preREU - Last week projects

Problem 1 (Expanding maps). This problem will use the following as a black box:

Theorem. Let $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be a continuous function. Then there exists a unique continuous function $F : \mathbb{R} \to \mathbb{R}$ and integer $d \in \mathbb{Z}$ such that $0 \le F(0) < 1$, f([(x)]) = [F(x)] (ie, $f \circ p = p \circ F$) and F(x + 1) = F(x) + d for all $x \in \mathbb{R}$. The number d is called the *degree* of f, and denoted $d = \deg(f)$ and F is called the *lift* of f.

The goal of this project is to build an invertible map $h: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ such that

 $(\clubsuit) \qquad \qquad h \circ f = L_d \circ h$

when f has degree d and satisfies a certain condition.

- A) Show that if $h : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is invertible, then deg(h) = ±1.
- **B)** A map $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is called *expading* if there exists $\lambda > 1$ such that $|F'(x)| \ge \lambda$ for all $x \in \mathbb{R}$. Show that if f is expanding, then $|\deg(f)| > 1$.
- C) Show that if $H : \mathbb{R} \to \mathbb{R}$ is a function such that

$$H(x) = \frac{1}{d}H(F(x))$$
 and $H(x+1) = H(x) + 1$ for all $x \in \mathbb{R}$

then h([x]) := [H(x)] is well-defined and satisfies equation (\clubsuit) .

D) Define $\mathcal{F}(H)(x) = \frac{1}{d}H(F(x))$ as a dynamical system on continuous functions. Show that \mathcal{F} preserves the set of functions H such that H(x + 1) = H(x) + 1, and that there exists $\mu < 1$ such that for every pair of functions H_1 and H_2 and $x \in \mathbb{R}$,

$$|\mathcal{F}(H_1)(x) - \mathcal{F}(H_2)(x)| \le \mu |H_1(x) - H_2(x)|.$$

E) Look up the contraction mapping principle, and use it to show that the conjugating map h exists and is unique.

Problem 2 (Linear flows). The *two-dimensional flat torus* is the set of equivalence classes of $\mathbb{R}^2/\mathbb{Z}^2$. That is, we define the equivalence class

$$\begin{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix} = \left\{ \begin{pmatrix} x+m \\ y+n \end{pmatrix} : m, n \in \mathbb{Z} \right\}.$$

If $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$ is a nonzero vector, the *flow* generated by v is the dynamical system

$$\varphi_t \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x + tv_1 \\ y + tv_2 \end{bmatrix}$$

- **A)** Find a fundamental domain for $\mathbb{R}^2/\mathbb{Z}^2$.
- **B**) Show that

$$\varphi_t \circ \varphi_s = \varphi_{t+1}$$

for all $t, s \in \mathbb{R}$. Equation (Ψ) is called the *flow equation*.

- C) Show that if φ_t is the flow generated by $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ and ψ_t is the flow generated by $\begin{pmatrix} v_2 \\ v_1 \end{pmatrix}$, then φ_t is conjugated to ψ_t .
- **D)** Let $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ have $v_2 > 0$ and $Y = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$. Find the first return map and first return time to Y.
- **E)** Describe the orbits of φ_t based on the vector v. Can you make sense of these questions: When are the orbits periodic? When are the orbits dense?

Problem 3 (Convergents and continued fractions). Let $\alpha \in (0, 1)$ have continued fraction expansion

$$\alpha = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}}$$

and p_k/q_k be the convergent

$$\frac{p_k}{q_k} = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots + \frac{1}{a_k}}}}}$$

A) Define the vector $v_k = \begin{pmatrix} p_k \\ q_k \end{pmatrix}$ and the matrix $B(a) = \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}$. Show that

$$(\blacklozenge) \qquad \qquad v_k = B(a_1)B(a_2)\dots B(a_k) \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

B) Show that if α has periodic continued fraction expansion, with repeating digits a_1, \ldots, a_k , then $v_0 = \begin{pmatrix} \alpha \\ 1 \end{pmatrix}$ is an eigenvalue of

$$A_k = B(a_1)B(a_2)\dots B(a_k).$$

- C) Use the formula (\blacklozenge) to find a recursive definition of p_k and q_k , and prove that your formula holds by induction. [*Hint*: You will need a 2-step induction]
- **D**) Show by induction that the trace of A_k is an integer than 1 and that the determinant of A_k is equal to ± 1 .
- **E)** Show that any matrix of the form $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of determinant 1 such that $0 \le a \le c, a \le b$, and $0 \le b \le d$, then A is a product of matrices of the form $B(a_1) \dots B(a_k)$.

Problem 4 (Local dynamics and Morse-Smale Systems). Let $(a, b) \in \mathbb{R}$ be an interval, $x \in (a, b)$ and $f: (a, b) \to \mathbb{R}$ be a continuously differentiable function such that f(x) = x.

- A) Show that if f'(x) < 1, then there exists $\varepsilon > 0$ such that if $|y x| < \varepsilon$, then $\lim_{x \to \infty} f^n(y) = x$.
- **B)** Let $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be a dynamical system, and assume that some interval [a, b] is invariant under f. Show that f has a fixed point in [a, b]
- C) A dynamical system on \mathbb{R}/\mathbb{Z} is called *Morse-Smale* if it is invertible, there exists finitely many fixed points, and at each fixed point p, f'(p) > 0 and $f'(p) \neq 1$. Find examples of Morse-Smale dynamical systems.
- D) Show that it is impossible for a Morse-Smale system to have only one fixed point. [*Hint*: Use B) to find another fixed point]
- **E)** Show that if f and g are Morse-Smale dynamical systems on \mathbb{R}/\mathbb{Z} with exactly two fixed points, then they are conjugated. (This type of system is said to have *north-south pole dynamics*)