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BRIN CENTER SUMMER SCHOOL - PARTIAL HYPERBOLICITY - 2023

These notes are divided into 3 parts, corresponding to the 3 lectures for the minicourse given at
the Brin Summer School in June of 2023. The notes cover progress made by the author, many of
which are in collaboration with Danijela Damjanovic, Ralf Spatzier and Disheng Xu. This writeup
is intended as a quick introduction to tools used in smooth rigidity of hyperbolic abelian group
actions, and makes no effort to provide a history or context. While references and historical context
are not provided, feel free to email me for some! (vinhage@math.utah.edu)

The setting of these notes is as follows, and the notation will be kept throughout except where
otherwise noted. All terms will be eventually defined.

G A (often semisimple) matrix group
Γ A cocompact, discrete subgroup of G
A An abelian subgroup of G, (often the Cartan subgroup)
M A compact subgroup of G commuting with A
α, β, . . . Roots of G with respect to A

OR Lyapunov funtionals on A
Wα Coarse Lyapunov foliation associated to the Lyapunov functional α
Uα Groups parameterizing the leaves of Wα

X A C∞ manifold

1. Understanding the Setting and Models

1.1. Rigidity Theorems. A working definition of a rigidity theorem is a classification theorem
for which the reader’s reaction is “Wait, that can’t be true...” Expereince will suggest that the
situation should have many more possibilities than what’s described. This is often reflected because
the models are few, or much nicer than expected.

Here is a family of rigidity results and an associated conjecture which fits the bill.

Theorem 1.1 (Ghys,Kanai,Benoist-Foulon-Labourie,Feres,...). Let X be a C∞ manifold
such that the sectional curvature of X is always between −1 and −4. If the stable and
unstable distributions of the geodesic flow are C∞, then X is a locally symmetric space.

Conjecture 1.2. For any negatively curved manifold, if the stable/unstable distributions
of the geodesic flow are of class C∞, then X is locally symmetric.
In the setting above, the “ideal” models are geodesic flows on locally symmetric spaces, and a

seemingly innocuous assumption is imposed: the regularity of the stable and unstable manifolds.
These notes are about a rigidity program for abelian group actions. The “ideal” models here

are affine transformations on bi-homogeneous spaces, and our innocuous assumption will be that
the transformation is the restriction of a larger smooth group action. In particular, we have the
following theorems
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Theorem 1.3 (Spatzier-Vinhage). Let Rk y X be a C∞ cone-transitive, totally Cartan action
without rank one factors. Then up to finite cover, there is a C∞ diffeomorphism h : X → H/Γ
conjugating the action of A to a translation action on H/Γ.

Theorem 1.4 (Damjanovic-Spatzier-Vinhage-Xu). Let G be a semisimple Lie group such that every
simple factor has rank at least 2. Let G y X be a C∞, totally Anosov action of a semisimple Lie
group with an ergodic invariant volume on X. Then up to finite cover, there is a C∞ diffeomorphism
h : X → K\H/Γ conjugating the action of A to a translation action on K\H/Γ.

1.2. Homogeneous spaces, metrics and hyperbolicity. For the remainder of Section 1, we
will focus on understanding the ideal models in this setting, and the assumptions which appear
in Theorems 1.3 and 1.4. Let us begin with the obligatory first example, SL(d,R). Readers with
experience in Lie groups, Lie algebras and homogeneous spaces may skip this section. As we wish
to study smooth ergodic theory for translation actions on SL(d,R)/Γ for a cocompact subgroup
Γ, we first wish to undersatnd how vectors expand and contract. Accordingly, we need a reference
metric on SL(d,R)/Γ.

A first instinct may be to use the ambient metric, viewing SL(d,R) ⊂ Rd2 as a (d2−1)-dimensional
submanifold, but since this is not invariant under the right-translation action by Γ, it doesn’t descend
as a well-defined metric on the quotient SL(d,R)/Γ. Instead, our strategy will be to choose any
inner product 〈·, ·〉e on the vector space TeG, and the define the metric at g to be

〈Y1, Y2〉g := 〈dRg(Y1), dRg(Y2)〉e,
where Rg : SL(d,R) → SL(d,R) is right translation Rg(h) = hg (we similarly define Lg :

SL(d,R)→ SL(d,R) as Lg(h) = gh, the left translation).

Exercise 1.1. Show that the metric defined above is invariant under Rg for every g ∈ G, and that
any such right-invariant metric is built this way.

Before computing (norms of) derivatives of left translations with respect to this metric, let’s also
understand what the tangent bundles look like. Here is a trick that works in computing the tangent
spaces of Lie groups defined through a relation: let ϕ : (−ε, ε) → SL(d,R) be a curve contained
in SL(d,R) passing through e. Since SL(d,R) is uniquely defined via det(A) = 1, we have that
det(ϕ(t)) ≡ 1. Differentiating this at t = 0 via the chain rule, and noting that D(det) = Tr at
e ∈ SL(d,R) (this is a linear algebra fact), we get that

Tr(ϕ′(0)) = 0.

