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Abstract

We resolve a question of Bramson and Griffeath by showing that the expected capture
time of four Brownian predators pursuing one Brownian prey on a line is finite. Our main tool
is an eigenvalue estimate for a particular spherical domain, which we obtain by a repeated
coning process.

In this paper, we examine the expected capture time of a single Brownian prey pursued by
n Brownian predators. All motion is restricted to a line. Bramson and Griffeath

BG
[BG] first

considered this problem, and estimated the capture time in various circumstances. In particular,
they showed that if at time t = 0 there are predators on both sides of the prey then the expected
capture time is finite. For this reason, we will assume that the initial position of the prey is
x0(0) = 1 and the initial positions of the predators are all x1(0) = · · · = xn(0) = 0. In this case,
BG
[BG] also showed that the expected capture time is infinite for n = 1, 2, 3, and conjectured that
it is finite for n ≥ 4 (as indicated by simulations). Li and Shao

LS
[LS] (see also

L
[L]) showed that

the expected capture time is finite for n ≥ 5. In our main theorem, we resolve the remaining case
by showing that the expected capture time is finite for n = 4.

main-thm Theorem 1 The expected capture time of a Brownian prey pursued by four Brownian predators,
all moving on a line, if finite if and only if there are at least four predators.

One can reformulate the capture of a Brownian prey pursued by n Brownian predators, as
described above, as the exit of a Brownian particle in Rn+1 from a specific cone. We denote
the posititon of the prey at time t as x0(t) and the position of the jth predator at time t as
xj(t). By our choice of initial conditions, the initial position of the Brownian particle x(t) =
(x0(t), x1(t), . . . , xn(t)) is x(0) = (1, 0, . . . , 0). The event of capture is then equivalent to the
Brownian particle x(t) leaving the cone

Cn+1 := {(x0, x1, . . . , xn) : x0 ≥ xj , j = 1, . . . , n},

with x(0) = (1, 0, . . . , 0), and so we must estimate the expected exit time of a Brownian particle
from the cone Cn+1, with the starting position (1, 0, . . . , 0).

Deblassie
DB
[DB] developed the theory of estimating exit times for Brownian motion from cones

in Euclidean space. Let C = {(r, θ) | r ≥ 0, θ ∈ D ⊂ Sn} be the cone over a domain D ⊂ Sn.
Also let τx be the exit time from C of a Brownian particle with starting position x, and let
P(τx > t) be the probability that τx > t. DeBlassie showed P(τx > t) ∼ c(x)t−a, where

2a =

[(
n− 2

2

)2

+ λ1(D)

]1/2

− n− 1
2

.
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Here λ1(D) is the first Dirichlet eigenvalue of D. In the particular case we are interested in, the
expected exit time of a Brownian particle from Cn+1 is finite if and only if a > 1, which reduces
to

λ1(Dn) > 2n + 2. (1) eigen-est1

Our method for proving Theorem
main-thm
1 is to estimate the first eigenvalue of Dn using a repeated

coning proccess and the monotonicity property of eignevalues. The rest of the paper proceeds
as follows. In Section

geometry-sec
1 we discuss the geometry of Cn+1, Dn, and related regions. Section

separate-sec
2

contains the separation of variables background one needs to estimate the expected capture time.
For the reader’s convenience, we also include the proof that the expected capture time is infinite
for n = 1, 2, 3 predators in this section. Finally, we prove the relevant eigenvalue estimate in
Section

eigen-est-sec
3.

Davar Khoshnevisan first told us of this problem. We would like to thank him and Pedro
Mendez for lending their ears and expertise in this project.

1 Geometry of the cone C
geometry-sec

The cone Cn+1 and its spherical angle Dn have much symmetry. First observe that Cn+1 contains
the line spanned by (1, 1, . . . , 1); this is the line where all the inequalities x0 ≥ xj , j = 1, . . . , n
are equalities. Thus we can split Cn+1 as a direct sum

Cn+1 = span{(1, 1, . . . , 1)} ⊕ Vn.

