Section A: Conceptual questions.

1. (5 points) If f is a function which is differentiable over the open interval (a, b) and continuous over the closed interval $[a, b]$, the mean value theorem for derivatives states that there exists some c inside of $[a, b]$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Consider the function $f(x) = x^{2/3}$ over the interval $[-8, 27]$. Show that the mean value theorem for derivatives fails and explain why.

2. (5 points) Recall that a function f is odd if $f(-x) = -f(x)$ for all x. Show that if f is an odd function, then for any real number a we have

$$\int_{-a}^{a} f(x) \, dx = 0$$

*Hint: use the change of variables $u = -x$.**
Section B: Practical questions.

3. (15 points) Compute the following indefinite integrals:

 (i) (5 points) \(\int \frac{(x^2+1)^2}{\sqrt{x}} \, dx \)

 (ii) (5 points) \(\int \frac{3x}{\sqrt{2x^2+5}} \, dx \)

 (iii) (5 points) \(\int x^2(x^3 + 5)^8 \cos [(x^3 + 5)^9] \, dx \)

 Hint: Use the change of variables \(u = (x^3 + 5)^9 \).
4. (15 points) Find the area under the curve \(y = 2x + 2 \) over the interval \([-1, 1]\) as follows.

(i) (2 points) Subdivide the interval \([-1, 1]\) into \(n\) equal subintervals

\[[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n] \]

What is the length \(\Delta x \) of every subinterval? For every \(k \), write an expression for \(x_k \).

\[\Delta x = \quad x_k = \]

(ii) (4 points) Write down an expression for the area of the rectangle over \([x_k, x_{k+1}]\) which depends ONLY on \(k \) and \(n \).

(iii) (7 points) Find the sum \(A(R_n) \) of the areas of the \(n \) rectangles.

Hint: Remember that \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \).

(iv) (2 points) Find the limit \(A = \lim_{n \to \infty} A(R_n) \).
5. (15 points) Consider the function \(F(x) = \int_{\sin x}^{\cos x} t^5 \, dt \)

(i) (2 points) Compute \(F \left(\frac{\pi}{4} \right) \) and \(F(0) \).

(ii) (10 points) Compute \(F'(x) \)

\[\text{Hint: Write } F(x) = \int_{\sin x}^{\cos x} t^3 \, dt + \int_{\cos x}^{\cos x} t^3 \, dt. \]

6. (10 points) Consider the function \(f(x) = \int_{0}^{x} \frac{u}{\sqrt{1+u^2}} \, du \)

(i) (5 points) Find the intervals where \(f \) is increasing or decreasing.

(ii) (5 points) Find the intervals where \(f \) is concave up or down.
7. (10 points) Compute the definite integral
\[
\int_{0}^{\pi/2} \sin x \sin(\cos x) \, dx
\]

8. (10 points) Use symmetry to compute the following integral
\[
\int_{-\pi/2}^{\pi/2} \frac{\sin x}{1 + \cos x} + |x| \sin^5 + x^2 \, dx
\]

Be explicit in your justification.
9. (15 points) YOU DON’T HAVE TO COMPUTE ANY INTEGRAL IN THIS EXERCISE.

(i) (5 points) Let R be the region bounded by the graphs of $y = \sqrt{x}$, $y = -x + 6$ and $y = 0$. Write down the integral that would compute the area of R using vertical slices.

(ii) (5 points) Write down the integral that would compute the area of R using horizontal slices.

(iii) (5 points) Now consider the region bounded by the graphs of $y = \sqrt{x}$, $y = -x + 6$ and $x = 0$. Write down the integral that would compute the area of R.

Page 6