Hence, the tangent space at the identity is the set of traceless matrices. Finally, observe that
since the group operation is matrix multiplication, the derivative of the translation action is just
again matrix multiplication. Then, if Y ∈ TeSL(d,R) is a tracless matrix and g ∈ SL(d,R)

||dLg(Y )||g =
∣∣∣∣dRg−1dLg(Y )

∣∣∣∣
e

=
∣∣∣∣gY g−1

∣∣∣∣ .
This is the main feature of translation actions:

Local behavior of translation dynamics is determined by the conjugation action

Let’s try to make this a bit more precise. Notice that Cg : Y 7→ gY g−1 is linear in Y , and for

simplicity, let’s assume TeG admits a splitting into eigenspaces TeSL(d,R) =
⊕̀
i=1

Eλi(e), where

gY g−1 = eλiY .
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Exercise 1.2. Show that if Eλi(h) := dRhE
λi(e), then it defined a vector subbundle of SL(d,R)

which descends to SL(d,R)/Γ. Furthermore, show that if Y ∈ Eλi , then ||dLgn(Y )|| = λn ||Y ||.

1.3. Weyl chamber flow on SL(d,R). We wish to study group actions, but the tools developed
in the previous section allow us to do exactly that. Consider the subgroup of diagonal matrices in
SL(d,R), and note that we get a condition on the entries since the determinant must be 1:

A =



et1

et2

. . .
etd

 :
∑

ti = 0


Each a ∈ A has its own conjugation action on G, but these conjugations all commute since A

is abelian. Hence (assuming the conjugations are all diagonalizable), TeSL(d,R) must admit a
splitting into eigenspaces.

Exercise 1.3. Show that the subspaces Eij ⊂ TeSL(d,R), those matrices whose entries are 0 except
for the (i, j)th entry, are the joint eigenspaces, and that the eigenvalue of the conjugation action of
a = diag(et1 , . . . , etd) is exactly eti−tj .

Definition 1.5. The functionals αij(t) := ti − tj appearing in exponents of Exercise 1.3 are called
the Lyapunov exponents or Lyapunov functions for the action. The are always the logarithms of the
eigenvalues of conjugation action of A on a given invariant subspace. We also denote the subspaces
by Eαij , which is more easily adaptable to future examples

We have established a very nice dynamical picture for different elements of the A-action. In
particular, if a 6∈ kerαij for every i 6= j (ie, no two entries of a are the same), then TX (where
X = SL(d,R)) admits an A-invariant splitting

TX = Esa ⊕ TO ⊕ Eua ,
where Esa =

⊕
αij(a)<0E

αij and Eua =
⊕

αij(a)>0E
αij , and TO is the orbit foliation of the A-

action. This is a partially hyperbolic splitting for a (in fact, it is normally hyperbolic for a with
respect to the orbit foliation of A), but crucially for our analysis, depends on the element a you
choose. In fact, we have the following nice feature:

For the diagonal action on SL(d,R)/Γ, the set of elements normally hyperbolic to the orbit
foliation is the complement of the hyperplanes determined by kerαij . In the cones bounded
by these kernels (called walls), the stable and unstable distributions do not change, but
the hyperbolicity is weaker closer to the walls. When one passes over a wall, at least one
joint eigenspace passes from positive to negative.

1.4. A more exotic group: The case of SO(m,n). Let’s move to another group and make some
comparisons. Fix n ≥ m. If v, w ∈ Rm+n, and Idk denotes the k × k identity matrix, consider the
symmetric bilinear form

σ(v, w) = vTQw, Q =

 0 Idm 0
Idm 0 0
0 0 Idn−m


We say that a matrix g preserves the form if σ(gv, gw) = σ(v, w), and let the group of matrices

preserving σ be denoted by SO(m,n) (this is because σ is a symmetric bilinear form with signature
(m,n)).
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Exercise 1.4. Show that g preserves σ if and only if gTQg = Q, and that the tangent space to the
identity at SO(m,n) is the set of matrices with block form A B D

C −AT E
−ET −DT F

 B,C, F antisymmetric.

Here, A,B and C are m×m, D and E are m× (n−m) and F is (n−m)× (n−m). Recall that
a matrix g is antisymmetric if g = −gT . [Hint: Use the trick we did to find TeSL(d,R)]

Using Exercise 1.4, we can write TeSO(2, 4) as the set of matrices

t1 s12 0 u σ1 σ2

s21 t2 −u 0 τ1 τ2

0 v −t1 −s21 σ̂1 σ̂2

−v 0 −s12 −t2 τ̂1 τ̂2

−σ̂1 −τ̂1 σ1 τ1 0 θ
−σ̂2 −τ̂2 σ1 τ2 −θ 0


where all variables are real. In this case the split Cartan subgroup, or maximal connected

abelian subgroup of matrices whose conjugation action on TeG is diagonalizable over R, is A ={
diag(et1 , et2 , e−t1 , e−t2 , 1, 1) : ti ∈ R

}
.

Exercise 1.5. Find the joint eigenspaces and Lyapunov functionals for the action of A. Are they
all 1-dimensional? Show that the matrices with only θ non-zero are fixed under the conjugation
action of A, and are tangent to a subgroup isomorphic to SO(2) := SO(0, 2).

Observe that the action of A on SO(2, 4)/Γ does not have the same type of partially hyperbolic
splitting. Instead, the subgroup isomorphic to SO(2) inside SO(2, 4) commutes with A so the
derivative of translations under A along it is isometric! In this case, we need to build a double
quotient space X = SO(2)\SO(2, 4)/Γ whose elements are double cosets SO(2)gΓ. Because we
have quotiented by the subgroup isomorphic to SO(2), the tangent space is spanned by all variables
other than θ, and the translation action on X given by

a · SO(2)gΓ = SO(2)agΓ

is well-defined, and admits a partially hyperbolic splitting transverse to the orbit direction.

2. Anosov Rk-actions and associated structures

Let’s first generalize the structures we observed in the homogeneous setting to that of smooth
actions.

