MATH3210 - SPRING 2022 - SECTION 001

HOMEWORK 1

Problem 1. In the following, A is a set of real numbers. Negate the following statements:

- (1) There exists $x \in A$ such that x < 0.
- (2) Every $x \in A$ is an integer.
- (3) For every $x \in A$, there exists $y \in \mathbb{R}$ such that yx = 1.
- (4) For every $x, y \in A$, if $x \leq y$, then there exists $z \in A$ such that x < z < y.

Problem 2. Recall that a set $R \subset \mathbb{Q}$ is a *Dedekind cut* if it satisfies all 3 of the following properties: (a) $R \neq \emptyset$.

- (b) R is bounded above.
- (c) For every $x \in R$ and $y \in \mathbb{Q}$, if y < x, then $y \in R$.
- (d) For every $x \in R$, there exists $y \in R$ such that y > x.

Show that if R and S are Dedekind cuts, then $R + S = \{x + y : x \in R \text{ and } y \in S\}$ is also a Dedekind cut (ie, show properties (a)-(d) for the set R + S, assuming (a)-(d) for the sets R and S themselves).

Problem 3. Prove that if $x, y \in \mathbb{R}$ and x < y, then there exists some $q \in \mathbb{Q}$ such that x < q < y. You may use the following fact: if $a, b \in \mathbb{R}$ and b - a > 1, then there exists $m \in \mathbb{Z}$ such that a < m < b.

Problem 4. Let S_1, S_2, \ldots be bounded subsets of \mathbb{R} , and $x_n = \sup S_n$. Show that if $S = \bigcup_{n \in \mathbb{N}} S_n$ is

also bounded above, then

$$\sup S = \sup \left\{ x_n : x \in \mathbb{N} \right\}.$$