Notice that Vj := e0 − ej , j = 1, . . . , n is orthogonal to (1, 1, . . . , 1), so V1, . . . , Vn provide a basis
of Vn. It is convenient to define

Tn−1 := Vn ∩ Sn−1,

where Sn−1 is the unit sphere in span{Vj}. The domain Dn is a double cone over Tn−1. More
precisely, let N be one of the intersection points in Sn ∩ span{(1, 1, . . . , 1)} (there are two such
points), and let (r, θ) be polar coordinates in Sn, centered at N . Then

Dn = {(r, θ) | θ ∈ Tn−1, 0 ≤ r ≤ π}.

In later sections, we will use a generalization of this type of spherical cone. In general, let Ω be
a domain in the equatorial Sn−1 of Sn, and let r0 ∈ (0, π]. Then we define the cone

D(Ω, r0) := {(r, θ) | θ ∈ Ω, 0 ≤ r ≤ r0}.

We abreviate D(Ω, π) = D(Ω). In this notation, Dn = D(Tn−1) = D(Tn−1, π).
The domain Tn−1 has symmetry. If we let

Cj
n+1 = {(x0, x1, . . . xn) | xj ≥ xk, j 6= k},

then we see Cn+1 = C0
n+1 and the Cj

n+1 are pairwise congruent. Thus Tn−1 is a face of the regular
(n+1)-hedral tesselation of the standard Sn−1 on obtains by connecting the vertices of a regular
(n + 1)-simplex with great circle arcs. In particular, one can compute the diameter of Tn−1 as
the distance from a vertex to the center of the opposite face, which is

δ(n− 1) = arccos(−
√

n− 1
2n

).

Moreover, the spherical angle of Tn−1 at a vertex is Tn−2, so we can construct a succession of
comparison domains for T1, T2, . . . starting with T1 and using the coning proccess described above.
To this end, we let

T̂1 := [0,
2π

3
] = T1, T̂n := D(T̂n−1, δ(n)).

By induction, Tn ⊂ T̂n, and so λ1(Tn) ≥ λ1(T̂n).
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2 Separating variables
separate-sec

We discuss two types of separation of variables in this section. The first type is the separation
of variables in

DB
[DB] to estimate expected exit times of Brownian motion from Euclidean cones,

and the second is the separation of variables one performs to estimate eigenvalues of a spherical
domain with a conical structure.

2.1 DeBlassie’s separations of variables

We first review DeBlassie’s
DB
[DB] argument. Consider the cone C over a domain D ⊂ Sn:

C = {rθ | r > 0, θ ∈ D ⊂ Sn}.

Let τx be the time it takes for a Brownian particle to exit C, with starting position x, and let
u(x, t) = P(τx > t) be the probability that τx > t. Then u satisfies the heat equation

ut = 1
2∆u (x, t) ∈ C × [0,∞)

u(x, 0) = 1 c ∈ C̄
u(x, t) = 0 (x, t) ∈ ∂C × (0,∞).

In polar coordinates (r, θ, t), the PDE becomes

2ut = urr +
n

r
ur +

1
r2

∆Snu.

Moreover, the solution scales as u(r, θ, t) = u(βr, θ, β2t), so we can separate variables and look
for a solution of the form u = R(ξ)U(θ), where ξ = r2/2t. Then we get a positive separation
constant λj(D), and

λj(D) =
∆SnU

U
=

4ξ2R̈ + (4ξ2 + 2nξ)Ṙ
R

.

Letting R = ξaρ(−ξ), this ODE becomes

ξρ̈ + (a +
n + 1

2
− ξ)ρ̇− aρ = 0,

which has solutions of the form ρ(ξ) = f(a/2, a + (n + 1)/2, ξ), where f is the confluent hy-
pergeometric function. Using the hypergeometric function f , one obtains (see

j=1
[?, DB] a formal

expansion for u of the form

u(x, t) =
∞∑

j=1

Bjf(aj , 2aj +
n + 1

2
,−|x|2/2)Uj(

x

|x|
)(
|x|2

2t
)aj ,

where Uj is the jth Dirichlet eigenfunction of ∆Sn on D and

2aj =

[(
n− 1

2

)2

+ λj(D)

]1/2

− n− 1
2

.

