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Among all simple closed curves in the plane with a fixed length, the circle has the greatest area. The
Isoperimetric Inequality, the mathematical statememt of this fact, is done in two parts.

Isoperimetric Inequality.
1. Let γ ⊂ E2 be a simple closed curve in the plane whose length is L and that encloses an area A. Then
the following inequality holds

(I) 4πA ≤ L2.

2. If equality holds in (I), then the curve γ is a circle.

Simple means that the curve is assumed to have no self intersections. A circle of radius r has length
L = 2πr and it encloses an area of A = πr2 = L2

4π . Thus if γ is a simple closed curve of length L and encloses
an area A, the isoperimetric inequality says that γ encloses an area no bigger than the area of the circle with
the same length, or (I).

The Isoperimetric inequality may be proved by any number of methods, including calculus of variations,
integral geometry, complex analysis, geometric measure theory, symmetrization [Bl] and even by the heat
flow PDE. It can also be deduced from several more basic inequalities[T1]. The proof I’ll discuss today
fits in this category as well. I shall derive a strong isoperimetric inequality(SI) as a consequence of a more
powerful geometric inequality (B), discovered by Bonnesen in 1921 [Bo]. In most proofs of the isoperimetric
inequality, the second statement is harder to prove than the first, however, Bonnesen’s strong isoperimetric
inequality proves both statements at once. My lecture follows the article of Osserman [O1].

For simplicity sake, I shall indicate the complete proof of the isoperimetric inequality only for convex
curves. Let γ be a simple closed Jordan curve in the plane. To be a Jordan curve means that γ is the image
of a function h : S1 → E2, where S1 is the standard circle and h is a homeomorphism between the topology
of S1 and the induced topology. The basic fact is the Jordan Curve Theorem, which says that E2 − γ has
exactly two components, each of which has γ as its complete boundary. Only one of the components of E2−γ
is bounded. Let K denote this region along with its enclosing boundary γ. Let A denote the area of K, and
L the length of γ. As K is a compact region bounded by a continuous curve, A is always finite. However,
for general continuous curves the length may be infinte (so (I) is trivial). We shall therefore confine our
discussion to rectifiable curves, for which the length can be defined as the supremum of lengths of polygonal
paths approximating γ [M]. For example, piecewise C1 curves are rectifiable.

A set K ⊂ E2 is convex if for every pair of points x, y ∈ K, the straight line segment xy from x to y is
also in K, i.e., xy ⊂ K. The bounding curve of a convex set is automatically rectifiable [G]. The convex
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hull of K, denoted K̂, is the smallest convex set that contains K. This is equivalent to the intersection of
all halfspaces that contain K,

K̂ =
⋂

C is convex
C⊃K

C =
⋂

H is a halfspace
H⊃K

H.

A halfspace is a set of the form H = {(x, y) ∈ E2 : ax + by ≤ c}, where (a, b) is a unit vector and c is any
real number.

A proof of the isoperimetric inequality for convex K̂ implies it for any set. In the first place, since K ⊂ K̂
by its definition, we have Â ≥ A. On the other hand, taking convex hull reduces the boundary length because
the interior segments of the boundary curve, that is the components of γ − ∂K̂ of γ are replaced by straight
line segments in ∂K̂.
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Fig. 1. The region K and its convex hull K̂.

Thus, knowing the isoperimetric inequality for convex sets, we deduce

4πA ≤ 4πÂ ≤ L̂2 ≤ L2.

Furthermore, one may also argue that if 4πA = L2 implies 4πÂ = L̂2 so that if the second part of the
isoperimetric inequality holds and K̂ is a circle, then so is K. The basic idea is to consider the the extreme
points ∂∗K̂ ⊂ ∂K̂ of K̂, that is points x ∈ ∂K̂ such that if x = λy+(1−λ)z for some y, z ∈ K̂ and 0 < λ < 1
then y = z = x. K̂ is the convex hull of its extreme points. However, the extreme points of the convex hull
lie in the curve ∂∗K̂ ⊂ γ ∩ ∂K̂. K̂ being a circle implies that every boundary point is an extreme point, and
since they come from γ, it means that γ is a circle. [R]

Let K be the region bounded by γ. The radius of the smallest circular disk containing K is called the
circumradius, denoted Rout. The radius of the largest circular disk contained in K is the inradius.

