preREU - Problem Set 2

Problem 1. Show that if $f: X \rightarrow X$ is a dynamical system on a finite set X, and f is one-to-one, then every point of X is periodic.
Problem 2. Let m and n be positive integers, and $\ell=\lfloor m / n\rfloor$. If $q=m-\ell n$, show that $0<q<n$ whenever m is not divisble by n. What is q when m is divisible by n ?

Problem 3. Show that if p is a pre-periodic orbit, then there exists a positive integer n such that $f^{k}(p)$ is periodic for every $k \geq n$.

Problem 4. Find the flaw in the following argument
"Theorem." Any finite subset of integers consists either of only even numbers or only odd numbers.
"Proof". Let A be a finite subset of integers. We prove this claim by induction on the number of elements in A. For the base case, we consider the case when A has exactly one element. That element is either even or odd, so the base case is proved.

Suppose that we know that every set with k elements, all elements of that are either all even or all odd. Then, consider a set A with $k+1$ elements. We may write $A=\left\{x_{1}, \ldots, x_{k+1}\right\}$. Define $B=\left\{x_{2}, \ldots, x_{k+1}\right\}$ and $C=\left\{x_{1}, \ldots, x_{k}\right\}$. Then B and C both have k elements, so all elements of B are either all even or all odd and the same is true by C by the induction hypothesis. Now, $x_{2} \in B$ and $x_{2} \in C$. If x_{2} is even, then every element of B must be even, and the same is true for C. Hence $A=B \cup C$ has only even elements. Similarly if x_{2} is odd, because it belongs to both B and C, both B and C consist only of odd elements, and $A=B \cup C$ consists only of odd elements. Hence, we have proven the theorem by induction.

Problem 5 (Induction Pracitce). Prove the following claims by induction:
(1) $2^{n}>n^{2}$ whenever $n \geq 5$
(2) $a^{2}-1$ is divisible by 8 whenever a is an odd integer
(3) Recall that the Fibonacci sequence is defined recursively by $f_{1}=f_{2}=1$ and $f_{k+2}=f_{k}+f_{k+1}$ whenever $n \geq 1$.
(a) Show that $\sum_{k=1}^{n} f_{k}=f_{n+2}-1$ for all $n \geq 1$.
(b) Show that if $\phi=(1+\sqrt{5}) / 2$, then $f_{n}=\left(\phi^{n}-(-1 / \phi)^{n}\right) / \sqrt{5}$ for all $n \geq 1$. [Hint: First show (not using induction) that ϕ satisfies $1+\phi=\phi^{2}$. Then find a similar formula for $1 / \phi$.]

1. The circle as equivalence classes

Recall that the equivalence classes on the circle are denoted by

$$
[x]=\{x+k \cdot 2 \pi: k \in \mathbb{Z}\},
$$

and that the set of equivalence classes is denoted by $\mathbb{R} / 2 \pi \mathbb{Z}$.
Problem 6. Show that if two equivalence classes intersect, then they are equal.
Problem 7. Show that the product of two equivalence classes is never an equivalence class.
Problem 8. We say that if x and y are real numbers, we say that x is equivalent to y if $x \in[y]$.
(1) Show that for every x, x is equivalent to itself.
(2) Show that if x is equivalent to y, then y is equivalent to x.
(3) Show that if x is equivalent to y, and y is equivalent to z, then x is equivalent to z.

These three properties are called reflexivity, symmetry and transitivity. Any criterion for comparing two elements of a set (ie, a relation) is called an equivalence relation if it satisfies all three of these properties.

Problem 9 (Hard). An endomorphism of $\mathbb{R} / 2 \pi \mathbb{Z}$ is a function $F: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ such that $F([x]+[y])=F([x])+F([y])$. Show that for each integer m, the function

$$
L_{m}([x])=[m x]
$$

is well-defined and an endomorphism (see a TA for what it means to be "well-defined" if you don't know). For which values of m is the map L_{m} one-to-one? For which values of m is L_{m} onto? Try to find some periodic orbits and pre-periodic orbits when $m=2$.
Problem 10. Let A be a set of equivalence classes (ie, A is a subset of the circle). We say that A is dense if for any equivalence class $[x]$ on the circle, there exists a sequence of real numbers y_{n} such that $\left[y_{n}\right] \in A$ and $\lim _{n \rightarrow \infty} y_{n}=x$. Find an example of an infinite set A which is dense and a set A which is not dense.

2. Rotation Dynamics

Recall that $R_{\theta}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ is the rotation dynamics defined by $R_{\theta}([x])=[x+\theta]=[x]+[\theta]$.
Problem 11. Show that if $\theta=\frac{p}{q} \cdot 2 \pi$ (where p and q are integers and p / q is in reduced form), then every point of the circle is periodic of period q for the rotation dynamics R_{θ}.

Problem 12. Show that if the rotation dynamics R_{θ} has a periodic orbit of period q, then $\theta=\frac{p}{q} \cdot 2 \pi$ for some integer p for which p / q is a reduced fraction.
Problem 13. Consider a rotation by an angle $\theta \in(0, \pi)$, and let I denote the set of equivalence classes starting from [0] and ending at $[\theta]$ in the counterclockwise direction, including 0 , but not θ.
(1) Draw a picture to show that $I=\{[x]: 0 \leq x<\theta\}$.
(2) Define m to be the smallest integer such that $R_{\theta}^{m}([0]) \in I$. Find a formula for m in terms of θ when $\theta=\frac{p}{q} \cdot 2 \pi$ for some p and q.
(3) Let $[\alpha]=R_{\theta}^{m}([0])$, and choose the number α to represent the equivalence class so that $\alpha \in[0, \theta)$. Find a formula for $\theta-\alpha$ (we'll care about this number soon).

