MATH3210 - SPRING 2024-SECTION 004

HOMEWORK 7

Problem 1 (20 points). Prove that if f is defined on (a, b) is differentiable at $c, f(c) \neq 0$, and $g(x):=1 / f(x)$, then $g^{\prime}(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}$.

Problem 2 (80 points). For each, either calculate $f^{\prime}(0)$ with justification, or prove that f is not differentiable at 0 . You may assume continuity and the usual properties and formulas for the function sin. [Hints: Try to sketch a graph if you can to get an idea. The points $x_{n}=1 /(2 \pi n)$ are especailly useful in the graph and proofs for (c) and (d). The squeeze theorem is useful!]
(a) $f(x)= \begin{cases}0, & x<0 \\ x^{2}, & x \geq 0\end{cases}$
(b) $g(x)= \begin{cases}0, & x<0 \\ x, & x \geq 0\end{cases}$
(c) $h(x)= \begin{cases}0, & x=0 \\ x \sin (1 / x), & \text { otherwise }\end{cases}$
(d) $k(x)= \begin{cases}0, & x=0 \\ x^{2} \sin (1 / x), & \text { otherwise }\end{cases}$

Extra practice. Show that each of the functions in the last problem are all continuous. One of them has a very interesting property: the function is differentiable at 0 , but the derivative as its own function is not continuous at 0 . Find which one it is, and prove your answer.

