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Abstract

We consider a model of a curvature dependent chemical reaction along a circular interface between
two fluids in a Hele-Shaw cell in the presence of gravity. The problem reduces to a nonlocal evolution
equation. Global existence is proved for the linearized equation in general and the nonlinear problem for
small data. The linearized equation admits polynomial solutions in space with coefficients depending on
time whose estimates are used to study fingering of solutions. For a general class of initial data including
the polynomials, the solutions of the linearized equation coarsen and ultimately devolve to a single peak.
Gevrey-like analytic regularity is shown for the linearized problem. For the nonlinear problem, long time
existence is proved by viewing the equation as a perturbation of mean curvature flow and deriving apriori
estimates independent of time. Thus the scaled rising expanding circle solution is shown to be strongly
asymptotically stable provided that the combustion effects are strong compared to the fluid effects.

We study fingering and stability in a model of the motion of a burning region in fuel filling the narrow
gap between two vertical glass plates. The heavier reactant and lighter product are assumed to have the
same viscosity but have no interfacial surface tension. The motion is governed by fluid effects, pressure and
gravity and combustion effects at the interface through the burning speed of a flame front which depends
on its curvature. This reaction has been studied experimentally and numerically. In order to observe
buouyancy effects in premixed gas flames, Abid and Romney [1] have experimented with an analogous
aqueous autocatalytic reaction in which the density change is relatively small. When placed between two
glass plates, the reaction produces a product region which develops fingers along its upper edge as it grows
and rises. A numerical study modelling this reaction was carried out by Zhu [18] who assumed that as the
shape dependent combustion proceeds producing a lighter product, influenced by fluid effects through Hele-
Shaw flow and combustion effects through curvature dependence. Zhu also observed this Rayleigh-Taylor
instability in his simulations and derived a dispersion selection mechanism for unstable wave number for
linear fronts. We analyze the linear instability globally for circular fronts and derive a selection mechanism
for the number of fingers.

Zhu observed computationally that in a parameter regime where the combustion effects dominate the
reaction, although the front expands, when scaled to a fixed radius, any small perturbations of initial circle
die out and the front tends polynomially to a circle. We prove that the shape is strongly asymptotically
stable by showing that the initial value problem for small perturbations of the scaled rising circle solution
can be solved in an appropriate space of functions which decay at infinity.

We describe more about our model of the evolution of a compact product region floating in a reactant.
The interface is averaged over the width between two glass plates resulting in a one dimensional problem in
space. We assume that that the combustion product has less density than the reactant, so it will tend to
rise. We assume that the reactant and product are miscible, so that there is no interface surface tension.



But because the gap is small, the fluid senses viscous effects from the bounding plates so the fluid velocity
is proportional to the pressure gradient (Darcy’s law.) We assume that the combusion is curvature sensitve
so that the normal velocity of a flame front is increased if the flame is focussed by negative curvature.
The strength of the curvature term determines in large part the stability properties. For the physically
reasonable curvature depenedence, the curvature conrtibution is bounded. Even though several modes may
initially grow fingers, for a large class of initial data, including all polynomials, the fingers of the solutions
will ultimately coalesce into a single maximum.

Acknowledgement. We thank J. Zhu for suggesting the problem and encouraging our study. Part of this work was completed while

visiting The University of California, Irvine.

1. Formulation of the problem.

Following Zhu [18], we suppose that there is a moving smooth embedded closed curve in the plane Γ(t) ⊂ R2

which bounds a compact region of combustion product Ω2(t) and an exterior domain of reactant Ω1(t). Let
ρi denote the density of the fluid in the region Ωi. We are assuming that ρ1 > ρ2. After averaging over
the gap of width ` between the plates and assuming no slip boundary conditions on the plate walls, the
continuous pressure is related to the fluid velocity in R2 by Darcy’s law and incompressibility

− `2

12µ
∇(Pi + ρig〈x, ∂2〉) = w(x) for x ∈ Ωi (1)

0 = divw (2)

where µ is the fluid viscosity, ∂2 represents the vertical unit vector in the plane, 〈·, ·〉 is the usual Euclidean
inner product and g is the acceleration due to gravity. Along the front, the normal velocity is assumed
to be continuous, [〈w,n〉] = 0 where n denotes the outward unit vector field along ∂Ω2. (Bracket [P ] =
limt→0+ ((P2(x− tn)− P1(x + tn)) denotes the jump across the interface from Ω1 to Ω2.) Pi is determined
in Ωi using incompressibility ( incomp) for i = 1, 2 depending on Γ by solving

∆Pi = 0
limx→∞ P1(x) = −gρ1〈x, ∂2〉

inside Ωi for i = 1, 2
(3)

[P ] = 0[
∂Pi
∂n

]
= −g[ρ]〈n, ∂2〉

along Γ, (4)

The jump conditions (4) follow from the continuity of velocity (1).
The fluid velocity and buoyancy contribution to normal velocity in the evolution of Γ is equal for either

i = 1, 2 and is given by the nonlocal operator

N (Γ) := Vh = 〈n,w〉 = − `2

12µ

(
∂Pi

∂n
+ gρi〈n, ∂2〉

)
.