Definition 2.1. Let Rk y X be a C∞, locally free action on a compact manifold X.
• We say that a ∈ Rk is Anosov or an Anosov element if there exists an a-invariant splitting
TX = Esa ⊕ TO ⊕ Eua , where TO is the tangent bundle to the orbit foliation of Rk, Esa
is uniformly contracted under a and Eua is uniformly contracted under a−1. That is, there
exists C > 0, 0 < λ < 1 (both depending on a) such that

||dan(v)|| ≤ Cλn for all unit vectors v ∈ Esa, n ≥ 0∣∣∣∣da−n(v)
∣∣∣∣ ≤ Cλ−n for all unit vectors v ∈ Esa, n ≥ 0

4



• An action Rk y X is Anosov if it has an Anosov element
• An action Rk y X is totally Anosov if it has a dense set of Anosov elements.

Exercise 2.1. Prove that the set of Anosov elements is open Rk, and that if a is Anosov so is ta
for all t ∈ R \ {0}.

From the these assumptions do a lot for us in terms of constructing manifolds. In particular,
for each Anosov element a, we get Hölder foliations with C∞ leaves, W s

a and W u
a . The leaves are

characterized by the dynamics of a:

W s
a (x) = {y ∈ X : d(an · x, an · y)→ 0} W u

a (x) =
{
y ∈ X : d(a−n · x, a−n · y)→ 0

}
Since we are in higher rank, we hope to get more. In particular, we hope to get distributions and

foliations which generalize the Lyapunov distributions. In general, while it won’t always be possible
with a precise rate, we can try to refine as best we can using the qualitative behavior.

Definition 2.2. Let a1, a2, . . . , a` be Anosov elements of Rk. The distribution Esa1,a2,...,a` :=⋂`
i=1E

s
ai is called a joint stable distribution. A joint stable distribution is called a coarse Lya-

punov distribution if it contains no proper joint stable distribution of positive dimension.

Exercise 2.2. Show that coarse Lyapunov distributions always exist and are Rk-invariant. [Hint:
First show that each distribution Esa is Rk-invariant]

The philosophy behind coarse Lyapunov foliations is to intersect manifolds defined dynamically
and without rates to build as fine a splitting of TX as possible, so that we may analyze the structures
there. It’s not immediately obvious that the foliation whose leaves are the intersection of leaves of
stable manifolds is again a foliation, since two stable leaves may not be of complementary dimension.
However, we have the following

Proposition 2.3. If Rk y X is an Anosov action, and E1, . . . , En are all of the distinct coarse
Lyapunov foliations, then TX = TO ⊕

⊕n
i=1Ei is an Rk-invariant splitting. Furthermore, each

bundle Ei is Hölder continuous, and integrates to a foliation with C∞ leaves.

Exercise 2.3. Show that if TX = F1 ⊕ . . . Fm is an Rk-invariant splitting and a is an Anosov
element, then each Fm admit partially hyperbolic splitting (the stable/central/unstable bundles
may be trivial in Fi).

Sketch of Proof of Proposition 2.3. Begin with an Anosov element a1, and split TX = TO⊕Esa1 ⊕
Eua1 . Consider another Anosov element a2. If every choice of Anosov a2 has the same (or opposite)
splitting, then this splitting is already the coarse Lyapunov splitting of TX. Otherwise, a2 is
partially hyperbolic in each distribution Esa1 and Esa2 . Since the central distribution for each Anosov
a is always TO, the a2 acts hyperbolically on each of them, and there must exist at least one which
has a nontrivial splitting.

Assume it is Esa1 . Then consider the fibered transformation on the space of pairs{
(x, y) : x ∈ X, y ∈W s

a1(x)
}
.

Here, the usual construction of stable and unstable manifolds looking only at the fiber will go through,
yielding subfoliaitons and distributions of Esa1 . We have thus built subfoliations of W s

a1 be refining
Esa1 .

One now iterates this procedure until we can’t anymore. When we can’t, we’ve exactly arrived
at the coarse Lyapunov splitting! �
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Exercise 2.4. Assume that A y G/Γ is a translation action on a homogeneous space G/Γ by a
subgroup Rk ∼= A ⊂ G ⊂ GL(d,R), and TeG splits into joint eigenspaces TeG = TeA ⊕

⊕
α∈∆E

α,
where ∆ ⊂ A∗ is a finite set of functions α : A→ R and

Eα =
{
Y ∈ TeG : aY a−1 = eα(a)Y

}
,

then the coarse Lyapunov distributions are E[α] =
⊕

c>0E
cα, α ∈ [∆], where

[∆] = {α ∈ ∆ : cα 6∈ ∆ for all c > 1} .

Verify this directly for the Anosov actions on SL(d,R)/Γ and SO(m,n)/Γ (ie, for each coarse
Lyapunov distriubtion, find a finite collection of Anosov elements which expresses it as a common
stable manifold).

2.1. Anosov vs. Totally Anosov actions. For a general Anosov action, we may worry that
we may not have “enough” Anosov elements to have refined enough. We may also wonder what
the structure of the Anosov elements is. Under the totally Anosov condition, we get a complete
description.

Proposition 2.4. If Rk y X is a totally Anosov action, then the set of non-Anosov elements is
a finite union of hyperplanes. Each hyperplane corresponds to either one or two coarse Lyapunov
distributions. Furthermore, the connected components of Anosov elements are exactly the sets on
which the splitting TX = Esa ⊕ TO ⊕ Eua is locally constant.

Exercise 2.5. Show that for every Anosov a ∈ Rk, Esa and Eua are sums of coarse Lyapunov
distributions.

