MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 6

Let f be real-valued function whose domain is a subset of the real numbers. We say that f is L-Lipschitz if for every pair of points x, y in the domain of $f,|f(x)-f(y)| \leq L|x-y|$.

Problem 1 (80 points). Prove or find a counterexample for each:
(a) If f is uniformly continuous, then f is L-Lipschitz for some $L>0$
(b) If f is L-Lipschitz for some $L>0$, then f is uniformly continuous
(c) If f and g are L-Lipschitz, then there exists an L^{\prime} such that $f+g$ is L^{\prime}-Lipschitz
(d) If f is L-Lipschitz, then there exists some L^{\prime} such that $g(x):=f(x)^{2}$ is L^{\prime}-Lipschitz

Problem 2 (20 points). Show that if $f:[a, b] \rightarrow[c, d]$ is continuous and has an inverse, then either f is increasing or f is decreasing.

