‘Solutions to Exercises in Theory of Ordinary Differential Equations

1. Using the definition off’, the definition ofy, the definition of partial derivative, and the second enumer
ated property of flows, we have

_ 09(s, y(1)) o o(h,y(@) — (0, (1))
fO@) = | }lano -
_ iim @(h, o(t,x0)) —9(0,0(, x0)) im @(t + h,xo) — o(t, x0)
T oo h " h—0 h
dp(t, .
_ <P(;[x0) — 0.

The definition ofy and the first enumerated property of flows tell us th@t) = ¢ (0, x¢) = xo.

2. There are uncountably many solutions of the given IVP. Sajmar of variables shows that for each
interval Z on which a solutionx (¢) is positive there is a constant< inf Z such thatx(z) = (¢ — ¢)?
for all r € Z. Similarly, if x(¢) < 0 throughoutZ, thenx () = —(t — c)? on T for somec > supZ.
These two facts imply that any solution of the IVP is of onetdf following 4 forms:

x(t) :=0,
. —(t—a)? ift<a
x(t)'_{o ifa<t (@=0
0 ift<b
x(z)‘:{(z—b)z b <1 =0

—(t—a)? ift<a
x(t) =40 ifa<t<b, (a<0<b)
(t—b)? ifb<t
It is straightforward to check that evexy(r) of any of these forms is a solution of the IVP.

3. (a) Using Lipschitz continuity with respect to, we have

(a + /tot f(s,x1(s5)) ds) — (a + /tot f(s, x2(5)) ds)

t t
/t[f(x,m(S))—f(x,X2(S))]ds S/t | f(x, x1(5)) = f(x, x2(s))| ds

0

< L/t |x1(s) — x2(8)|ds = L/t U(s)ds.

0

U(t) = [x1(t) — x2(1)| =

(b) From the Fundamental Theorem of Calculus and (a), we Wawe = U(¢) < V(¢). Also,

to
V(tg) =¢+ L/ U(s)ds = e.

to

(c) Dividing by V(¢) and integrating gives

VN (VD (T V) roo
In( : )"”(V(m))_/,o o ‘”S/to Ldt = L(T —1o),

sSoV(T) < eexdL(T — ty)]-




(d) For everye > 0, we haveU(T) < V(T) < eexpgL(T —t9)] — 0 ase goes to0. SinceU(T)
is honnegative by definition, this meabi§7') = 0, sox1(T) = x,(T). SinceT € [ty, 19 + D]
was arbitraryx; = x, onftg, to + b].

4. Let(x—,x4) and(y—, y+) be the domains of andy, respectively. Sincé o x is continuous, the IVP

J'=(hox)(j)
Jj) =0

has a solutionj, andj is increasing because > 0. DefineY := x o j, and note that’(0) =
x(j(0)) = x(0) = a, and

Y(0) = j'(0)%((1) = hx(GO) fx((1) = g(x(j(1)) = (Y (1)),

soY satisfies the same IVP as By uniqueness, this means that= y on their common domain
of definition, soy(t) = x(j(¢)) fort € dom(j) =: (j—, j+), j's maximal interval of existence. By
definition, the range of is contained in théx_, x4 ), and by the maximality of’s domain, we know
that(j—, j+) € (y—,y+). We need to show that, in fadatj_, j+) = (y—, y+); by a time reversal
argument, it suffices to show that = y.

If j+ = oo, then we're done, so suppose that < oo. Then the results of this section applied to
the j-IVP imply that j(¢) 1 x4+ ast 1 j+. Eitherx([0, x+)) is contained in a compact subsetf
oritisn’t. Suppose the first case occurs. Then the conyirafit: on 2 implies that(x o x)([0, x4))

is bounded, sq’(]0, j+)) is bounded. Sincg, < oo, this means that, < oco. This contradicts
the results of this section applied to thdVP. This puts us in the second case. Sif¢® 1 x4 as

t 1 jy+,wehavey([0, j+)) = x(j([0, j+))) = x([0, x+)), which means that the continuous function
y can't be defined aj+. Hence,j+ = y.

5. (8) Suppose there exists> ¢y such thatx(¢) > y(z). By the continuity ofx andy there must be a first
such timer*. Sincex(t9) = a < b = y(ty), we knowt* > o andx(t*) = y(t*). Note that
X(@*) = f@t.x(@) = f@,y(*)) < gt y(t*)) = y(r*), sox(t) > y(z) for ¢ just smaller
thanz*. This contradicts the definition of, and this contradiction implies the desired result.
(b) Givene > 0, seth = b + ¢ andg(r, p) = g(, p) + ¢, and letj be the solution of the VP

<.