Sketch of Proof. For each coarse Lyapunov distribution E, let H−E denote the set of a in Rk such
that for all v ∈ E, dan(v) ≤ Cλn for some C > 0 and 0 < λ < 1 (allowed to depend on a) and all
n ≥ 0. Similarly, let H+

E denote the set of all a ∈ Rk which are contracting in backward time.
Note that set of Anosov elements must be contained in H+

E ∪H
−
E by Exercise 2.5. Hence, since

the action is totally Anosov H+
E and H−E are dense. Finally, observe that H±E are cones: invariant

under positive scalar multiples and positive linear combinations (Another exercise! Just use that
the elements commute, and preserve the distribution E).

In particular, by the Hahn-Banach separation theorem, there is a hyperplane that separates H+
E

and H−E . Since H
±
E are open cones, and dense, it must be their complement. That is, each H±E is a

half space. �

Exercise 2.6. Finish the proof of Proposition 2.4 using the fact that the setsH±E are complementary
open half-spaces and Exercise 2.5.

Remark 2.5. It is natural to ask whether every Anosov action is totally Anosov. Homogeneous
and product examples are all totally Anosov once they are Anosov. There are examples of Anosov
actions which are not totally Anosov. As of writing these notes, they only come from time changes
of product examples, and we do not have an example for Zk-actions (where totally Anosov means
that the Anosov elements are projectively dense).

We end this lecture with a definition which is a useful condition

Definition 2.6. An Anosov action is called Cartan if every coarse Lyapunov distribution is one-
dimensional. It is called totally Cartan if it is totally Anosov and Cartan.
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Exercise 2.7. Show that the homogeneous diagonal action on SL(d,R)/Γ is totally Cartan, but
the action on the biquotient SO(n−m)\SO(m,n)/Γ is not. For a harder example, find an example
of a semisimple group for which the coarse Lyapunov distributions have more than one eigenspace
(ie, α and cα are both Lyapunov functionals for some c > 1).

2.2. The homogeneous case. The case of homogeneous flows has particularly nice features for
their coarse Lyapunov foliations. We first review a basic definition of Lie theory and a lemma
immediately showing its usefulness. If G ⊂ GL(d,R), and Y1, Y2 ∈ TeG, let [Y1, Y2] = Y1Y2 − Y2Y1

be the Lie bracket of Y1 and Y2. If we extend Y1 and Y2 to right-invariant vector fields on G, this
coincides with the Lie bracket from differential geometry.

Exercise 2.8. Fix a matrix group G ⊂ GL(d,R) with abelian subgroup A ⊂ G whose conjugation
action is diagonalizable. Let Eα denotes the Lyapunov subspace for the conjugation action of A
on TeG with corresponding Lyapunov functional α : A → R (these are generalizations of those
appearing in Definition 1.5). Show that if Y1 ∈ Eα and Y2 ∈ Eβ , then [Y1, Y2] ∈ Eα+β (this is often
shortened to [Eα, Eβ] ⊂ Eα+β).

We use the following characterization of subgroups of G, which you may know from a Lie theory
course

Lemma 2.7. Let G ⊂ GL(d,R) be a matrix Lie group, and u ⊂ TeG be a vector subspace. Then u
is tangent to an immersed subgroup if and only if for all Y1, Y2 ∈ u, [Y1, Y2] ∈ u.

Combining this lemma with the preceding exercise immediately shows that for homogeneous
actionsthe coarse Lyapunov distributions E[α] are tangent to subgroups Uα, and the corresponding
coarse Lyapunov foliation of G/Γ is the orbit foliation of the left action of Uα. If we assume the
action is totally Cartan, then dim(Uα) = 1, so it must be isomorphic to R. We can therefore write
Uα = {uα(s) : s ∈ R}, with uα(s1)uα(s2) = uα(s1 + s2). In this case, the generating vector field of
the action of Uα belongs to E[α] = Eα, and we get that for every a ∈ A:

(2.1) auα(s) = uα(eα(a)s)a

For a homogeneous Anosov action, the coarse Lyapunov foliations are orbit foliations of
subgroups of G, called coarse Lyapunov subgroups. These actions are normalized by the
A-action by expanding automorphisms for Anosov elements. When the action is Cartan,
the coarse Lyapunov subgroups are isomorphic to R, and the automorphisms given by
(2.1).

3. Rank one factors & Rigidity

We saw in the previous lecture that hyperplanes are important for higher-rank, totally Anosov
abelian group actions since they correspond to coarse Lyapunov distributions. In the homogeneous
examples, they are exactly kernels of Lyapunov functionals. Here is another condition in which
functionals on Rk naturally appear.

Definition 3.1. If Rk y X is a locally free action, a (C∞-)rank one factor of the action is a locally
free flow R y Y , a C∞ submersion π : X → Y and a homomorphism σ : Rk → R such that

π(a · x) = σ(a) · π(x).
7



Notice that by definition kerσ factors through the trivial action on Y . It therefore can’t be
transitive on X, assuming Y is not the 1-point space. Rank one factors are known to be a major
obstruction to rigidity in the higher rank setting, since they have many ways to perturb out of a
C∞ conjugacy class.

Exercise 3.1. Show that if Rk y X is a totally Cartan action, then every 3-dimensional rank one
factor is an Anosov flow on a 3-manifold.