Now the fluid front is burning at a rate dependent on curvature. Let κ denote the curvature of the curve
Γ. For a circle of radius R we have κ = 1/R. We assume that the contribution to normal velocity of the
interface due to combustion is given by the local second order operator depending on Γ

Vc = L(Γ) = α(κ)

where α ∈ C1(R) is strictly decreasing α′(κ) < 0 and SL = α(0) is the combustion speed of a linear front.
Zhu chose α(κ) = SLe−bκ where SL and b are postitive constants. For this choice, the combustion velocity
is outward no matter what the curvature, it increases in velocity as curvature decreases. The linear flame
front propogates at a speed SL, which along with b, is an empirically determined constant. In our study,
other forms of the curvature dependence may be more convenient, for example α = S − b log κ.
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Suppose the curve Γ(t) is parameterized X(t, θ) : R+ × S1 → R2. We seek a curve whose motion is
determined by its normal velocity

V =
〈

∂X

∂t
,n
〉

= Vh + Vc = N (Γ) + L(Γ) (5)

The tangential velocity ∂X
∂θ describes only reparameterization of Γ(t) and does not affect the set X(t,S1).

2. The nonlinear equation.

Let us formulate the nonlinear problem as an integro-differential equation following Zhu [18]. Using the
single layer potential, the solution of (3) and (4) is given by

Pi(x) =
g[ρ]
2π

∫
Γ

log |x− y|〈n(y), ∂y〉ds(y)− gρ1〈x, ∂2〉.

The integral vanishes at infinity [3] since ∫
Γ

〈n(y), ∂y〉ds(y) = 0

gives the oriented length of the projection of Γ onto the y-axis.
Then the normal derivative for x ∈ Γ and i = 1, 2 is given by

∂Pi

∂n
(x) =

(
±g[ρ]

2
− gρ1

)
〈n(x), ∂2〉+

g[ρ]
2π

∫
Γ

〈
n(x),

x− y

|x− y|2

〉
〈n(y), ∂2〉 ds(y)

where the integral is in the principal value sense. Hence the fluid contribution to the normal velocity for
x ∈ Γ is given (using either i = 1, 2)

N [Γ](x) = − `2

12µ

(
∂Pi

∂n
+ gρi〈n, ∂2〉

)
= − `2

12µ

(
g[ρ]〈n(x), ∂2〉

2
+

g[ρ]
2π

∫
Γ

〈
n(x),

x− y

|x− y|2

〉
〈n(y), ∂2〉 ds(y)

)
.

3. Rising circle solution of the nonlinear equation.

Although the solution can be immediately written down, we do so slowly to illustrate the method of the
appendix. We seek a solution for the problem where Γ(t) takes the form

X(t, θ) = (R(t) cos θ,R(t) sin θ + F (t)) (6)

where t ∈ R+ is the time and (r, θ) ∈ R+ × S1 are polar coordinates of R2 centered at (0, F (t)). Hence the
normal vector to Γ is n = (cos θ, sin θ) and the vertical coordinate on Γ is 〈X, ∂2〉 = r sin θ + F . The normal
velocity of Γ is

V =
〈
n,

∂X

∂t

〉
= R′(t) + F ′(t) sin θ (7)

On the other hand, by substituting a pressure of the form

P1 = −gρ1 (r sin θ + F ) +
A sin θ

r
P2 = B + Cr sin θ
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into the jump conditions (4), we find

P1 = −gρ1 (r sin θ + F (t))− g[ρ]R(t)2

2r
sin θ,

P2 = −gρ1 (r sin θ + F (t))− g[ρ]r
2

sin θ.

It follows that the fluid forces tend merely to translate the circular cell upward with constant velocity ([ρ] < 0)

Vh = −g[ρ]`2

24µ
sin θ.

Similarly since κ = 1/R(t) it follows that

Vc = α

(
1

R(t)

)
.

Because we equate (5) and (7), we deduce that

F (t) = F0 −
g[ρ]`2

24µ
t

and R(t) is the solution of the ODE
dR
dt

= α

(
1

R(t)

)
with F0 = F (0) and R(0) = R0 some initial data. It is convenient to introduce

α(κ) = β

(
1
κ

)
= β(R)

where R is the radius of curvature. For the circle, Ṙ = β(R) and

α′(κ) = −β′
(

1
κ

)
1
κ2

= −β′(R)R2.

It is possible to eliminate the translation part of the flow. Choosing the parameterization of Γ(t) as

X(t, θ) = (R(t, θ) cos θ, R(t, θ) sin θ + F0 + c1t)

where c1 = −g[ρ]`2/24µ is the vertical velocity of the center of the disk, a parameter of the fluid, yields the
equation for the unknown

RRt = α

(
−RRθθ + 2Rθ

2 + R2

(R2 + Rθ
2)3/2

)√
R(θ, t)2 + Rθ(θ, t)2 +

+
c1

π

π∫
−π

{
R(θ, t)2 −R(θ, t)R(η, t) cos(θ − η)

−Rθ(θ, t)R(η, t) sin(θ − η)

}[
R(η, t) sin η
−Rθ(η, t) cos η

]
dη

R(θ, t)2 − 2R(θ, t)R(η, t) cos(θ − η) + R(η, t)2
.

It is convenient to use the notation β(r) = α(1/r) and switch to a new time variable

τ =
∫ t

0

dt

R(t)
.
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Then the equation becomes

RRτ

R(τ)
= β

(
1
κ

)
+

c1

π

∫
Γτ

n(θ) · (X(θ)−X(η))
|X(θ)−X(η)|2

n2(η) ds(η)

where n2(η) = n(η) · (0, 1). Note that any function of θ may be added to the quotient without changing the
integral because n2(η) ds(η) = −dx is exact. Also note that the quotient is identically constant if and only
if X(θ) is a circle of constant radius R1,

n(θ) · (X(θ)−X(η))
|X(θ)−X(η)|2

≡ 1
2R1

.