= 3. 7)
7(to) = b.

Since f(t,p) < g(t,p) < g(t,p)anda < b < b, the results of (a) imply that(z) < y(z)

for everyt > ty. By the Theorem on Continuous Dependengé&,) — y(t) ase | 0, soO
x(t) < y(¢) for everyt > 1y.

(Note that Exercise 2 provides a counterexample to any puggroof that fails to utilize
Lipschitz continuity.)

6. Fix ¢t € R, and consider the functiop : R" — R” defined byg(p) = f(t, p). Let p,g € R" and
a, B € R be given. Sincef is continuous, every IVP associated with the ODE has a soluto we
can letx be a solution of the ODE satisfying(0) = p and lety be a solution of the ODE satisfying
y(0) = ¢g. By hypothesis@x + By satisfies the ODE, so

glap + Bq) = f(t.ap + Bq) = f(t,ax(0) + By(0)) = f(z, (ax + By)(0))

= (ax + By)'(0) = ax(0) + By(0) = af(z,x(0)) + Bf(z, y(0))
=af(t,p)+ Bf(t.q) = ag(p) + Bg(q).



This shows thag is linear, sog € L(R",R"). SetA(t) =

This defines a functiod : R —

=

L(R",R") satisfyingA(1)p = g(p) = f(t, p).

7. A suitable collection is:

0

a
0 b
00
0 0

S O SR

8. (a) The series formula gives

e
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b) Sinced? = 104, Ak = 101 Aforallk > 1, so
(
Xk 4k X k1nk—1 X k1nk
A kA k10514 A k10 A or
= =1 — =TI+ — =1+ — -1
D Dy 10 & Th T b
elOt+9 elOt_l elOt_l elOt_l
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9. (a) Sincee’4 ande!® are contractions, the results of this section indicate thate are constants
ki,b1, ks, by > 0 such that|e’4x|| < ke 21| x| and|e’Bx| < ke b2||x| for all x € R”
and:r > 0. If 4 and B commute, then so dod and¢ B, so the lemma in Section 2.1 indicates
thate!(A+B) — ot4,B Thys,

" AFD x| = |l e Bx| < ke P Bx|| < kie P kae 02 x| = ke O],

wherek = k1k, > 0 andb = by + b, > 0. Thus,e!4+?) js a contraction.



(b) Let
-1 0 -1 3
A:[3 _JandB:[O _1].

The only eigenvalue oft or B is —1, soe’4 ande’® are contractions. On the other hand,

-2 3
A+B—[3 _2]

which hasl as one of its eigenvalues, 8d4+2) is not a contraction.

10. The listed alternatives are insufficient. To determine theect list of alternatives, we view solutions
with respect to the basis corresponding to real canonical.foVe first determine all possible asymp-
totic behaviors of solutions confined &, £°, or £€.

If x(¢) is a solution inf¥, then its components are all of the fopm(r)e?’ (a coshr + B sinbt) where

p is a polynomial and > 0. Furthermore, ib # 0 (anda?+ B2 # 0 andp(¢) is not identically zero)
then there is a complementary component of the ferpn(z)e?! (8 cosht — « sinbt) with the same
p,a,b,a,andf. This tells us that eithex (¢) is identically zero o (¢) approache$ ast | —oo and
diverges toco ast 1 oo. Similarly, any solution ir€* is either identically zero or converges to zero
in forward time and diverges tso in backward time.

The analysis of possible behaviors for a solutiofr) in £¢ is slightly more complicated. Each
component ofx(z) is of the form p(¢)(«x cosht + B sinbt) with p a polynomial, and for each such
component withh # 0 (anda? + 82 # 0 and p(¢) not identically zero) there is a complementary
component of the formt p(¢) (8 cosbt — o sinbt) with the samep, b, o, andB. One possibility is, of
course, that all components are identically zeray &9 is identically zero. If eachp(?) is a constant
but there is some component that is not identically zerop th@) is bounded and bounded away
from zero. If there is a nontrivial component whose polyrals nonconstant, then(z) diverges to
infinity in both forward and backward time.

