## SMOOTH MANIFOLDS FALL 2022 - MIDTERM SOLUTIONS

Problem 1. Let $M$ be a $C^{\infty}$ manifold and $i_{1}: N_{1} \rightarrow M$ be an embedding. Show that if $i_{2}: N_{2} \rightarrow M$ is another embedding such that $i_{1}\left(N_{1}\right)=i_{2}\left(N_{2}\right)$, then $N_{1}$ and $N_{2}$ are diffeomorphic.

Proof. By definition an embedding is a homeomorphism onto its image. Therefore, if $N \subset M$ denotes the common image of $N_{1}$ and $N_{2}$, then $i_{2}^{-1}: N \rightarrow N_{2}$ is a homeomorphism. Hence, $i_{2}^{-1} \circ i_{1}$ : $N_{1} \rightarrow N_{2}$ is a homeomorphism. By invariance of domain, it follows that $\operatorname{dim}\left(N_{1}\right)=\operatorname{dim}\left(N_{2}\right)$. Denote their common dimension by $\ell$.

We claim that it is a diffeomorphism. To see this, we need to show that both $i_{2}^{-1} \circ i_{1}$ and $i_{1}^{-1} \circ i_{2}$ are $C^{\infty}$. Fix $p_{1} \in N_{1}$, and let $p=i_{1}\left(p_{1}\right)$ and $p_{2}=i_{2}^{-1}(p)$. Since $i_{1}$ is an embedding, we may find an open set $U \subset M$ and a chart $\varphi: U \rightarrow \mathbb{R}^{\ell} \times \mathbb{R}^{n-\ell}$ such that $\varphi \circ i_{1}\left(i_{1}{ }^{-1}(U)\right)=\varphi(N \cap U) \subset \mathbb{R}^{\ell} \times\{0\}$. Then $\varphi \circ i_{2}\left(i_{2}^{-1}(U)\right) \subset \mathbb{R}^{\ell} \times\{0\}$, and $D\left(\varphi \circ i_{2}\right) \subset \mathbb{R}^{\ell}$. Let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$ denote the projection onto the first $\ell$ coordinates. Since $i_{2}$ has rank $\ell$ and $\varphi$ is a local diffeomorphism, it follows that $D\left(\pi \circ \varphi \circ i_{2}\right)$ is an isomorphism. By the inverse function theorem, its inverse is $C^{\infty}$. Therefore,

$$
i_{2}^{-1} \circ i_{1}=\left(\pi \circ \varphi \circ i_{2}\right)^{-1} \circ\left(\pi \circ \varphi \circ i_{2}\right)
$$

is $C^{\infty}$. By reversing the roles if $i_{1}$ and $i_{2}$, it follows that the inverse is differentiable as well.
Problem 2. Consider the function $f(x, y, z)=z^{2}-x^{2}-2 y^{2}$. Find the regular values of $f$. Find the values of $r>0$ such that the cylinder $x^{2}+z^{2}=r^{2}$ intersects $f^{-1}(1)$ transversally. Justify your answers.

Proof. First, note that $D f(x, y, z)=\left(\begin{array}{lll}-2 x & -4 y & 2 z\end{array}\right)$, so the matrix is full (ie, nonezero) rank unless all of $x, y$ and $z$ are zero. Hence, the regular values of $f$ are $\mathbb{R}^{3} \backslash\{0\}$.

For the transversality question, first, let us note that if $f^{-1}(1)$ and the cylinder intersect nontrivially, then $z^{2}=r^{2}-x^{2}$. Hence,

$$
\left(r^{2}-x^{2}\right)-x^{2}-2 y^{2}=1 \Longrightarrow x^{2}+y^{2}=\frac{1}{2}\left(r^{2}-1\right)
$$

Therefore, the sets intersect if and only if $r \geq 1$. When $r=1$, the intersection requires that $x^{2}+y^{2}=0$, hence $x=y=0$, and $z^{2}=1-0= \pm 1$. Hence, the intersection is a finite collection of points. By the transversality theorem, if the intersection were transverse, it would be as 1 -manifolds, so when $r=1$, the intersection is not transverse.