Exercise 3.2. If Rk y (X,µ) is an ergodic, measure-preserving action, a rank-one factor is any
measurable factor (Y, ν) of X for which Rk factors through a ν-preserving flow via a homomorphism
σ. Show that Rk y (X,µ) has a nontrivial measurable rank one factor if and only if there exists a
hyperplane H ⊂ Rk such that the restricted action H y (X,µ) is not ergodic. [Hint: Consider the
ergodic decomposition of µ with respect to H]

3.1. Rank one factors and transitivity of restrictions. A recent breakthrough establishes the
following smooth analogue of Exercise 3.2:

Theorem 3.2 (Spatzier-Vinhage). If Rk y X is a totally Cartan action with a transitive one-
parameter subgroup {ta} ⊂ Rk and no circle factors, there exists a rank one factor if and only if
there exists a hyperplane H ⊂ Rk without a dense orbit.

Remark 3.3. There is a more precise version of this theorem which deals with the presence of circle
factors are generalizes the transitivity condition.

We will not comment on the proof of this theorem here but describe the general strategy. One
direction is clear, so the difficult part is showing that if you have a hyperplane without a dense
orbit, you can build a nontrivial rank one factor. One may show through shadowing arguments
that if H is not a coarse Lyapunov hyperplane, then it has a dense orbit. So we may assume that
H is a coarse Lyapunov hyperplane. The idea is to show that the H-orbit closures all intersect
a (k+2)-manifold on which H acts by Tk−1 in finitely many H-orbits, and that the factor of this
manifold by H is a 3-manifold equipped with an Anosov flow. The difficulty is showing this fact,
as well as the H-orbit closures (at reasonably good points) build a C∞ foliation of X.

3.2. Building exact metrics and parameterizing flows. So, assuming no rank one factors, we
know that every hyperplane acts with a dense orbit. Here is another very useful lemma

Lemma 3.4 (Kalinin-Spatzier). If Rk y X is a totally Cartan action, E is a coarse Lyapunov
distribution, a ∈ Rk belongs to the correspond neutral hyperplane, and x ∈ X, then

|log ||da|E ||| < d(a · x, x)β

for some β > 0 and whenever d(a · x, x) is sufficiently small and a is sufficiently large and far away
from all other Lyapunov hyperplanes.

Remark 3.5. Constants have been dropped here in the interest of brevity and clarity, but an essential
part of the application of this Lemma is knowing the rates. The lemma is proved by establishing a
version of the Anosov closing lemma in higher-rank with very precise estaimates for elements near
the hyperplane action. The proof heavily relies on the Cartan assumption.

The key use in the Lemma is combining it with the transitivity of the hyperplane action. These
two features combined allow us to produce a Hölder metric which is invariant under H by extending
a metric defined to be isometric along a dense H-orbit to its closure. And since H has a dense orbit,
such a metric will be unique. Hence, each element of Rk must expan or contract it by a constant
amount. In particular, we get the following
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Proposition 3.6. If Rk y X is a totally Cartan action with a transitive element and no rank one
factor, then for each coarse Lyapunov distribution E, there exists a functional α : Rk → R and a
Hölder metric ||·||E defined on the bundle E such that

(3.1) ||da(v)||E = eα(a) ||v||E
for all a ∈ Rk.

Exercise 3.3. Prove Proposition 3.6 using the strategy outlined in the paragraph preceding it.

4. Building a homogeneous structure through path groups

From the previous section, if Rk y X is a totally Cartan action with a transitive element and
no rank one factors, then we have the following assumptions, which we will call the fundamental
assumptions:

I. The restriction of the action to any hyperplane has a dense orbit.
II. There exist Hölder metrics on each coarse Lyapunov distribution satisfying (3.1).

Let’s assume that each coarse Lyapunov foliation is orientable, which can be achieved by passing
to a double cover of X (we may need to do this several, but finitely many times). If Wα is a coarse
Lyapunov foliation with functional α, define the flow ηαs : X → X so that ηαs (x) is the point at
distance s from x along the foliation Wα using the metric from II., positively oriented from x when
s > 0 (similarly for s < 0). Since the metric used to define this action satisfies (3.1), the actions
satsify the following condition which is identical to (2.1) in this setting:

(4.1) a ◦ ηαs = ηα
eα(a)s

◦ a.

The Big Idea: In the homogeneous setting, the groups A and Uα generate G. If we can
build relations among the flows ηαs and the Rk-action which resemble those of the examples,
we can rebuild a G-action which is transitive (in the group-theoretic sense) on X, so X
will be a homogeneous space!

4.1. The path group. Let ∆ = {α1, . . . , αn} denote the set of coarse Lyapunov functionals/distributions,
and consider the group

P = Rα1 ∗ · · · ∗ Rαn ∗ Rk,
the free product of n copies of R, and one copy of Rk. The elements of P are words in these

groups. We denote an element of Rαi by s(αi), where s ∈ R. A sample element of P might look like

ρ = s
(α2)
1 ∗ s(α7)

2 ∗ s(α3)
3 ∗ a ∗ s(α2)

4

The only relations among the group is the ability to combine adjacent letters coming from the
same group, and that the identity for all groups making up the free product is the common identity
element for P. For instance, the word above can’t be reduced, but we get the following relation

s
(α2)
1 ∗ s(α3)

2 ∗ (−s2)(α3) ∗ s(α2)
3 = (s1 + s3)(α2)

Here is the trick: P acts on X! Given a word in the groups, we apply its letters from right
to left, where s(αi) acts via the flow ηαis and a acts through the Rk-action. We call this the path
group, since we can trace out the action of an element P by drawing paths along the corresponding
foliations.
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Exercise 4.1. Show that if Cx = StabP(x) is the stabilizer of x under the action of P, then Cx
consists of cycles based at x. Furthermore, show that in the case of a homogeneous action, there is
a homomorphism π : P → G uniquely defined by sending s(αi) to uαi(s) and a to a, and that for
every x ∈ X, Cx = kerπ.