The leading term in this expansion is u(x, t) ∼ B1u1(x/|x|)(|x|/(2t))a1 , which yields the conclu-
sion of inequality (

eigen-est1
1).

2.2 Separating variables on the sphere

Next we separate variables to relate the eigenvalues λ1(Dn) and λ1(Tn−1). First recall that we
can write the Laplacian for Sn as

∆u = urr + (n− 1) cot rur + csc2 r∆θu, (2) sep-var1

where ∆θ is the Laplacian on the equatorial Sn−1.
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Lemma 2 Let Ω be a nice domain in an equatorial Sn−1 with first eigenvalue λ = λ1(Ω), and
let D = D(Ω) the double cone over Ω. Then the first Dirichlet eigenvalues of D and Ω are related
by

λ1(D) = λ1(Ω)− n− 2
2

+

√
(n− 2)2

4
+ λ1(Ω). (3) eigen-rel1

In particular, λ1(D) > 2n + 2 whenever λ1(Ω) > 2n.

Proof: Set u(r, θ) = R(r)T (θ), where R(0) = 0 = R(π) and T (θ) = 0 for θ ∈ ∂Ω. Then u is
an eigenfunction on D with eigenvalue µ precisely when

TR̈ + (n− 1) cot rT Ṙ + csc2 rR∆θT = −µTR.

Separating variables with a positive separation constant λ yields

sin2 rR̈ + (n− 1) sin r cos rṘ + µ sin2 rR

R
= λ = −∆θT

T
.

Choosing T to be the first eigenfunction of Ω, we obtain the ODE

sin2 rR̈ + (n− 1) sin r cos rṘ + (µ sin2 r − λ)R = 0, (4) sep-var2

which has regular singular points at r = 0, π. If we try a solution of the form R = sinm r, for
some power m, we find

0 = m(m− 1) sinm r cos2 r −m sinm+2 r + m(n− 1) sinm r cos2 r + (µ sin2 r − λ) sinm r

= sinm r[(m2 + m(n− 2)− λ) cos2 r + (µ−m− λ) sin2 r].

Both coefficients must vanish, so we have µ = m + λ and λ = m2 + m(n− 2). Solving for m, we
find

m =
2− n

2
+

√
(2− n)2

4
+ λ. (5) rel-eigenval

Next, observe that if λ1(Ω) = 2n then λ1(D) = 2n+2. Finally, the formula for λ1(D) is monotone
increasing in λ1(Ω), and so λ1(D) > 2n + 2 whenever λ1(Ω) > 2n. �

Remark 1 A second solution to equation (
sep-var2
4) has the form sinm r cos r, where m is again given

by equation (
rel-eigenval
5) but

µ′ = λ + 3m + n.

This eigenfunction vanishes on {π/2} × Ω, so it corresponds to a higher eigenvalue.

At this point, we can prove that the expected capture time for n = 1, 2, 3 predators is infinite.
To prove the expected capture time is infinite, by inequality (

eigen-est1
1) we need to show λ1(Dn) ≤ 2n+2,

or, equivalently, that λ1(Tn−1) ≤ 2n. In the case of n = 1, we have D1 = [−3π/4, π/4], and so
λ1(D1) = 1 < 4. In the case n = 2, we have T1 = [0, 2π/3], and so λ1(T1) = 9/4 < 4. We cannot
compute λ1(T2) so easily, but we can find a test function to show that λ1(T2) < 6. Recall the
Rayleigh characterization of the first eigenvalue of a domain Ω:

λ1(Ω) = inf
f∈H1

0 (Ω),f 6≡0

∫
Ω
|df |2∫

Ω
f2

.

To show that λ1(T2) < 6, it suffices to find f0 ∈ H1
0 (T2) so that

∫
T2
|df0|2/

∫
T2

f2
0 < 6. Let

f0(x) = sin(dist(x, ∂T2)),
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and observe that |df0|2 = 1− f2
0 off the set of focal points of ∂T2, which is a set of measure zero.