Thus
RRτ

R(τ)
= β

( (
R2 + Rθ

2
)3/2

−RRθθ + 2Rθ
2 + R2

)√
R(θ, τ)2 + Rθ(θ, τ)2−

−c1

π

π∫
−π

{
R(θ, τ)2 −R(θ, τ)R(η, τ) cos(η − θ)

+Rθ(θ, τ)R(η, τ) sin(η − θ)

}
d
dη [R(η, τ) cos(η)] dη

R(θ, τ)2 − 2R(θ, τ)R(η, τ) cos(θ − η) + R(η, τ)2
.

Now since we’re interested in the relative stability, it is convenient to consider R(θ, τ) = R(τ)eu(θ,τ). Using
Rt = β we find

euuτ = β

(
Reu

(
1 + uθ

2
)3/2

−uθθ + uθ
2 + 1

)√
1 + uθ(θ, τ)2 − β(R)eu−

−c1

π

π∫
−π

{
eu(θ,τ)−u(η,τ) − cos(η − θ)
+uθ(θ, τ) sin(η − θ)

}
eu(θ,τ)−u(η,τ) − 2 cos(θ − η) + eu(η,τ)−u(θ,τ)

d

dη

[
eu(η,τ) cos(η)

]
dη.

Subtracting 1/2 from the quotient yields

∂

∂τ
u(θ, τ) = β

(
Reu

(
1 + uθ

2
)3/2

−uθθ + uθ
2 + 1

) √
1 + uθ(θ, τ)2

eu(θ,τ)
− β(R) +

+
c1

2π

π∫
−π

K(η, θ, τ)
d

dη

[
eu(η,τ)−u(θ,τ) cos(η)

]
dη. (8)

where

K(η, θ, τ) =
sinh

[
u(η, τ)− u(θ, τ)

]
− uθ(θ, τ) sin(η − θ)

cosh
(
u(η, τ)− u(θ, τ)

)
− cos(η − θ)

. (9)

Linearizing about the rising circle solution given by R̂ = R(t)+ εu is done in Appendix A. The linearized
equation (100) reduces to

∂u

∂t
= β′(R(t))

(
∂2u

∂θ2
+ u

)
+

c1

R(t)
Mu. (10)
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The operator

Mu =
∂

∂θ

(
ũ sin θ + (u− u0) cos θ

)

=
∞∑

k=1

kvk+1 cos kθ − kuk+1 sin kθ.

where ũ = Hu denotes the Hilbert transform.
Consider solving equation (100) spectrally, thus regard uk(t) and vk(t) as functions of t. Averaging over

S1 equation (100) becomes

u̇0 = −α′(1/R)
R2

u0 = β′(R)u0

so that
u0 = cβ(R(t)).

In the case α = SLe−bκ, integration yields u0(t) = u0(0) exp(b/R0 − b/R(t)). Observe that sin θ and cos θ
are in the null space of V.

4. Solvability of the linearized equation.

If u has Hölder continuous derivatives (u ∈ Ck+α) then so does ũ, (ũ ∈ Ck+α.) The argument in [19] yields
an estimate for the norm | · |k+α = ‖ · ‖Ck+α . Similarly using the formula, for Hk, the functions of L2(S1)
whose k-th and lower derivatives are in L2 there are estimates in the norm ‖ · ‖k = ‖ · ‖Hk . Thus there are
finite constants such that

|ũ|k+α ≤ c2(k, α)|u|k+α for all u ∈ Ck+α, (11)
‖ũ‖k ≤ ‖u− u0‖k for all u ∈ Hk. (12)

Using the inequalities (11), (12), we find that

|Mu|k−1+α ≤ c2(k, α)|u− u0|k+α for all u ∈ Ck+α, (13)
‖Mu‖k−1 ≤ ‖u− u0 − u1 sin θ − v1 cos θ‖k for all u ∈ Hk. (14)

We begin by computing the adjoint equation. Suppose we expand

z(θ) = a0 +
∞∑
1

ak cos kθ + bk sin kθ.

Then in the L2 the inner product ∫ π

−π

(Mu)z = π
∞∑

k=1

kakvk+1 − kbkuk+1

so that ∣∣∣∣∫ π

−π

(Mu)z
∣∣∣∣ ≤ ‖uθ‖‖z‖.

By reinterpreting the sum, ∫ π

−π

(Mu)z =
∫ π

−π

uM∗z∣∣∣∣∫ π

−π

uM∗z

∣∣∣∣ ≤ ‖u− u0 − u1 cos θ − v1 sin θ‖ ‖zθ‖
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where the adjoint operator is given by

M∗z =
∞∑
2

(k − 1)ak−1 sin kθ − (k − 1)bk−1 cos kθ (15)

= z̃θ sin θ − zθ cos θ. (16)

Or this can be seen directly as follows. Let Z be the holomorphic function on the disk which we assume has
boundary values z + z̃i on the unit circle. By the Cauchy Riemann equations in polar coordinates one has
Z ′ = e−iθ(z̃θ − izθ). By Cauchy’s formula,

0 =
∫
S1

UZ ′(z) dz

=
∫ π

−π

(u + ũi)(z̃θ − zθi) dθ

=
∫ 2π

0

(uz̃θ + ũzθ) + i (ũz̃θ − uzθ) dθ

from which it follows that ∫
uM∗z =

∫
d

dθ

(
(u sin θ)∼ + u cos θ

)
z.