We can now determine the behavior of arbitrary solutionsdiggithe fact that each solutior(z) is a
sum of solutionsg, () in &%, xs(¢) in £, andx.(¢) in £¢. By considering all possible combinations
of the behaviors noted above (and using the factthét), xs(¢), andx.(¢) lie in different subspaces
and therefore cannot cancel one another out), we see ttstiHind Smale’s list will be correct if and
only if it is supplemented with the following alternatives:

(d) x(z) = 0foreveryt € R;

@ lim |[x@)] = lim |x(t)| = oc;
ty—o0 t1oo

()] iim |x(¢)| = oo and there exist constanl¢, N > 0 such thatM < |x(¢)| < N forall ¢t > 0;
t{—o0

(9) IiTm |x(¢)| = oo and there exist constanid, N > 0 such thatM < |x(¢)| < N forall t < 0.
tToo

11. The trace ofd(¢) is —1/2 and the determinant i5/2, so the eigenvalues afe 1 +i+/7)/4, which each
have negative real part. Furthermore,

—cost| ;o ([-1 1 3[ cos't —sinzcost |\ [—cost]| ;/»
A(t)[ sint ]e _(_—1 —1| "2 |-sintcost  sir?s sint | °
_ ('cost + s_inz} 4 3 [— (_:ost]) o2

| cost —sint | ' 2| sint

_ ('sint] N 1 [— (_:ostD o2 _ d [— (_:ost] o2
[cost | " 2| sint dr | sint




SO
—Cos
|: : t] o2
sint
is a solution that becomes unbounded in forward time.

12. By the results of this section, the equatibr= A(z)x has Floquet multipliers whose product is
2n
exp( (2 — cost + sint) dt) = 7.
0

Since this product is larger than 1, one of the Floquet miétip must be larger than 1 in absolute
value. A theorem from this section says that this means ltfeaetis a nontrivial solution of the ODE
that grows in absolute value by a factor greater than 1 @achinits of time. This solution becomes
unbounded as goes tocc.
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14. Let f, g, andV be as in the hint, and consider the OBE= f(z, x). Note that

1 00 © o, 1 5
/O[g(f)]zdt</o [g(t)]zdfffo 62d1+222 =§+2=§,

n=1

X 5 x2
vex = [(r)]z[ /[g(”]z }ZT[3_§}:7

This shows that/(z, x) is positive definite. Also,

2 _ 2 /
V(. x) = ZLEDROF - 207 (0)g'() [3_ /’[ c(OP dr] 2
0

SO

[g()]*
_2x2g)g' () —2x*gM)g' O [, [* 2 } 22
= POk |:3 /0 [g(D)]"dt X =-x-,
soV (, x) is negative definite.
The ODE o
t
X = f(t,x)= ((t))

is separable and its general solutiorx{g) = cg(¢). Thus, no solution of the equation except for the
zero solution converges to 0 in forward time. Hertes not asymptotically stable.

15. Let V = x2 4+ y2. Note thatV is positive definite and’ = 2xx + 2yy = 2x(—x3 + 2y3) +
2y(—2xy?) = —2x*, which is negative semidefinite. This shows tt@t0) is Lyapunov stable.



Now let D be the closed disc of radiuscentered at the origin. The set whéfe= 0 lies on they-
axis, andx is nonzero everywhere on that set except for the origin, saitiion of the set of complete
orbits along which” = 0 is {(0,0)}. By LaSalle’s Invariance Principle, the-limit set of each point
in D is therefore contained if(0, 0)}. We claim that, in fact, every solution starting@hconverges
to 0 in forward time. If not, then there would be a sequence oftieably late points on the orbit
bounded away from the origin, and some subsequence of tpiesee would converge to anlimit
point other than the origin. This can’'t happen, so the clagtd$y and the origin is asymptotically

(5=l
2 (B]) = Laden]

soh is a homeomorphism. Furthermore,

(e E) = (e (L=dan]) = (23))
[3-1E)
S0/ is a topological conjugacy betwednhandA.

(b) Defineh : R? — R? by
h X _ X
vl) Ly —x%/3]

which is a homeomorphism with inverse

2 (B =ben]

Sincer is differentiable, we can check whether it provides a coajydgoetween the given flows
by checking that(h(u)) = Dh(u)Au. Calculating,

PG =r(len]) = L]
()R Y I s P

so/ is a conjugacy and the flows are conjugate.

16. (a) Defineh : R? — R? by

It is easy to check that