Rin = sup{r : there is p ∈ E2 such that Br(p) ⊂ K}
Rout = inf{r : there exists p ∈ E2 such that K ⊂ Br(p)}

Rout Rin

Fig. 2. The disks realizing the circumradius, Rout, and inradius, Rin, of K.
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Bonnesen’s Inequality.
Bonnesen’s inequality will relate the circumradius, inradius, A and L. One of the complications in proving

Bonnesen’s inequality for non-convex sets by using the convex hull is that unlike the circumradius, which is
the same for the convex hull and for the original domain, the inradius of the convex hull may be larger that
that of the original domain. Nevertheless, Bonnesen’s inequality holds for arbitrary domains.

Bonnesen’s Inequality. Let γ be a rectifiable simple closed curve in the plane of length L and which
encloses an area A. Let Rin and Rout denote the inradius and circumradius of the region K enclosed by γ.
Then

(B) sL ≥ A + πs2 for all Rin ≤ s ≤ Rout.

The immediate corollary is Bonnesen’s strong isoperimetric inequality.

Corollary. Strong Isoperimatric inequality. Let γ be a rectifiable simple closed curve in the plane of
length L and which encloses an area A. Let Rin and Rout denote the inradius and circumradius of the region
K enclosed by γ. Then

(SI) L2 − 4πA ≥ π2(Rout −Rin)2.

Proof of corollary. Consider the quadratic function f(s) = πs2 − Ls + A. By Bonnesen’s inequality, f(Rin)
and f(Rout) are nonpositive. Hence these numbers are located between the zeros of f(s), namely

Rout ≤
L +

√
L2 − 4πA

2π

L−
√

L2 − 4πA

2π
≤ Rin.

Subtracting these inequalities gives

Rout −Rin ≤
√

L2 − 4πA

π
,

which is (SI).

The strong isoperimetric inequality (SI) implies part one of the isoperimetric inequality (I), since π2(Rout−
Rin)2 ≥ 0. Moreover, if equality holds in (I), then L2 − 4πA = 0 which implies that Rin = Rout, or γ is a
circle.

Proof of Bonnesen’s inequality. We present the proof of Fejes-Tóth. For simplicity, we shall restrict our
arguments to the case that γ is convex. The argument of Fejes- Tóth works in general [FT] . It suffices to
prove the inequality (B) for convex polygons. Intuitively, we approximate γ by finer and finer polygonal
curves.

Lemma 1. Let K be a domain bounded by a rectifiable Jordan curve with L, A, Rout and Rin its length,
area, circumradius and inradius. Then there exists a sequence of polygons Pn that

An → A, Ln → L, and (Rn)out → Rout.

If in addition K is convex, we may also arrange that (Rn)in → Rin.

See, for example Bonnesen-Fenchel [BF] for the proof, or [O]. The rectifiability ensures first that the
polygons that connect finely spaced points running along the curve have lengths that approximate the length
L. By removing loops we arrange that the Pn are Jordan polygons that approximate γ in an appropriate
manner (in Hausdorff distance). Second rectifiability ensures that γ itself has zero area, so that the area is
approximated as well. (B) for general convex curves follows from this Lemma assuming that the inequality
(B) holds for polygons by applying it to the approximations and passing to the limit.

Fejes-Tóth’s proof depends on estimating the area of a parallel set of a polygon in two ways. For t > 0,
the parallel set is

(3) Dt = {x ∈ E2 : d(x, P ) < t},
the set of points that are a distance t from P .
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Lemma 2. [Steiner’s formulas]. Let P be a convex polygon, K the region enclosed by P and t > 0. Then

L(∂(Dt ∪K)) = L + 2πt,(4)

Area(Dt ∪K) = A + Lt + πt2.(5)

The result holds for convex curves also. It continues to hold for nonconvex curves except that (5) becomes
an inequality “≤.”

Proof. The proof is elementary geometry. For each segment of P of length `, glue an `× t rectangle to the
exterior of P . The remainder of Dt ∪K consists of sectors of circles of radius t which add up to exactly one
complete circle. The total length of ∂(K ∪Dt) is the sum of lengths of the segments plus the lengths of the
arcs (4). The total area is the area of K plus the areas of the rectangles plus the areas of the sectors (5).

The reason Steiner’s formulas fail for nonconvex curves is that the parallel set has an extra overlap.
However, Area(Dt ∪K) ≤ A + Lt + πt2 still holds.
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Fig. 3. The parallel set of a nonconvex polygon and Steiner’s Inequality.