Here is the magic lemma which makes this method work. We use H◦ to denote the identity
component of a group H which may not be connected.

Lemma 4.1. Let P y X be the continuous action of a free product of Lie groups on a topological
manifold. If Ccx = StabP(x)◦ does not depend on x ∈ X, then G := P/Ccx is Lie group acting on X,
and if the P-action is transitive (in the group-theoretic sense), X is a G-homogeneous spaces.

Sketch of Proof. We first show that Cc, the common stabilizer subgroup, is normal in P. Observe
that if ρ ∈ P and σ ∈ Cc, then ρ−1σρ ·x = ρ−1σ · (ρ ·x) = ρ−1ρ ·x = x (here we use that σ stabilizes
ρ · x). We come to the question of topology on P. A group topology exists for which the action is
continuous, but it is terrible (not metrizable, for instance). The good news is that Cc is a closed
subgroup, since it is a stabilizer, so G = P/Cc is a group which acts on X.

One now must show that G is Lie. This is a careful game in studying classical theorems in Lie
criteria. The main issue is the non-local compactness of P. It is tempting to say that the evaluation
map is a homeomorphism between G and the universal cover of X, but this is not guaranteed. We
skip this discussion here for brevity. �

If one can show that stabilizer (cycle) subgroups for a free product are independent of the
basepoint, then the free product action factors through a Lie group action.

4.2. Symplectic Cycles. In this section, we aim to show that the free product Rα ∗ R−cα of any
pair of negatively proportional Lyapunov exponents factors through a Lie group action. The main
tool is the following observation.

Lemma 4.2. Suppose that σ ∈ Rα ∗ R−cα fixes x, and a ∈ kerα. Then σ fixes a · x.

Proof. By (4.1), if σ = t
(α)
1 ∗ s(−cα)

1 ∗ · · · ∗ t(α)
` ∗ s(−cα)

` , then aσ = σa. In particular, σ · (a · x) =
a · (σ · x) = a · x. One can represent this geometrically by imagining σ as a cycle, and “sliding” the
cycle along a kerα-orbit. �

The proof of the following requires some advanced tools from Lie criteria, so we omit it, but
follows the scheme described in the previous section: once a stabilizer is independent of x, the
action of a free product factors through a Lie group action.

Corollary 4.3. If x0 ∈ X has a dense kerα-orbit, Cα,−cα = StabRα∗R−cα(x0) is a closed normal
subgroup of Rα ∗ R−cα, and Gα := (Rα ∗ R−cα)/Cα,−cα is a Lie group acting on X.

One can actually do better for symplectic cycles, we can describe exactly what groups can appear
as Gα. We know, since it is a factor of Rα ∗ R−cα, that it is generated by two one-parameter
subgroups. Let Yα, Y−cα ∈ Lie(Gα) = TeGα be generators of these subgroups.

Since the Rk-action preserves the set of cycles, the automorphism of Rα ∗ R−cα descends to an
automorphism of Gα with Yα and Y−cα as eigenspaces at TeGα. As in the homogeneous case, we
can show that if Z = [Yα, Y−cα], then Z is an eigenvector of eigenvalue eα(a)−cα(a) = e(1−c)α(a). It
therefore cannot equal Yα or Y−cα, and has behavior determined by the functional (1− c)α(a). This
contradicts Cartan, unless c = 1, in which case it must be in the orbit direction. Continuing this
analysis yields the following classification:
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Theorem 4.4. The group Gα is locally isomorphic to SL(2,R), Heis (the 3-dimensional Heisenberg
group), or R2. In the first two cases, c = 1.

The main goal of this work is to conclude the following ability to commute elements:

Corollary 4.5. For sufficiently small t, s ∈ R, there exists t̄, s̄ ∈ R and a ∈ Rk such that

t(α) ∗ s(−cα) = s̄(−cα) ∗ t̄(α) ∗ a (mod Cconst)

where Cconst is a closed, normal group of cycles which does not depend on the basepoint.

4.3. Commutator Cycles. We wish to establish a result similar to Corollary 4.5, but for linearly
independent weights α and β. When α and β are linearly independent, this can actually be done
by analyzing group commutators.

Exercise 4.2. If ρ = [s(β), t(α)] := (−s)(β) ∗ (−t)(α) ∗ s(β) ∗ t(α) and a is an Anosov element such
that α(a), β(a) < 0, show that ρ · x ∈ W s

a (x). Conclude that ρ · x is in a common stable manifold
whose tangent distribution is

E(α,β) :=
⊕

γ=pα+qβ
p,q>0

Eγ

Hint: This is a linear algebra exercise in disguise. Show that weights not of the form in the
equation above can be expanded while keeping α and β contracting. Then find another argument
to rule out α and β from appearing.

For these notes, let us deal onlywith the case when there is only one exponent γ of the form
γ = pα + qβ, p, q > 0. With careful bookkeeping and more nuanced arguments, other cases can
be addressed. In this simplified setting, we can define a unique function ρα,β(s, t, x) = u to be the
unique number such that [s(β), t(α)] · x = u(γ) · x. The following equations can be deduced from
drawing pictures, or through algebraic manipulations (hopefully to be added to these notes later...):

eγ(a)ρα,β(s, t, x) = ρα,β(eα(a)s, eβ(a)t, a · x)(4.2)
ρα,β(s1 + s2, t, x) = ρα,β(s1, t, x) + ρα,β(s2, t, η

α
s1(x))(4.3)

While (4.2) basically follows from (4.1), (4.3) requires the following observation: since γ is the
unique exponent appearing in E(α,β), E(α,γ) and E(β,γ) are both trivial (another Exercise!), so ηγ

commutes with both ηα and ηβ .
An important aspect of our analysis will rely on the fact that p ≥ 1 (recall γ = pα+ qβ).

