MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 3

Problem 1 (20 points). Let $A, B \subset \mathbb{R}$ be nonempty subsets, and assume that if $x \in A$ or $x \in B$ then x > 0. Show that if $A/B = \{x/y : x \in A \text{ and } y \in B\}$, then:

$$\sup(A/B) = \frac{\sup A}{\inf B}$$

whenever $\inf B > 0$.

Problem 2 (30 points, 10 each). Determine whether the sequence converges. If it converges, find its limit and prove that the sequence converges to that limit. If it diverges, prove that it diverges.

(a)
$$\left\{\frac{2n+3}{8n+7}\right\}$$

(b)
$$\left\{\frac{n^2-100n}{7n+3}\right\}$$

(c)
$$\left\{\sin(\pi \cdot n)\right\}$$

Problem 3 (Book 2.2.11, 20 points). Let (a_n) and (b_n) be sequences, and assume that $b_n \to 0$ and $|a_n| \leq b_n$ for every $n \in \mathbb{N}$. Prove that $a_n \to 0$.

Problem 4 (10 points). Show that if I = [a, b] is a nonempty interval, and $x, y \in I$, then $|x - y| \le b - a$.

Problem 5 (20 points). Show that if $a_n \to L$ and $|b_n - a_n| \to 0$, then $b_n \to L$.