Now we can see that ũ sin θ − u0 cos θ − u1/2 is the conjugate of u sin θ by checking that

F (θ) = u sin θ + i
(
ũ sin θ − u0 cos θ +

u1

2

)
is the restriction of a holomorphic function. For example, one checks that∫

e−inθF (eiθ) dθ = 0

for all integers n > 0.
An energy estimate can be deduced as follows. We consider the inhomogeneous equation 10

∂u

∂t
= β′(R(t))

(
∂2u

∂θ2
+ u +

β(R(t))f(θ, t)
S0

)
+

c1

R(t)
Mu. (17)

Changing time in this equation to T = log(β(R(t))/S0) where S0 = β(R0) yields

uT = uθθ + u + g(T )Mu + f(θ, T )eT

where g(T ) = c1/(β′(R(t))R(t)). As usual, we assume β ∈ C1([R0,∞)) such that β′ > 0. This means that
if β is bounded and β ↗ S1 as R → ∞, then 0 ≤ T < T ∗ := log(S1/S0). Also,since β is bounded we have
g → ∞ as T → T ∗. Otherwise, for some δ > 0, β′(R) ≥ δ/R which yields a contradiction after integrating
from R0 to R.

The average a0 of u satisfies

a0 =

(
a0(0) +

∫ T

0

f0(x) dx

)
eT

where
f0 = −

∫
S1

f(θ, T ) dθ

7



is the average of f . Write f = f0 + f1. Thus changing dependent variables to

u(θ, T ) = a0(T ) + eT v(θ, T )

gives the equation
vT = vθθ + g(T )Mv + f1(θ, T ) (18)

where
∫

v dθ =
∫

f1 dθ = 0. Now consider the v-energy

Ev(T ) :=
1
2

∫
γ

v2
θ + v2 dθ

for a solution v ∈ C1([0, T1),H2(γ)) of (18). We compute

dEv

dT
=

∫
vθvθT + vvT dθ

=
∫

(vθθ + gMv + f1)(−vθθ + v) dθ

≤ −‖vθθ‖2 − ‖vθ‖2 + g‖vθθ‖‖vθ‖+ g‖vθ‖‖v‖+ ‖f1‖‖vθθ‖+ ‖f1‖‖v‖

≤
(

g2

2
+

1
2

)
(‖vθ‖2 + ‖v‖2) + ‖f1‖2

= (g2 + 1)Ev + ‖f1‖2.

By an approximation we prove an energy estimate.

Lemma 1. Assume β ∈ C1([R0,∞)) such that 0 < S0 = β(R0) and β′(R) > 0. Assume f ∈ Cloc([0,∞), L2(S1)).
Choose t2 ∈ [0,∞). Let u be a weak solution of (10) in L2((0, t2),H1). Then the u-energy given by

E(t) :=
1
2

∫
uθ(θ, t)2 + (u(θ, t)− a0(t))2 dθ

satisfies for some c > 0 depending only on β,

E(t) ≤ ceζ(t)

(
E(0) +

∫ t

0

‖f1‖2(s)e−ζ(s) ds

)
(19)

where

ζ(t) = c2
1

∫ R(t)

R0

dR

β(R)β′(R)R2
.

Hence a solution to the initial value problem is unique.

We state the existence theorems for the equation (100.) It is simpler to treat (18). The proofs will be
slight modifications of the standard ones. Viewing (18) as an ODE in Banach space , we set F (T, u) :=
g(T )Mu(·, T ) + f1(θ, T ) and consider

vT = Av + F (T, v) (20)
v(0) = φ (21)

where A = ∂θθ. This is a perturbation of the heat equation on the circle. We assume that β ∈ Ck+1+α for
k ≥ 0 and

β(0) = S0 > 0, β′ > 0. (22)
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T = log(β(R)/S0) ∈ Ck+1+α
loc ([0,∞)) implies g(T ) = c1/(β′(R(t))R(t)) ∈ Ck+α

loc ([0, T ∗)). T ∗ is the time
where g(T ) → ∞ as T ↗ T ∗. If β is unbounded then T ∗ = ∞. Otherwise T ∗ = log(S1/S0) < ∞ where
β → S1 as R →∞. We choose 0 ≤ T2 < T ∗. Then |g|k+α,[0,T2] is bounded.

Assuming β ∈ C1+α
loc ([0, T ∗)) and f ∈ Cα

loc([0, T ∗),Hj) and using (14) there is a constant dependng on K
so that

‖F (t, u)− F (s, v)‖j ≤ CK (|s− t|α + ‖u− v‖j+1) (23)
for all 0 ≤ s, t,≤ T2 and ‖u‖j+1 + ‖v‖j+1 ≤ K.

The following existence theorem is a consequence. The fractional space (Hk)α is the Hilbert space completion
of C∞ in the norm ‖ · ‖k + ‖(∂θθ)α · ‖k.

Theorem 2. Suppose β ∈ C1+α([0, T ∗)) satisfies (22), φ ∈ H1, j ≥ 0 is any integer and f ∈ Cα
loc([0, T ∗),Hj).

For every T2 ∈ [0, T ∗) there is a unique solution u ∈ C([0, T2],H1) ∩ C1((0, T2],Hj) to (20), (21) . If in
addition, φ ∈ (Hk)α which is the fractional space continuously embedded in Hk+1 for 1/2 < α < 1, then the
solution satisfies u ∈ C([0, T2], (Hk)α) ∩ C1((0, T2],Hj).

Proof. The local existence for k = j = 0 is ([13], p. 316) where we consider the heat equation on the circle
instead of the interval and since (23). The global existence follows from the energy inequality (19). The
higher regularity for k = j follows from ([13], p. 318) because (23) implies the inequality

‖F (t, u)− F (s, v)‖k ≤ CK

(
|s− t|α + ‖u− v‖(Hk)α

)
for all ‖u‖(Hk)α

, ‖v‖(Hk)α
≤ K. By restarting the evolution from 0 < t1 < t we see that the regularity of

the initial condition is improved. Thus, by a bootstrapping argument, for φ ∈ Hk we see that the solution
is u ∈ C1((0, T1),Hj) for any j.