A computation shows

λ1(T2) ≤
∫
T2
|df0|2∫
T2

f2
0

=
2π +

√
3

π −
√

3
< 6.

One can generalize the eigenvalue relationship (
eigen-rel1
3) to spherical cones of the form D(Ω, r0), for

0 < r0 < π, using the confluent hypergeometric function

f(α, β, , γ, z) = 1 +
α

β

z

γ
+

α(α + 1)
β(β + 1)

z2

γ(γ + 1)
+

α(α + 1)(α + 2)
β(β + 1)(β + 2)

z3

γ(γ + 1)(γ + 2)
+ . . . (6) confluent

In the next section, we will use the following lemma to relate the eigenvalues of T̂n−1 and T̂n,
which we will then estimate to complete the proof of Theorem

main-thm
1.

Lemma 3 Let Ω be a nice domain in a equatorial Sn−1 ⊂ Sn with eigenvalue λ = λ1(Ω). Then
the first Dirichlet eigenvalues of Ω and D(Ω, r0) are related by

λ1(D(Ω, r0)) = µ = µ(n, λ, r0), (7) eigen-rel2

where µ is the first eigenvalue of the ODE (
sep-var2
4) on [0, r0]. If r0 ≥ π/2 then µ is the unique zero of

f(α1, β1, γ1, (1/2)(1− cos r0)) in (m + λ, 3m + λ + n), where m is defined in equation (
rel-eigenval
5) and

α1, β1 =
7
2
[1 +

√
(n− 2)2 + 4λ±

√
(n− 1)2 + 4µ]

γ1 =
2 +

√
(n− 2)2 + 4λ

2
.

If r0 ≤ π/2 then µ is the unique zero of f(α2, β2, γ2, (1/2)(1− cos r0)) in (0, n), where

α2, β2 =
n− 1±

√
(n− 1)2 + 4µ

2
, γ2 =

n

2
,

with f defined by equation (
confluent
6).

Proof: We separate variables and look for a solution of the form R(r) = sinm ru(r), with
u(r) 6= 0 on [0, r0), but u(r0) = 0. Then equation (

sep-var2
4) becomes

0 = sinm+2 rü + (2m + n− 1) sinm+1 r cos ru̇ + [m(m + n− 2) cos2 r + (µ−m) sin2 r− λ] sinm ru.

Now let u(r) = y(x), where x = (1/2)(1− cos r), which transforms the ODE above into

x(1− x)y′′ + (m +
1
2
n− (2m + n)x)y′ − (λ + m− µ)y = 0.

The solution to this ODE is the hypergeometric function y(x) = f(α, β, γ, x), with

α, β =
2m + n− 1±

√
(2m + n− 1)2 − 4λ− 4m + 4µ

2

γ =
2m + n

2
.

The lemma follows from taking R(r;n, λ, r0) = sinm rf(α, β, γ, (1/2)(1− cos r)), where we choose
µ so that R(r0;n, λ, r0) = 0. �

One can use this Lemma to compute λ1(T̂n) iteratively. In this case we start with λ1(T̂1) = 9/4
and apply equation (

eigen-rel2
7).

5



3 The eigenvalue estimate
eigen-est-sec

In this section, we complete the proof of Theorem
main-thm
1. First observe that it suffices to show

λ1(T3) > 8. Given a nice domain Ω2 ⊂ S2 with eigenvalue λ, such that T2 ⊂ Ω2, one obtains a
lower bound for λ1(T3) using equation (

eigen-rel2
7) and monotonicity. We define λcr by

8 = µ(3, λcr, δ(3)), λcr ' 5.101267527.

Constructing a domain Ω2 with λ1(Ω2) > λcr and T2 ⊂ Ω2 shows that λ1(T3) > 8 using the
argument above.

