preREU - Last week projects

Problem 1 (Expanding maps). This problem will use the following as a black box:

Theorem. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a continuous function. Then there exists a unique continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ and integer $d \in \mathbb{Z}$ such that $0 \leq F(0)<1, f([(x)])=[F(x)]($ ie, $f \circ p=p \circ F)$ and $F(x+1)=F(x)+d$ for all $x \in \mathbb{R}$. The number d is called the degree of f, and denoted $d=\operatorname{deg}(f)$ and F is called the lift of f.

The goal of this project is to build an invertible map $h: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ such that

$$
h \circ f=L_{d} \circ h
$$

when f has degree d and satisfies a certain condition.
A) Show that if $h: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is invertible, then $\operatorname{deg}(h)= \pm 1$.
B) A map $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is called expading if there exists $\lambda>1$ such that $\left|F^{\prime}(x)\right| \geq \lambda$ for all $x \in \mathbb{R}$. Show that if f is expanding, then $|\operatorname{deg}(f)|>1$.
C) Show that if $H: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that

$$
H(x)=\frac{1}{d} H(F(x)) \quad \text { and } \quad H(x+1)=H(x)+1 \text { for all } x \in \mathbb{R}
$$

then $h([x]):=[H(x)]$ is well-defined and satisfies equation $(\boldsymbol{\$})$.
D) Define $\mathcal{F}(H)(x)=\frac{1}{d} H(F(x))$ as a dynamical system on continuous functions. Show that \mathcal{F} preserves the set of functions H such that $H(x+1)=H(x)+1$, and that there exists $\mu<1$ such that for every pair of functions H_{1} and H_{2} and $x \in \mathbb{R}$,

$$
\left|\mathcal{F}\left(H_{1}\right)(x)-\mathcal{F}\left(H_{2}\right)(x)\right| \leq \mu\left|H_{1}(x)-H_{2}(x)\right|
$$

E) Look up the contraction mapping principle, and use it to show that the conjugating map h exists and is unique.
Problem 2 (Linear flows). The two-dimensional flat torus is the set of equivalence classes of $\mathbb{R}^{2} / \mathbb{Z}^{2}$. That is, we define the equivalence class

$$
\left[\binom{x}{y}\right]=\left\{\binom{x+m}{y+n}: m, n \in \mathbb{Z}\right\} .
$$

If $v=\binom{v_{1}}{v_{2}} \in \mathbb{R}^{2}$ is a nonzero vector, the flow generated by v is the dynamical system

$$
\varphi_{t}\left(\left[\binom{x}{y}\right]\right)=\left[\binom{x+t v_{1}}{y+t v_{2}}\right]
$$

A) Find a fundamental domain for $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
B) Show that
-)

$$
\varphi_{t} \circ \varphi_{s}=\varphi_{t+s}
$$

for all $t, s \in \mathbb{R}$. Equation $(\boldsymbol{\rightharpoonup})$ is called the flow equation.
C) Show that if φ_{t} is the flow generated by $\binom{v_{1}}{v_{2}}$ and ψ_{t} is the flow generated by $\binom{v_{2}}{v_{1}}$, then φ_{t} is conjugated to ψ_{t}.
D) Let $v=\binom{v_{1}}{v_{2}}$ have $v_{2}>0$ and $Y=\left\{\left[\binom{x}{0}\right]: x \in \mathbb{R}\right\}$. Find the first return map and first return time to Y.
E) Describe the orbits of φ_{t} based on the vector v. Can you make sense of these questions: When are the orbits periodic? When are the orbits dense?

Problem 3 (Convergents and continued fractions). Let $\alpha \in(0,1)$ have continued fraction expansion

$$
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

and p_{k} / q_{k} be the convergent

$$
\frac{p_{k}}{q_{k}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots+\frac{1}{a_{k}}}}}}
$$

A) Define the vector $v_{k}=\binom{p_{k}}{q_{k}}$ and the matrix $B(a)=\left(\begin{array}{ll}0 & 1 \\ 1 & a\end{array}\right)$. Show that

$$
v_{k}=B\left(a_{1}\right) B\left(a_{2}\right) \ldots B\left(a_{k}\right)\binom{1}{0}
$$

B) Show that if α has periodic continued fraction expansion, with repeating digits a_{1}, \ldots, a_{k}, then $v_{0}=\binom{\alpha}{1}$ is an eigenvalue of

$$
A_{k}=B\left(a_{1}\right) B\left(a_{2}\right) \ldots B\left(a_{k}\right) .
$$

C) Use the formula ($\mathbf{~})$ to find a recursive definition of p_{k} and q_{k}, and prove that your formula holds by induction. [Hint: You will need a 2-step induction]
D) Show by induction that the trace of A_{k} is an integer than 1 and that the determinant of A_{k} is equal to ± 1.
E) Show that any matrix of the form $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of determinant 1 such that $0 \leq a \leq c, a \leq b$, and $0 \leq b \leq d$, then A is a product of matrices of the form $B\left(a_{1}\right) \ldots B\left(a_{k}\right)$.
Problem 4 (Local dynamics and Morse-Smale Systems). Let $(a, b) \subset \mathbb{R}$ be an interval, $x \in(a, b)$ and $f:(a, b) \rightarrow \mathbb{R}$ be a continuously differentiable function such that $f(x)=x$.
A) Show that if $f^{\prime}(x)<1$, then there exists $\varepsilon>0$ such that if $|y-x|<\varepsilon$, then $\lim _{n \rightarrow \infty} f^{n}(y)=x$.
B) Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a dynamical system, and assume that some interval $[a, b]$ is invariant under f. Show that f has a fixed point in $[a, b]$
C) A dynamical system on \mathbb{R} / \mathbb{Z} is called Morse-Smale if it is invertible, there exists finitely many fixed points, and at each fixed point $p, f^{\prime}(p)>0$ and $f^{\prime}(p) \neq 1$. Find examples of Morse-Smale dynamical systems.
D) Show that it is impossible for a Morse-Smale system to have only one fixed point. [Hint: Use B) to find another fixed point]
E) Show that if f and g are Morse-Smale dynamical systems on \mathbb{R} / \mathbb{Z} with exactly two fixed points, then they are conjugated. (This type of system is said to have north-south pole dynamics)