See also ([4], p. 316.) Because of the Sobolev embedding in one dimension, Hk ⊂ Ck−1/2 and the solution
is classical for k ≥ 3.

Let us recall the definitions of the parabolic Hölder spaces C`,`/2(Q̄) where Q = I×S1, I is an interval in R
and for nonintegral ` > 0 following [12]. It consists of functions w ∈ C(Q̄) with continuous derivatives of the
form ∂r

t ∂s
θw for 2r +s < ` in Q̄ with finite norm |w|`,`/2. Let α ∈ (0, 1). Let 〈w〉(α)

x,Q := sup{|u(x, t)−u(y, t)| ·
|x− y|−α : (x, t), (y, t) ∈ Q̄, x 6= y} and 〈w〉(α)

t,Q := sup{|u(x, t)− u(x, s)| · |t− s|−α : (x, s), (x, s) ∈ Q̄, s 6= t}.
Then the norm

|w|`,`/2 :=
b`c∑
j=0

∑
2r+s=j

|∂r
t ∂s

θw|C0(Q̄) +

+
∑

2r+s=b`c

〈∂r
t ∂s

θw〉(`−b`c)x,Q +
∑

0<`−2r−s<2

〈∂r
t ∂s

θw〉(
`−2r−s

2 )
t,Q .

In particular, for 0 < α < 1,

|w|1+α,(1+α)/2 = |w|0 + |wθ|0 + 〈wθ〉(α)
x,Q + 〈w〉((1+α)/2)

t,Q + 〈wθ〉(α/2)
t,Q ,

|w|α,α/2 = |w|0 + 〈w〉(α)
x,Q + 〈w〉(α/2)

t,Q .

We can deduce further regularity of solutions from the following crude estimate.

Lemma 3. Let 1 < ν < ` < 2. Then there is a constant c3 < ∞ depending on ` and ν so that for any
u ∈ C`,`/2(Q) then Mu ∈ C`−ν,(`−ν)/2(Q) and there holds

|Mu|`−ν,(`−ν)/2,(Q) ≤ c3 |u|`,`/2,(Q) . (24)
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Proof. It suffices to find time estimates for ũ and ũθ. In case 1 < ` < 2 we consider the Hilbert transform
and write constants independent of u. Let η = `− 1.

|ũ(x, t + h)− ũ(x, t)|

=

∣∣∣∣∣∣ limε→0

1
2π

2π−ε∫
ε

[u(x− y, t + h)− u(x− y, t)] cot
(y

2

)
dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
2π

2π∫
0

[u(x− y, t + h)− u(x, t + h)− u(x− y, t) + u(x, t)] cot
(y

2

)
dy

∣∣∣∣∣∣
≤ c〈u〉xhη +

1
2π

2π−h∫
h

(
|u(x− y, t + h)− u(x− y, t)|

+ |u(x, t + h)− u(x, t)|

)
cot
(y

2

)
dy

≤ c〈u〉xhη + c〈u〉thη/2

∫ 2π−h

h

cot
(y

2

)
dy

= c〈u〉xhη + c〈u〉thη/2 log
(

1
h

)
≤ c〈u〉xhη + c〈u〉th(ν−1)/2.

For u ∈ C`,`/2, the derivative is estimated similarly since ũ satisfies ([5], p.313)

ũθ(θ, T ) =
1
2π

PV

∫
S1

uθ(θ − σ, T ) cot
(σ

2

)
dσ.

The lemma follows from inequality (11).

Theorem 4. Suppose β ∈ C1+α([R0,∞)) satisfies (22), f ∈ C
α,α/2
loc ([0, T ∗)× S1) and φ ∈ C2+α. Then the

initial value problem (20), (21) has a unique solution u ∈ C2+α,1+α/2([0, T2] × S1) for all T2 ∈ [0, T ∗) and
any α ∈ (0, 1). The solution can be bounded by an expression depending on the data

|u|2+α,1+α/2 ≤ c4(α, β, |f |α,α/2, |φ|2+α, T2).

where the Hölder norms are taken in Q̄ = [0, T2]× S1.

Proof. We use the continuity method (Leray Schauder fixed point theorem) to prove that the initial value
problem (20), (21) can be solved in X = C1+α,(1+α)/2(Q̄). We consider the mapping T : X → X given by
taking u ∈ X to the solution v of the initial value problem

vT = vθθ + g(T )Mv(x, T ) + f1(θ, T )
v(x, 0) = φ(x).

By the conditions on β and by the lemma for any 0 < γ < α, u ∈ X implies that g(T )Mu(x, T ) ∈ Cγ,γ/2. The
embeddings C`′,`′/2 ⊂ C`,`/2 are continuous, for nonintegers 0 < ` < `′ and there are constants c5(`, `′) < ∞
so that

|u|`,`/2 ≤ c5(`, `′)|u|`′,`′/2. (25)

Thus, by the existence theorem for the heat equation ([12], p. 320), there is a unique solution v ∈
Cγ+2,1+γ/2(Q̄) which satisfies the inequality

|v|2+γ,1+γ/2 ≤ c6

(
|g(T )Mu(x, T )|γ,γ/2 + |f |γ,γ/2 + |φ|2+γ

)
(26)
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for some constant independent of u and φ. Hence the operator T : X → X is compact. The conditions for
the Leray-Schauder fixed point theorem are satisfied if we can show that there is a constant independent
of u ∈ X and s ∈ [0, 1] such that |u|1+α,(1+α)/2 ≤ c whenever u is a solution of u = sT u ([13], p. 260.)
We make a little bootstrap argument. In particular for some 1 + α < `′ < 2 we have the fixed point
u ∈ C2+γ,1+γ/2 ⊂ C`′,`′/2 by (26) and so Mu ∈ Cα,α/2 by the lemma and

|u|2+α,1+α/2 ≤ c7

(
|g(T )Mu(x, T )|α,α/2 + |f |α,α/2 + |φ|2+α

)
. (27)

