HOMEWORK 10

Problem 1. Prove the divergence criteria of the comparison test. That is, show that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences such that $a_{n} \geq b_{n} \geq 0$ for every n, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges. Use the following scheme: Let $t_{m}=\sum_{n=1}^{m} b_{n}$ be the sequence of partial sums for b_{n}. Show that if $\sum_{n=1}^{\infty} b_{n}$ diverges, then t_{m} must diverge to infinity. Then show that the sequence t_{m} diverges to ∞, then so does $s_{m}=\sum_{n=1}^{m} a_{n}$.

Problem 2. Determine whether the series converges or diverges. Prove that your answer is correct using the following tools only: the term test, the comparison test, the ratio test, and the integral test.
(a) $\sum_{n=1}^{\infty} \cos (n)$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty} \frac{n^{8}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{n^{3}+3^{n}}{5^{n}}$

Problem 3. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of positive functions such that $\sum_{n=1}^{\infty} f_{n}(0)$ converges, and each f_{n} is L_{n}-Lipschitz. Show that if $L=\sum_{n=1}^{\infty} L_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to an L-Lipschitz function.

Problem 4. Let $f(x)=x e^{x}$, Find a number N such that the Taylor approximation of order N is within .1 of $f(x)$ on the interval $[0,1]$. [Hint: First, find and prove a formula for $f^{(k)}(x)$ by induciton, then bound $f^{(k)}(x)$ on $[0,1]$ using this formula by a number depending on $\left.k\right]$

