MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 2

Problem 1. Consider the expression x = .99999..., which we think of as a decimal expansion. That is, if $x_n = \sum_{k=1}^{n} 9 \cdot 10^{-k}$, we think of it as

$$x = \lim_{n \to \infty} .9999 \dots 9 = \lim_{n \to \infty} x_n.$$

Show that x = 1. [*Hint*: First show that $x_n + 10^{-n} = 1$ by induction]

Problem 2. Consider the following property for a set $A \subset \mathbb{R}$.

(N) If $x \in A$, then there exists some $\varepsilon > 0$ such that if $|x - y| < \varepsilon$, then $y \in A$.

Show that if A is a bounded subset of \mathbb{R} with property (N), then $\sup A \notin A$.

Problem 3. Show that if (a_n) is increasing, then for every $N \in \mathbb{N}$, if $n \ge N$, $a_n \ge a_N$. [*Hint:* Use induction]

Problem 4. Assume (a_n) is increasing. Show that if (a_n) is not bounded above if and only if (a_n) diverges to ∞ .

Problem* 5 (Digit Expansions, Extra Credit). Let Σ_{10} denote the set of infinite sequences in the digits $\{0, 1, \ldots, 9\}$. Denote an element of Σ_{10} by $\sigma = (\sigma_1, \sigma_2, \ldots)$, where each $\sigma_i \in \{0, 1, \ldots, 9\}$. If $\sigma \in \Sigma$, let $(a(\sigma)_n)$ denote the sequence

$$a(\sigma)_n = \sum_{k=1}^n \sigma_i \cdot 10^{-k}.$$

Show that $(a(\sigma)_n)$ converges. [*Hint*: Use Problem 1 and the Monotone convergence theorem]