(s) \, ds} + \int_t^T e^{-\int_t^u \beta(u) \, du} \alpha(s) \, ds
\]

\[
\text{Var}[r(T)|r(t) = r] = \int_t^T e^{-2\int_t^s \beta(u) \, du} \sigma^2(s) \, ds
\]

where the second equation follows from It isometry. \(\square \)

Exercise 7.3. [CM14, Exercise 15.5] Find the forward rates \(f(t, T) \) in the Vasicek model

\[
 dr(t) = [\alpha - \beta r(t)] \, dt + \sigma dW(t)
\]

Solution. Recall that by definition of the forward rate \(f(t, T) \) we have

\[
e^{f(t, T, T') (T' - T)} = \frac{P(t, T)}{P(t, T')} \implies f(t, T, T') = \frac{1}{T' - T} \ln \frac{P(t, T)}{P(t, T')}
\]

and by definition the instantaneous forward rate is

\[
f(t, T) := \lim_{T' \to T} f(t, T, T') = -\frac{\partial}{\partial T} \ln P(t, T)
\]

so it suffices to establish the discount bond \(P(t, T) \) reconstitution formula in the Vasicek model (c.f. [CM14, Equation 15.53]) and differentiate it with respect to maturity \(T \).

We first outline the derivation of the bond reconstitution formula for \(P(t, T) \) following [CM14, Section 15.2.5]. Assuming that the market price of risk is constant \(\gamma \) the Vasicek model has risk-neutral dynamics

\[
 dr(t) = [\tilde{\alpha} - \beta r(t)] \, dt + \sigma d\tilde{W}(t), \quad \tilde{\alpha} = \alpha - \gamma \sigma
\]

Integrating this SDE we obtain

\[
 r(T) = e^{-\beta(T-t)} r(t) + \frac{\tilde{\alpha}}{\beta} \left(1 - e^{-\beta(T-t)} \right) + \sigma \int_t^T e^{-\beta(T-s)} \, d\tilde{W}(s)
\]

\[
\ldots
\]

The bond pricing formula for the Vasicek model is hence

\[
P(t, T) = \exp \left[\frac{1 - e^{-\beta(T-t)}}{\beta} (y_\infty - r) - y_\infty (T - t) - \frac{\sigma^2}{4\beta} \left(\frac{1 - e^{-\beta(T-t)}}{\beta} \right)^2 \right]
\]

where \(y_\infty = \frac{\tilde{\alpha}}{\beta} - \frac{\sigma^2}{2\beta^2} \). The forward rate is hence given by

\[
f(t, T) = -\frac{\partial}{\partial T} \ln P(t, T) = y_\infty + \frac{\sigma^2}{2\beta} \left(\frac{1 - e^{-\beta(T-t)}}{\beta} \right) e^{-\beta(T-t)} - (y_\infty - r) e^{-\beta(T-t)}
\]

\(\square \)
Exercise 7.4. [CM14, Exercise 15.7] A d-factor HJM model is given by the SDE

$$df(t,T) = \alpha(t,T)dt + \sigma(t,T)\dagger dW(t)$$

where $W(t) = (W_1(t), \ldots, W_d(t))$ is a vector of independent Brownian motions.

(a) Find the SDE for the discounted zero-coupon bond price process $\bar{P}(t,T) = D(t)P(t,T)$ and show that

$$\bar{P}(t,T) = \bar{P}(0,T) \exp\left(-\int_0^t A(s,T)ds - \int_0^t \Sigma(s,T)\dagger dW(s)\right)$$

where

$$\Sigma(t,T) = \int_t^T \sigma_f(t,u)du$$

$$A(t,T) = \int_t^T \alpha(t,u)du$$

(b) Show that the no-arbitrage condition is given by

$$\alpha(t,T) = \sigma_f(t,T)\dagger \int_t^T \sigma_f(t,s)ds$$

Solution. One can argue by extending the discussion in [CM14, Section 15.3.1]. We instead follow [AP10, Section 4.4].

(a) In the absence of arbitrage, the deflated bond values are Q-martingales, so by the martingale representation theorem there exists a d-dimensional stochastic process $\sigma_P(t,T)$ with $\sigma_P(T,T) = 0$ such that

$$d\bar{P}(t,T) = -\bar{P}(t,T)\sigma_P(t,T)\dagger dW(t), \quad t \leq T$$

By It’s lemma it follows that

$$\frac{dP(t,T)}{P(t,T)} = r(t)dt - \sigma_P(t,T)\dagger dW(t)$$

By It’s lemma it also follows that

$$\frac{dP(t,T, T + \tau)}{P(t,T, T + \tau)} = -[\sigma_P(t,T + \tau) - \sigma_P(t,T)]\dagger \sigma_P(t,T)dt - [\sigma_P(t,T + \tau) - \sigma_P(t,T)]\dagger dW(t)$$

In the T-forward measure, $P(t,T, T + \tau)$ is a martingale (by definition), so we must have

$$\frac{dP(t,T, T + \tau)}{P(t,T, T + \tau)} = -[\sigma_P(t,T + \tau) - \sigma_P(t,T)]\dagger dW^T(t)$$

where $W^T(t)$ is a Q^T-Brownian motion.
Comparison of the last two expressions yields
\[dW^T(t) = dW(t) + \sigma_P(t, T)dt \]
which by Girsanov’s theorem identifies the Radon-Nikodym process for the measure shift
\[\xi(t) = E_t^Q \left[\frac{dQ^T}{dQ} \right] = \mathcal{E}_t(\sigma_P \cdot W) = \exp \left(-\int_0^t ||\sigma_P(s, T)||^2 ds - \int_0^t \sigma_P(s, T) dW(s) \right) \]

HJM models are traditionally stated in terms of instantaneous forward rates \(f(t, T) \). Once again by It’s lemma we have (omitting the drift term)
\[d\ln P(t, T) = \sigma_P(t, T)^T dW(t) \]
Differentiating with respect to \(T \) on both sides and recalling that \(f(t, T) = -\frac{\partial P(t, T)}{\partial T} \), we have
\[df(t, T) = \mu_f(t, T) dt + \sigma_f(t, T)^T \sigma_P(t, T)^T dW(t) \]
which shows (a).

(b) In order to establish the drift term \(\mu_f(t, T) \) note that since
\[f(t, T) = E_t^T [r(u)] \]
is a martingale in the \(T \)-forward measure we necessarily have
\[df(t, T) = \sigma_f(t, T)^T dW^T(t) \]
Applying the change of measure above
\[dW^T(t) = dW(t) + \sigma_P(t, T)dt, \quad \sigma_P(t, T) = \int_t^T \sigma_f(t, u) du \]
it follows that
\[
\begin{align*}
 df(t, T) &= \sigma_f(t, T)^T \sigma_P(t, T) dt + \sigma_f(t, T)^T dW(t) \\
 &= \sigma_f(t, T)^T \int_t^T \sigma_f(t, u) du dt + \sigma_f(t, T)^T dW(t)
\end{align*}
\]
so the drift term in the risk-neutral measure is indeed
\[\mu_f(t, T) = \sigma_f(t, T)^T \int_t^T \sigma_f(t, u) du \]

\[\square \]

Exercise 7.5. [CM14, Exercise 15.8]
Exercise 7.6. [CM14, Exercise 15.9]

Solution.

Exercise 7.7. [CM14, Exercise 15.12]

Solution.

Exercise 7.8. [CM14, Exercise 15.13]

Solution.

Exercise 7.9. [CM14, Exercise 15.14]

Solution.
References