The bound on the fixed point follows from the interpolation inequality ([9], p124.) There is a constant
c8 < ∞ so for every ε ∈ (0, 1) and every u ∈ C2+α,1+α/2(Q̄) ,

|u|1+α,(1+α)/2 ≤ ε|u|2+α,1+α/2 + c8ε
− 2

α |u|0. (28)

Combining inequalities (24), (26), (25), (27), (28) we get for fixed points u,

|u|1+α, 1+α
2
≤ εc7

(
sc2

3c5c6|g|α
2
|u|1+α, 1+α

2
+ |f |α, α

2
+ |φ|2+α

)
+ c8ε

− 2
α |u|0.

Thus by choosing ε so εc7(c2
3c5c6|g|α/2 + 1) ≤ 1/2 we get that there is a constant c9 < ∞ depending on α so

that
|u|1+α, 1+α

2
≤ c9

(
|f |α,α/2 + |φ|2+α + |g|2/α

α/2|u|0
)

.

The desired apriori estimate is (27) using inequalities (24), (26), (25), (28) and the energy inequality for
fixed points since

∫
u(y, T ) dy = 0 and

|u|20 ≤ max{πEv(T ) : T ∈ [0, T2]} ≤ c(T2, f, g, ‖φ‖21).

Local existence also holds for analytic initial data. (see theorems 6. and 12.)

5. Polynomial solutions of the linearized equation: separable case.

Remarkably, like the standard heat equation vT = vθθ, equation (10) possesses solutions which are polyno-
mials of fixed degree in θ whose coefficients depend on time. We derive these solutions in this section. They
will allow a detailed study of the asymptotic behavior.

We first analyze the case when g(T ) = c1/b > 0 is constant. Then

β(R) = S0 + b log
(

R(t)
R0

)
where b > 0 and S0 > 0. Near the circle r = R0 this is as good a first order approximation of curvature
dependence as any. However, it does tend to blow up as the curve flattens out κ ↘ 0 and we may expect
strong curvature effects away from the circle.

Then we may rewrite (100) as

R
∂u

∂t
= b

(
∂2u

∂θ2
+ u

)
+ c1Mu.

Separating variables u(t, θ) = x(t)y(θ) gives two equations

dx

dt
+

bλ

R(t)
x = 0

d2y

dθ2
+

c1

b
My + (1 + λ)y = 0 (29)

11



where λ is a real separation constant. The first equation may be solved by

x(t) = x0 exp
(
−bλ

∫ t

0

dt

R(t)

)
= x0

(
1 +

b

S0
log

R(t)
R0

)−λ

(30)

Depending on the choice of stability criterion, we can now identify which modes are transient. For
example, if transience means x(t) is decreasing, then the transient modes have λ > 0, and thus solutions
are unstable whenever (29) has eigensolutions for λ ≤ 0. Let us call this type arithmetic transience. If
however, we are interested in the relative size change, then the stable modes must be decreasing relative
to the growth of the cell. For example then d log x/dt < d log R/dt for all t would be a relative transience
criterion. Typically for our problems, the solutions of the linearized equations grow, but at a slower rate than
the radius. If this is to hold initially only we may call the d log x/dt(t0) ≥ d log R/dt(t0) the instantaneous
relative fingering criterion. With this particular curvature dependence, this becomes bλ > −S0 − b log R0

which is weaker in this case.
The second equation is a generalized Riemann-Hilbert-Poincaré boundary value problem, of the type

studied by Vekua. He devised the first solution method depending on singular representation of a holomorphic
function and stated the alternative. Sherman, and Gakhov [5] reformulated the problem as a Fredholm
integral equation. This theory tells us that there is a disrete spectrum for λ which tends to infinity and
that each eigenspace is finite dimensional ([5]). In this particular instance, however, we find the solution
analytically in closed form.

We begin by reformulating (29) following [5]. An analytic function Φ = Y + iỸ is sought in the unit disk
whose boundary values are y + iỹ. If we parameterize the circle f(θ) = eiθ, then

Φθ = Φ′fθ = ieiθΦ′

Φθθ = Φ′′(fθ)2 + Φ′fθθ = −e2iθΦ′′ − eiθΦ′

Thus (29) becomes the generalized Riemann-Hilbert-Poincaré boundary values for a holomorphic function
Φ on the disk with boundary γ = S1. Since the average of the conjugate is fixed at zero, we render it as
ỹ − ỹ0 where ỹ0 is the average over the circle.

0 = <e
(
−z2Φ′′ +

(
c1i

b
− z

)
Φ′ + (1 + λ)Φ− c1i

bz
(Φ− Φ(0))

)
. (31)

But by the Cauchy formula, we have

Φ(0) =
1

2πi

∫
γ

Φ(ζ)
dζ

ζ
.

thus this problem is exactly of the type discussed by Vekua [5], [14].
We observe that although (31) holds on the boundary of the disk, the function inside the parenthesis is

holomorphic on the whole disk, so by the maximum principle, we seek an analytic function satisfying on the
unit disk

−z2Φ′′ − zΦ′ + (1 + λ)Φ +
c1i

b

(
Φ′ − Φ− Φ(0)

z

)
= 0 (32)

Although this equation does not have a regular singular point, we can still use the series solution method.
Thus we assume that

Φ(z) =
∞∑

k=0

ak zk. (33)

Making the substitution into the equation and equating powers gives

(1 + λ)a0 = 0;
bλa1 + c1ia2 = 0;

b(1 + λ− k2)ak + c1ikak+1 = 0, for k ≥ 2.

