MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 3

Problem 1 (20 points). Let $A, B \subset \mathbb{R}$ be nonempty subsets, and assume that if $x \in A$ or $x \in B$ then $x>0$. Show that if $A / B=\{x / y: x \in A$ and $y \in B\}$, then:

$$
\sup (A / B)=\frac{\sup A}{\inf B}
$$

whenever $\inf B>0$.
Problem 2 (30 points, 10 each). Determine whether the sequence converges. If it converges, find its limit and prove that the sequence converges to that limit. If it diverges, prove that it diverges.
(a) $\left\{\frac{2 n+3}{8 n+7}\right\}$
(b) $\left\{\frac{n^{2}-100 n}{7 n+3}\right\}$
(c) $\{\sin (\pi \cdot n)\}$

Problem 3 (Book 2.2.11, 20 points). Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences, and assume that $b_{n} \rightarrow 0$ and $\left|a_{n}\right| \leq b_{n}$ for every $n \in \mathbb{N}$. Prove that $a_{n} \rightarrow 0$.

Problem 4 (10 points). Show that if $I=[a, b]$ is a nonempty interval, and $x, y \in I$, then $|x-y| \leq$ $b-a$.

Problem 5 (20 points). Show that if $a_{n} \rightarrow L$ and $\left|b_{n}-a_{n}\right| \rightarrow 0$, then $b_{n} \rightarrow L$.

