MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 10

Problem 1. Prove the divergence criteria of the comparison test. That is, show that if $\{a_n\}$ and $\{b_n\}$ are sequences such that $a_n \ge b_n \ge 0$ for every n, and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. Use the following scheme: Let $t_m = \sum_{n=1}^{m} b_n$ be the sequence of partial sums for b_n . Show that if $\sum_{n=1}^{\infty} b_n$ diverges, then t_m must diverge to infinity. Then show that the sequence t_m diverges to ∞ , then so does $s_m = \sum_{n=1}^{m} a_n$.

Problem 2. Determine whether the series converges or diverges. Prove that your answer is correct using the following tools only: the term test, the comparison test, the ratio test, and the integral test.

test. (a) $\sum_{n=1}^{\infty} \cos(n)$ (b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ (c) $\sum_{n=1}^{\infty} \frac{n^8}{n!}$ (d) $\sum_{n=1}^{\infty} \frac{n^3 + 3^n}{5^n}$

Problem 3. Let $f_n : [a,b] \to \mathbb{R}$ be a sequence of positive functions such that $\sum_{n=1}^{\infty} f_n(0)$ converges, and each f_n is L_n -Lipschitz. Show that if $L = \sum_{n=1}^{\infty} L_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly to an *L*-Lipschitz function.

Problem 4. Let $f(x) = xe^x$, Find a number N such that the Taylor approximation of order N is within .1 of f(x) on the interval [0,1]. [*Hint*: First, find and prove a formula for $f^{(k)}(x)$ by induciton, then bound $f^{(k)}(x)$ on [0,1] using this formula by a number depending on k]