Lemma 4.6. if ρα,β(s, t, x) 6≡ 0, then either p ≥ 1 or q ≥ 1.

The proof of this lemma requires some faimilarity with regularity of “fast foliations” in unstable
foliations (ie, foliations to bundles inside the stable bundle which are the faster of two in a dominated
splitting).

Sketch of Proof. Assume that q < 1 and q < 1. We will show that ρα,β(s, t, x) ≡ 0. Indeed, let
x′ = [t(α), s(β)] · x = ρα,β(s, t, x)(γ) · x. Choose a such that α(a) = −1, and β(a) < 0 is very small
in absolute value so thatα(a) < γ(a) < β(a) < 0. Then Wα is C∞ in W [α,β], since it is the fastest
contracting foliation. By reversersing the roles of α and β, we conclude that W β,γ , the foliation
tangent to Eβ ⊕ Eγ is C∞ as well.
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Notice that the points t(α) · x and s(β) ∗ t(α) · x are the images of x and s(β) ∗ ρα,β(s, t, x)(γ) · x
under the α-holonomy, which we showed above is C∞. Hence we get a Lipschitz estimeate:

(4.4) 1/L ≤ d(t(α) · x, s(β) ∗ t(α) · x)

d(x, s(β) ∗ ρα,β(s, t, x)(γ) · x)
≤ L

for some L > 1. Now, choose an element b such that β(b) < 0, but α(b) is negative but very
close to 0, in such a way that β(b) < γ(b) < α(b) < 0. Applying the element b to (4.4) gets us a
contradiction, since the numerator will go to 0 at rate enβ(b), but the denominator will go to 0 at a
slower rate, enγ(b) unless ρα,β(s, t, x) = 0. This is what we aimed to prove. �

Let us without loss of generality assume that p ≥ 1, since by Lemma 4.6, either p ≥ 1, q ≥ 1 or
ρα,β ≡ 0 (in the last case, we are done!).

Lemma 4.7. If ρα,β 6≡ 0, p = 1. Furthermore, there exists some m ∈ R such that ρα,β(s, t, x) = ms
or every s, t ∈ R and x ∈ X.

Sketch of Proof. Let’s introduce a new function as shorthand for ρα,β , suppressing some notation
and arguments:

ϕ(s, x) = ρα,β(s, 1, x)

Our aim is to show that ϕ(s, x) is linear, and has slope independent of x. A remark before
beginning: it is tempting to apply (4.2) to ϕ, and we can as long as we apply only elements of kerβ
(since we must preserve that the second component is 1).

First, observe that the cocycle property (4.3) implies that ϕ is locally Lipschitz in s. Indeed,
when |s− t| ≤ 1.

|ϕ(s, x)− ϕ(t, x)| = |ϕ(s− t, ηαt (x))| ≤ |s− t|u |ϕ(±1, a · ηαt (x))| ≤ m0 |s− t|
where m0 = supx∈X ϕ(±1, x) and a is chosen so that β(a) = 0 and α(a) = log |s− t|. Here we

have also used (4.2) and the fact that the u ≥ 1. Since ϕ is locally Lipschitz in s, it has a derivative
in s almost everywhere for a fixed x. Define

f(x) =
d

ds

∣∣∣∣
s=0

ϕ(s, x) = lim
s→0

1

s
ϕ(s, x)

wherever it exists. Since it exists for Lebesgue almost-every point of every leaf Wα(x), f exists
on a dense subset. Observe that if f(x) exists, then so does f(b · x) for b ∈ kerβ. Indeed,

(4.5) f(b · x) =
d

ds

∣∣∣∣
s=0

ϕ(s, b · x) =
d

ds

∣∣∣∣
s=0

euα(b)ϕ(e−α(b)s, x) = e(u−1)α(b)f(x)

by the chain rule. Now, we know that f ≤ m0 since m0 is a Lipschitz constant for ϕ near s = 0.
If u > 1, then by choosing some b ∈ kerβ with α(b) large, we get that f(b ·x) can become arbitrarily
large unless f ≡ 0. Hence either f ≡ 0 wherever it exists, or u = 1.

We now claim that f is constant on Wα-leaves whenever defined. If f ≡ 0 when it exists, we are
done, otherwise, we have u = 1. In particular, it follows from (4.5) that f is kerβ-invariant.

Now, consider a point x at which f exists, choose some a ∈ Rk such that β(a) = 0 and α(a) > 0.
Then let nk be a subsequence for which ank · x converges to some point z. Since Wα is contracted
by a, it follows that ank · y also converges to z. Hence
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f(x) = lim
s→0

1

s
ϕ(s, x) = lim

k→∞
enkα(a)ϕ(e−nkα(a), x) = lim

k→∞
ϕ(1, ank · x) = ϕ(1, z)

Hence f(x) = ϕ(1, z) at any point z in the ω-limit set of x under any a which expands α. Since
kerβ has a dense orbit (and there is a lot of recurrence due to the prevalence of Rk-periodic orbits),
there exists a point x for which the set of such limits is everything. Hence, since the ω-limit set of
any point is always nonempty, f is constant wherever it exists.

