February 9, 2024

Proofs and justifications should be written in complete sentences with correct logical flow.
Problem 1. Using the definition of a limit (and not the Limit Arithmetic Theorem), show that if $a_{n}=\frac{\sqrt{n}}{\sqrt{n}+1}$, then $a_{n} \rightarrow 1$.

Proof. Let $\varepsilon>0$. Then choose any natural number N such that $N>(1 / \varepsilon-1)^{2}$ which is possible by the Archimedian property. With this choice, if $n \geq N$,

$$
\begin{aligned}
n & >(1 / \varepsilon-1)^{2} \\
\sqrt{n} & >1 / \varepsilon-1 \quad \text { [both positive] } \\
\sqrt{n}+1 & >1 / \varepsilon \\
\frac{1}{\sqrt{n}+1} & <\varepsilon \quad \text { [both posiitve] } \\
\left|\frac{1+\sqrt{n}-\sqrt{n}}{\sqrt{n}+1}\right| & <\varepsilon \\
\left|\frac{\sqrt{n}}{\sqrt{n}+1}-1\right| & <\varepsilon
\end{aligned}
$$

Hence by definition of sequence convergence, $a_{n} \rightarrow 1$.