12



Thus lim |ak+1/ak| = ∞ and Φ converges only at z = 0 unless 1 + λ = k2 for some integer k. Thus we have
found eigenvalues λk = k2 − 1 for k a nonnegative integer. In that case the solutions are polynomials given
by the expressions

Ψ0 = 1

Ψk =
k∑

j=1

(k + j − 1)!
(k − j)!(j − 1)!

(
ibz

c1

)j

for k ≥ 1. (34)

We conlude by remarking that using the criterion λ ≤ 0 there are only two nontransient modes cor-
responding to λ = −1, 0 for which the linearized solutions are exactly y = 1, y = cos θ and y = sin θ,
corresponding to dilation and translations.

6. Polynomial solutions of the linearized equation: independent of curvature case.

Assume that u extends to a one parameter family of holomorphic functions on the disk Φ = U + iŨ such
that U = u on the circle. Then the equation (10) on γ may be expressed

0 = <e
(
−Φt − β′(z2Φ′′ + zΦ′ − Φ) +

c1i

R

(
Φ′ − Φ− Φ(0)

z

))
,

where Φ′ and Φ′′ on the bounary are the limits of (Φ′)+ and (Φ′′)+ from the interior, which are assumed to
exist and be Hölder continuous. Thus the argument is a holomorphic function on the entire disk. Hence

Φt = −β′(z2Φ′′ + zΦ′ − Φ) +
c1i

R

(
Φ′ − Φ− Φ(0)

z

)
. (35)

Assuming that we write the solution as a power series, we have a representation

Φ(z, t) =
∞∑

k=0

ak(t)zk. (36)

Inserting into the differential equation and equating terms gives

ȧk = −β′(R)(k2 − 1)ak +
ic1

R
kak+1 for k ≥ 0. (37)

Observe that if Φn(z, 0) is a polynomial of degree n then the solution is also polynomial of degree n for all
t. Indeed, one can solve for the coefficients by integrating the homogeneous first order system. For example,
since dR(t)/dt = β(R(t)) we have a0 = c0β(R(t)) for some constant c0.

In the simplest burning models, combustion is assumed to proceed at a constant normal velocity β = S1,
independent of curvature. This leads to a first order real equation involving Hilbert transform or a first
order complex partial differential equation. The model vorticity equation is of this type and is analyzed
similarly [2]. Thus R(t) = R0 +S1t. To analyze this case, it is convenient to change the time variable to the
new time

τ =
∫ t

0

dt

R(t)
. (38)

If β = S1 is constant,

τ =


1

S1
log
(
1 + S1

R0
t
)

, if S1 > 0;

t
R0

, if S1 = 0.

(39)
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In this case, we substitute Φ(z, t) = a0 + zΥ(z, t) into (35) and find a first order PDE. Hence the general
solution is

Φ(z, t) = a0 + zF (z + ic1τ), (40)

where F is an arbitrary holomorphic function in the neighborhhod of the unit disk and a0 is constant.
This shows that the problem is sensitive to initial data, since an arbitrarily small perturbation on the circle
F = δ2(i + δi− z)−1 will cause blowup in arbitrarily small time δ.

Corollary 5. The analytic solutions of (35) with constant β = S1 ≥ 0 blow up in finite time if and only if
the set Z defined by

Z := {z : |<ez| ≤ 1, |z| > 1, =mz < 0 and Φ0 is singular at z}

is nonempty. In time variable (39), Φ(z, τ) becomes infinite when τ ↗ τ3 where

c1τ3 = inf
{
−=mz −

√
1− (<ez)2 : z ∈ Z

}
.

The solution also admits solutions periodic in the τ variable, such as F = ez which causes the bubble to
shimmy as it rises. However, by Theorem 6., the problem is well posed for short time.

Taking F = zn−1 we find a family of solutions for (10) with constant β = S1 is

Ψn(z, t) =
{

1, if n = 0;
z (z + ic1τ)n−1

, if n > 0.
(41)

In this case, as time proceeds, the weighting of the lower modes dominates. Also the instabilities produce
fingers on the upper side of the circle. This is easy to see for β = S1 constant because in that case, by
equation (41), we see that the norm satisfies

|Ψn(θ, τ)| = |eiθ(eiθ + ic1τ)n−1|
= (1 + 2c1τ sin θ + c2

1τ
2)

n−1
2 .

Thus, for some angles, the initial growth is relatively faster than the radius. There the norm at θ satisfies
the infinitessimal fingering criterion

c1(n− 1) sin θ =
d log |Ψn(θ, τ)|

dτ

∣∣∣∣
τ=0

≥ d logR
dτ

∣∣∣∣
τ=0

= S1.

Thus all modes above a certain critical number

nc =
S1

c1
+ 1

develop unstable fingers initially. If there is curvature dependence, β′(R0) > 0, then we shall see that the
situation is radically different.

In case F = e−iµz and µ real we get solutions Ξ0 = 1 for µ = 0 and for µ 6= 0,

Ξµ(z, t) = zec1µτ−iµz.