When $r>1$, we claim that the intersection is tranvserse. Indeed, note that since 1 is regular value of $f$, if $p \in f^{-1}(1), T_{p} f^{-1}(1)=\operatorname{ker} D f$. For the same reason, if $g$ denotes the function $x^{2}+z^{2}-r^{2}$, the tangent bundle to the cylinder is given by ker $D g$. Since these are both planes, their sum spans unless the kernels coincide. This occurs only when $F(p)=(f(p), g(p))$ is not of full rank. We know that

$$
D F(x, y, z)=\left(\begin{array}{ccc}
-2 x & -4 y & 2 z \\
2 x & 0 & 2 z
\end{array}\right)
$$

This map has full rank when the vectors are linearly independent. Notice that by considering the second column, since each row is a nonzero vector at points of the intersection, the row vectors are linearly independent unless $y=0$. Since we have assumed that $r>1, x^{2}+y^{2}>0$, so if $y=0$, then
$x \neq 0$. Then since the first column must be opposites and the last column is equal, the rows are linearly independent. That is, $D F$ is of full rank and $f^{-1}(1)$ and the cylinder are transverse.

Problem 3. Let $\varphi_{t}, \psi_{s}$, and $\eta_{u}$ be fixed-point free flows on a $C^{\infty}$ manifold $M$ whose generating vectors fields are linearly independent at every point. Assume that $\eta_{u}$ commutes with both $\varphi_{t}$ and $\psi_{s}$, and that there exists a $C^{\infty}$ function $\sigma: \mathbb{R}^{2} \times M \rightarrow \mathbb{R}$ such that $\sigma(0, t, p)=0$ and $\sigma(s, 0, p)=0$ for all $s, t \in \mathbb{R}$ and $p \in M$ and

$$
\varphi_{t} \psi_{s}(p)=\eta_{\sigma(s, t, p)} \psi_{s} \varphi_{t}(p)
$$

Find a 3 -dimensional foliation in $M$ containing the orbits of $\varphi_{t}, \psi_{s}$ and $\eta_{u}$. Be sure to prove that it is a foliation!

Proof. Let $X, Y$ and $Z$ denote the generating vector fields for $\varphi_{t}, \psi_{s}$ and $\eta_{u}$, respectively. We claim that $E(p):=\operatorname{span}_{\mathbb{R}}\{X(p), Y(p), Z(p)\}$ is an involutive distribution. Then by the Frobenius theorem, it integrates to a foliation $\mathcal{F}$. This distribution $\mathcal{F}$ must contain the orbits of the generating vector fields. To show that

Since $\eta_{u}$ commutes with $\varphi_{t}$ and $\psi_{s}$, it follows that $[X, Z]=[Y, Z]=0$. So we must compute $[X, Y]$. Recall that $[X, Y]=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{t}\right)_{*} Y$. To compute this, we first compute $\left(\varphi_{t}\right)_{*} Y$ for a fixed $t$. If $p \in M$, then $Y(p)=\left.\frac{d}{d s}\right|_{s=0} \varphi_{s}(p)$. Therefore,

$$
\left(\varphi_{t}\right)_{*} Y=\left.\frac{d}{d s}\right|_{s=0} \varphi_{t} \psi_{s} \varphi_{-t}(p)=\left.\frac{d}{d s}\right|_{s=0} \eta_{\sigma(s, t, p)} \psi_{s}(p)
$$

Now, since the flow $\eta$ is given by a $C^{\infty}$ map from $\mathbb{R} \times M$ to $M$, and $s$ appears in each coordinate, we must differentiate in each and add. It follows that

$$
\left(\varphi_{t}\right)_{*} Y=\frac{\partial \sigma}{\partial s}(0, t, p) Z(p)+Y(p)
$$

Now, to get the Lie bracket, we differentiate in $t$. It follows that $[X, Y]=\frac{\partial^{2} \sigma}{\partial s \partial t}(0,0, p) Z(p)$. Since this vector field is subordinate to $E$, we conclude that $E$ is involutive.

