MATH3210 - SPRING 2024-SECTION 001

HOMEWORK 2

Problem 1. Consider the expression $x=.99999 \ldots$, which we think of as a decimal expansion. That is, if $x_{n}=\sum_{k=1}^{n} 9 \cdot 10^{-k}$, we think of it as

$$
x=\lim _{n \rightarrow \infty} .9999 \ldots 9=\lim _{n \rightarrow \infty} x_{n}
$$

Show that $x=1$. [Hint: First show that $x_{n}+10^{-n}=1$ by induction]
Problem 2. Consider the following property for a set $A \subset \mathbb{R}$.
(N) If $x \in A$, then there exists some $\varepsilon>0$ such that if $|x-y|<\varepsilon$, then $y \in A$.

Show that if A is a bounded subset of \mathbb{R} with property (N), then $\sup A \notin A$.
Problem 3. Show that if $\left(a_{n}\right)$ is increasing, then for every $N \in \mathbb{N}$, if $n \geq N, a_{n} \geq a_{N}$. [Hint: Use induction]

Problem 4. Assume $\left(a_{n}\right)$ is increasing. Show that if $\left(a_{n}\right)$ is not bounded above if and only if $\left(a_{n}\right)$ diverges to ∞.
Problem* 5 (Digit Expansions, Extra Credit). Let Σ_{10} denote the set of infinite sequences in the digits $\{0,1, \ldots, 9\}$. Denote an element of Σ_{10} by $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$, where each $\sigma_{i} \in\{0,1, \ldots, 9\}$. If $\sigma \in \Sigma$, let $\left(a(\sigma)_{n}\right)$ denote the sequence

$$
a(\sigma)_{n}=\sum_{k=1}^{n} \sigma_{i} \cdot 10^{-k}
$$

Show that $\left(a(\sigma)_{n}\right)$ converges. [Hint: Use Problem 1 and the Monotone convergence theorem]