Lemma 3. Let P denote a finite polygon in the plane. Let Dt denote the set of points that are a distance
less than t > 0 from P as in (3). For each k ∈ Z+, let

ek = {x ∈ Dt : ] (Cy(x) ∩ P ) = k}

denote the subset of points such that the circle Ct(x) = {y ∈ E2 : d(x, y) = t} of radius t about x meets P in
k points. Then

(6) 4tL =
∞∑

k=1

k|ek|.

In fact P can be any union of finetely many segments in this lemma.

Proof. The set of centers such that the circle is tangent to one of the edges of P consists of line segments
parallel to the edge. The set of centers whose circles pass through the vertices consists of circular arcs about
the vertices. Both of these sets have zero area, so that these sets can be ignored.
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The proof is by induction on the number of edges. For a polygon of one edge, P1, the length of the edge
is L which may be more or less that t. Letting ∆1 and ∆2 be the open t-disks centered at the ends of the
segment, the set

e1 = (∆1 ∪∆2)− (∆1 ∪∆2)

e2 = Dt − (∆1 ∪∆2)

In either case, the sum of areas is |e1|+ 2|e2| equal to the sum of the areas of the left and right crescent as
in Fig. 5. Each crescent is bounded by two semicircles of radius t that are L apart, which has area 2tL each.

1
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1 2 1
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2

2

1

1

Fig. 5. Fejes-Toth’s sum of areas for the parallel set of a single segment.

Now let us suppose that formula (6) holds for plygons Pn with n edges. Consider adding a new edge P ′.
Then the t-parallel set of the new polygon is the union of the parallel sets Dn+1 = Dn ∪D′. Consider the
sets

εj = {x ∈ Dn+1 : ](Ct(x) ∩ Pn) = j}
ε′k = {x ∈ Dn+1 : ](Ct(x) ∩ P ′) = k}

ε′′` = {x ∈ Dn+1 : ](Ct(x) ∩ Pn+1) = `}

defined for j, k, ` = 0, 1, 2, 3, . . . . Then {ε′k}k∈Z+ and {εj}j∈Z+ are partitions of Dn+1 into disjoint sets. The
lemma follows from the additive nature of area (see Fig. 6. which shows areas of parallel sets of a segment
and a polygon before and after combining.)
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Then we just use the fact that ε′k = qj(ε′k ∩ εj) and εj = qk(ε′k ∩ εj) are disjoint unions.

L(Pn+1) =L(P ′) + L(Pn)

=
∑

k

k|ε′k|+
∑

j

j|εj |

=
∑

k

∑
j

k|ε′k ∩ εj |+
∑

k

∑
j

j|ε′k ∩ ε′′j |

=
∑

k

∑
j

(k + j)|ε′k ∩ εj |

=
∑

`

∑
k+j=`

`|ε′k ∩ εj |

=
∑

`

`|ε′′` |.

We have used the observation that
ε′′` =

∐
k+j=`

(ε′k ∩ εj),

that is, the number of points of intersection of the circle with center in an εk ∩ ε′j is the sum of the number
of points touching Pn and the number touching P ′. Thus the induction step is complete and Lemma 3 is
proved.
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Fig. 6. Induction step: add areas of the parallel set of segment P ′ to the parallel set of polygon Pn.



7

Proof of Bonnesen’s inequality. We shall describe Fejes-Tóth’s proof for convex curves for simplicity sake.
Since by Lemma 1 we may approximate convex curves, it suffices to prove (B) for convex polygons. Let P
be a closed convex polygon. The idea of the proof is to estimate the area of the t-parallel set Dt in two ways.

Since P is closed, except for a set of centers of measure zero, each circle meets P at an even number of
points. Thus, by Lemma 3 we have

4tL = 2|e2|+ 4|e4|+ 6|e6|+ 8|e8|+ · · ·
≥ 2|e2|+ 2|e4|+ 2|e6|+ 2|e8|+ · · ·

Let us first consider the case that Rin < t < Rout. Then the t-circle about every point of Dt must meet
P because the circle is neither big enough to be contained in P nor big enough to contain P . Hence Dt

contains the region bounded by P . But Dt = qk∈Nek ( = qk∈Ne2k up to a set of measure zero) so

4tL ≥ 2(|e2|+ |e4|+ |e6|+ |e8|+ · · · )
= 2 Area(Dt).

Finally, by Steiner’s Formula (5),

(7)
2tL ≥ Area(Dt)

= A + Lt + πt2,

which is (B). Finally, choosing a sequence ti ∈ (Rin, Rout) tending to either Rin or Rout as i → ∞, the
inequality (B) can be passed to the limit, establishing (B) for all t ∈ [Rin, Rout].
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