MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 4

Problem 1 (20 points). Let $\left(c_{n}\right)$ denote any sequence of real numbers such that $0<c_{n}<1$. Show that if $\left(a_{n}\right)$ is a sequence defined recursively by $a_{1}=1$ and $a_{n+1}=c_{n} \cdot a_{n}$, then $\left(a_{n}\right)$ converges. [Hint: You won't be able to use the definition of a limit directly, as some of these sequences won't converge to 0 ! What tools do we have for proving a limit exists without knowing what the limit is?]

Problem 2 (40 points). Let $\left(a_{n}\right)$ be a sequence of real numbers such that $a_{n}>0$ for every $n \in \mathbb{N}$. For each, prove or find a counterexample:
(a) If a_{n} diverges to ∞, then $1 / a_{n} \rightarrow 0$.
(b) If $1 / a_{n} \rightarrow 0$, then $\left(a_{n}\right)$ is unbounded.
(c) If $\left(a_{n}\right)$ is bounded above, then $\left(1 / a_{n}\right)$ has a convergent subsequence.
(d) If $\lim \inf a_{n}>0$, then $\left(1 / a_{n}\right)$ has a convergent subsequence.

For the next two exercises, we consider the asymptotic variation of a sequence $\left(a_{n}\right)$. If $\left(a_{n}\right)$ is a sequence, let $V=\limsup a_{n}-\lim \inf a_{n}$. We assume throughout that $V<\infty$.

Problem 3 (20 points). Show that for any $\varepsilon>0$ and $N \in \mathbb{N}$, there exist indices $m, n \in \mathbb{N}$ such that $m, n \geq N$ and $a_{m}-a_{n}>V-\varepsilon$.
Problem 4 (20 points). Give an example of a sequence such that for any two indices $m, n \in \mathbb{N}$, $a_{m}-a_{n}<V$. Justify your answer (ie, calculate V for your sequence and prove that your calculation is correct. Then verify the given property).

Problem 5 (Ungraded, extra practice). Show thta for any $\varepsilon>0$, there exists some $N \in \mathbb{N}$ such that if $m, n \in \mathbb{N}$ satisfy $m, n \geq N,\left|a_{m}-a_{n}\right|<V+\varepsilon$.