Now, since it exists for Lebesgue-almost every point in each Wα, leaf, it follows that ∂sϕ(s0, x) =
f(ηαs0(x)) is constant and equal to some m (prove this using (4.3)). Therefore, ϕ(s, x) = ms is
linear. �

Now, to finish the argument, note that if ψ(t, x) = ρα,β(1, t, x), then by (4.2) and using Lemma
4.7, if a ∈ Rk,

ψ(t, a · x) = ρα,β(s, t, a · x) = epα(a)+qβ(a)ρα,β(e−α(a)s, e−β(a)t, x)

= eqβ(a)ρα,β(s, e−β(a)t, x) = eqβ(a)ψ(eβ(a)t, x)

So in this case, we get an intertwining property for all a ∈ Rk, not just a ∈ kerα. So we may
apply elements of kerβ, which has a dense orbit, and conclude that ψ(t, ·) is constant everywhere
on X.

Exercise 4.3. Use the fact that ϕ and ψ are independent of x, together with (4.3) (and an analogous
property for the second component, whose deduction we leave to you), to show that there exists a
constant m, independent of x, such that

ρα,β(s, t, x) = mst

Remark 4.8. The reason for the particularly simple form of the commutator comes from the fact
that there is only one γ between α and β. For the general case, one sets up a complicated induction,
and the property (4.3) has a nontrivial polynomial term coming from the fact that while ηγ may not
commute with ηα and ηβ , the relations are well-understood polynomials from a previous induction
step.

The main conclusion of this section is actually simply the following (cf Corollary 4.5):

Corollary 4.9. For any s, t ∈ R and linearly independent Lyapunov exponents α, β,

t(β) ∗ s(α) = s̄(α) ∗ t̄(β) ∗ ρ̄ = ρ̂ ∗ ŝ(α) ∗ t̂(β) (mod Cconst)

for some t̂, ŝ, t̄, s̄ ∈ R and ρ̂, ρ̄ ∈ P, words whose letters come only from weights of the form
pα+ qβ, p, q ∈ Z+. Here again, Cconst is a closed, normal group of cycles which does not depend on
the basepoint.

4.4. Reduced Forms and the Quadrant Argument. Fix an Anosov a, and let {α1, . . . , αm}
denote the set of Lyapunov exponents which have positive evaluation on a, and {β1, . . . , βn} denote
the set of Lyapunov exponents with negative evaluation. We list them in a ciruclar ordering, which
we will define later this section, meaning that products of elements in this circular ordering provide
natural coordinates on the stable and unstable manifold, respectively. The main goal of this section
is to prove:
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Theorem 4.10. If ρ ∈ P is any word in the path group, then modulo Cconst, a closed, normal
subgroup stabilizing every point of X, we may express ρ uniquely as

ρ = t
(α1)
1 ∗ · · · ∗ t(αm)

m ∗ s(β1)
1 ∗ · · · ∗ s(βn)

n ∗ a

Corollary 4.11. G := P/Cconst is Lie, X is a G-homogeneous space, and the Rk-action is a
translation action in the coordinates provided by G.

5. Other examples and exercsies

5.1. Suspensions of lattice actions. The suspension of a diffeomorphism to a flow has a natural
generalization to group actions. Let Γ ⊂ G be a lattice in G, and Γ y X0 be an action of Γ on a
manifold X0. Then let X̃ be the product space G×X0, and let Γ act on right on X0 via

(g, x) · γ = (gγ, γ−1 · x).

Since Γ is discrete in G, this action is C∞ and properly discontinuous and the quotient space
X = X̃/Γ is a C∞ manifold. The suspension action of G on X is the left translation action

g · (g0, x)Γ = (gg0, x).

Exercise 5.1. Show that if G = R and Γ = cZ for some c > 0, this is smoothly conjugate to the
usual suspension construction with constant roof function c.

5.2. Abelian Examples. We review examples of abelian actions of the type we wish to consider.
We put the basic definitions here for reference, and establish properties later.

Example 5.1. Let G = SL(d,C) and Γ ⊂ H be a cocompact lattice. If

A =
{

diag(et1 , et2 , . . . , etd) :
∑

ti = 0
}
∼= Rd−1

is as above (this is the split Cartan subgroup) and K =
{

diag(eiθ1 , eiθ2 , . . . eiθd) :
∑
θi = 0

}
, then

the translation action of A on K\G/Γ is Anosov.

Example 5.2. Let A1, A2 ∈ SL(d,Z) be commuting, hyperbolic matrices, and assume that they
are images under the exponential map of some Yi ∈ sl(d,R) (this happens whenever the eigenvalues
are all positive). Wite Ai = eYi , and Ai

t = etYi , allowing us to take non-integer powers of Ai.
Finally define the group H = R2 nRd as a semidirect product of R2 with Rd, where if a, b ∈ R2 and
v, w ∈ Rd, the semidirect product structure is given by

(a, v) · (b, w) = (a+ b, A1
b1A2

b2v + w)

Notice that since each Ai is a matrix with integer entries, the set of integer points in H is a
cocompact lattice Γ = Z2 n Zd.

Exercise 5.2. Show that the action in Example 5.2 is C∞ conjugate to the suspension of the Z2-
action on Td generated by A1, A2. [Hint: Show that the set

{
(0, v) : v ∈ Rd

}
Γ is a torus transverse

to R2, then find its stabilizer and the induced maps by left translations. Use this to builid a
conjugacy directly.]
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