MATH3210 - SPRING 2022-SECTION 001

HOMEWORK 1

Problem 1. In the following, A is a set of real numbers. Negate the following statements:
(1) There exists $x \in A$ such that $x<0$.
(2) Every $x \in A$ is an integer.
(3) For every $x \in A$, there exists $y \in \mathbb{R}$ such that $y x=1$.
(4) For every $x, y \in A$, if $x \leq y$, then there exists $z \in A$ such that $x<z<y$.

Problem 2. Recall that a set $R \subset \mathbb{Q}$ is a Dedekind cut if it satisfies all 3 of the following properties:
(a) $R \neq \emptyset$.
(b) R is bounded above.
(c) For every $x \in R$ and $y \in \mathbb{Q}$, if $y<x$, then $y \in R$.
(d) For every $x \in R$, there exists $y \in R$ such that $y>x$.

Show that if R and S are Dedekind cuts, then $R+S=\{x+y: x \in R$ and $y \in S\}$ is also a Dedekind cut (ie, show properties (a)-(d) for the set $R+S$, assuming (a)-(d) for the sets R and S themselves).
Problem 3. Prove that if $x, y \in \mathbb{R}$ and $x<y$, then there exists some $q \in \mathbb{Q}$ such that $x<q<y$. You may use the following fact: if $a, b \in \mathbb{R}$ and $b-a>1$, then there exists $m \in \mathbb{Z}$ such that $a<m<b$.
Problem 4. Let S_{1}, S_{2}, \ldots be bounded subsets of \mathbb{R}, and $x_{n}=\sup S_{n}$. Show that if $S=\bigcup_{n \in \mathbb{N}} S_{n}$ is also bounded above, then

$$
\sup S=\sup \left\{x_{n}: x \in \mathbb{N}\right\}
$$