We now construct a domain G2 ⊂ S2 as a perturbation of T2, such that T2 ⊂ G2 and λ1(G2) =
5.102 > λcr. This completes the proof of Theorem

main-thm
1. Previous work of Rayleigh

R
[R] and Pólya–

Szegö
PS
[PS] motivates us to consider this type of domain perturbation. They studied the eigenvalue

of a planar domain which has the form {(r, θ) | 0 ≤ r ≤ c + εf(θ)} in polar coordinates, for some
small ε > 0, giving an expression for the eigenvalue λ1 in terms of ε and f . In our case, we fix λ1

and find a domain G2 with λ as its eigenvalue.
Suppose the functions R(r) and Θ(θ) satisfy

Θ′′ + λΘ = 0 0 ≤ θ ≤ 2π
3

Θ(0) = 0 Θ(2π/3) = 0
sin2 rR̈ + sin r cos rṘ + (µ sin2 r − λ)R = 0 0 ≤ r < π

R(0) = 0

Then u(r, θ) = R(r)Θ(θ) is the first eigenfunction of ∆S2 on its nodal domain G2. By construction,
∆S2u + µu = 0, so u is an eigenfunction. Also, u does not change sign on its nodal domain, so it
must be the first eigenfunction. In polar coordinates, u(r, 0) = 0 = u(r, 2π/3). Let m =

√
λ and

set R(r) = sinm ru(r), so that equation (
sep-var2
4) becomes

sin2(r)ü + (1 + 2m) sin(r) cos(r)u̇ + (µ−m− λ)u = 0.

Next we take λ = 9l2/4, corresponding to the lth mode of the interval [0, 2π/3], and write the
solution in terms of the hypergeometric function:

ul(r) = f(3l/2 + .5±
√

1/4 + µ, 1 + 3l/2, (1− cos r)/2).

Finally, we take the µ = 5.102 superposition of the l = 1, 3 modes to define

Υ := (sin r)3/2u1(r) sin(3θ/2)− .0003(sin r)9/2u3(r) sin(9θ/4)

and let G2 be the nodal domain of Υ. By construction, λ1(G2) = 5.102 > λcr.
It remains to show that T2 ⊂ G2. Define r1 to be the first positive zero of u1, and observe

r1 < δ(2). The function Υ is a small perturbation of sin3/2(r)u1(r), so its nodal domain G2 is a
small perturbation of D2(T1, r1). We convert to a planar domain using stereographic projection,
with the south pole coorespronding to r = 0 in our polar coordinates. Then in polar coordinates
(ρ, θ) in the plane, ρ = tan(r/2). The radius of the circular outer edge of T2 satisfies

(β(θ) cos θ − 1/
√

8)2 + (β(θ)−
√

3/2)2 =
3
2
,

which we can rewrite as

β(θ) =
√

2 cos(θ − π/3) +
√

2 cos2(θ − π/3) + 4
2

.

We factor out the sin3/2(r) sin(3θ/2) term, so that it remains to show

H(r, theta) := u1(r)− .0003(sin(r))3u3(r)(4 cos2(3θ/2)− 1) > 0
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for 0 < r < 2 arctan(β(θ)) and 0 < θ < 2π/3. One can see that H > 0 by plotting its graph.
One can also check H > 0 using the following algorithm. First observe that one can write Hr in
terms of u′1, u3, u

′
3. For the range of r we encounter, which is given by

√
2 ≤ β ≤

√
1/2 +

√
3/2,

the properties of hypergeometric functions imply that u′1 is negative, and bounded away from 0;
this term is much larger than the u3 and u′3 terms in Hr (because of the coefficient .0003), so Hr

is negative. Thus, H is a decreasing function in r, so it sufffices to check H > 0 on the curve
β(θ) = ρ = tan(r/2).

Our strategy is the following. we first evaluate H at a point θ0 on the curve, checking H > 0 at
(ρ = β(θ0), θ0), and bound the derivative Hθ on an interval containing θ0. Our bound |Hθ| ≤ M
gives us a lower bound H > H0 −M |θ − θ0|. Thus H > 0 on a possibly smaller neighborhood of
θ0. We then repeat this process with each endpoint of this (smaller) interval. It suffices to check
nine points on the curve. �.
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