Which of these solutions are relatively infinitessimally unstable? We require

µc1 =
d log |Ξµ|0

dτ

∣∣∣∣
τ=0

≥ d logR(τ)
dτ

∣∣∣∣
τ=0

= S0
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or c1µ ≥ S0. How many fingers actually grow? We interpret that to mean for some fixed fraction γ ∈ (0, 1)
to determine the number of relative maxima of <eΞµ of norm ec1µ sin(θ) above γ|Ξµ|0 = γec1µ. This is
the number of relative maxima in the interval {θ : sin θ ≥ 1 + (log γ)/c1µ} ⊂ [0, π]. Hence for c1µ ≥
− log γ, the image of this interval by the imaginary part of log Ξµ or by θ − c1µ cos θ has length less than
2c1µ + π so there are at most c1µ/π + 2 ≥ S1/π + 3/2 unstable fingers. Using the precise interval gives
(−2c1µ log γ − log2 γ)1/2/π + sin−1(1 + (log γ)/c1µ)/π + 3/2 ∼ c

√
c− 1µ unstable fingers.

Since we found global solutions with polynomial initial data, we can prove a short time existence theorem
for analytic initial data. Since Ψn grow polynomially in τ , as we have seen, there is no long time statement.

Theorem 6. Suppose f(θ) is a real analytic function on S1. Then there exists some time t1 depending on
S1, c1, f and R0 and an analytic solution u(θ, t) to (10) with β = S1 ≥ 0 constant such that u(θ, 0) = f(θ).

Proof. f is analytic if and only if there are constants K and a > 1 depending on f such that its Fourier
series f(θ) =

∑∞
j=−∞ fje

ijθ satisfies |fj | ≤ Ka−|j| for all j ([7], p.26). If β0 6= 0 then the solution is a
superposition of Ψj given by

u(θ, t) = f0 + 2<e

eiθ
∞∑

j=1

fj

(
eiθ +

ic1

S1
log
(

1 +
S1t

R0

))j−1
 .

The sum converges uniformly in 0 ≤ t ≤ t1 provided that

1 +
c1

S1
log
(

1 +
S1t1
R0

)
< a.

For the β ≡ 0 case, R(t) = R0 and τ = t/R0. This time

u(θ, t) = f0 + 2<e

eiθ
∞∑

j=1

fj

(
eiθ +

ic1t

R0

)j−1
 ,

which converges uniformly in 0 ≤ t ≤ t1 provided t1 < (a− 1)R0/c1.
For example, if β = 0 and we take as initial condition

f(θ) =
1− 2 cos θ

5− 4 cos θ
= <e

(
−z

2− z

)∣∣∣∣
z=eiθ

= <e

(
−

∞∑
k=1

zk

2k

)∣∣∣∣∣
z=eiθ

then the solution of the equation is

<e

(
−z

2

∞∑
k=0

(z + c1iτ)k

2k

)∣∣∣∣∣
z=eiθ

= <e
(

−z

2− z − c1iτ

)∣∣∣∣
z=eiθ

=
1− 2 cos θ + c1τ sin θ

5− 4 cos θ + 2c1τ sin θ + c2
1τ

2
.

Note that f(θ) = <e(1 + 2eiθ)−1 also but the power series for (1 + 2z)−1 doesn’t converge on the circle.

7. Polynomial solutions of the linearized equation: general case.

If the curvature dependence is physical then α(κ) ∼ 1/S1− cκ near κ = 0 for some S1, c > 0 and a condition
such as (47) holds. Our basic model satisfies β(R) = S1 exp(−b/R). We may assume S1 is any constant,
but we have in mind β(R) ↗ S1 as R →∞. Taking the time variable as (38) we obtain

d

dτ

(
βk2−1ak

)
= ic1kβk2−1ak+1 for k ≥ 0. (42)
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Hence, for polynomial initial data, the solutions stay polynomial. Let

Φn(z, τ) =
n−1∑
p=0

an,p(τ)cp
1i

pzn−p (43)

be a solution whose initial data is Φn(z, 0) = zn. Then for all k = 1, . . . , n− 1,

an,0 =
Sn2−1

0

βn2−1(τ)
, (44)

an,k = (45)

bn− 1ck Sn2−1
0

β(n−k)2−1(τ)

τ∫
0

τk−1∫
0

· · ·
τ2∫
0

dτ1 dτ2 · · · dτk−1 dτk

β2n−2k+1(τk)β2n−2k+3(τk−1) · · ·β2n−1(τ1)
.

For example, in the separable case where β is not bounded, β(τ) = S0 + b logR/R0, then τ = b−1 log(1 +
bS−1

0 log(RR−1
0 )) so β = S0e

bτ . Thus an,k ∼ cn,ke−b[(n−k)2−1]τ as τ → ∞ which is consistent with (30).
Consider the case α(κ) = S1 exp(−bκ). Then β(τ) = S1 exp(−be−τ ) so β is bounded. If 0 < S0 ≤ β ≤ S1

for 0 ≤ τ then we may estimate the iterated integrals to get(
n−1

k

)
Sn2−1

0 τk

Sn2−1
1

≤ |an,k(τ)| ≤
(

n−1

k

)
τk. (46)

This can be improved.

Lemma 7. Suppose β ∈ C1([R0,∞)) satisfies β′ > 0 and

S0S1

S0 + (S1 − S0)e−k1τ
≤ β(τ) ≤ S1 (47)

for all 0 ≤ τ where k1 and S0 = β(R0) are positive constants. Let s = S0/S1, T > 0 and

k2 = − log(s + [1− s]e−k1T )
T

. (48)

Then for τ ∈ [0, T ], and p = 1, . . . , n− 1,

β(τ)(n−p)2−1|an,p| ≤ Mn,p = S
(n−p)2−1
0

(
n−1

p

)(
1− e−(2n−2p+1)k2τ

(2n− 2p + 1)k2

)p

. (49)

For τ ∈ [0, T ], and for 1 ≤ N ≤ n and p = n−N + 1, . . . , n− 1,

|an,p| ≤
S

(n−p)2−1
0

β(τ)(n−p)2−1

(
n−1

p

)
e(N−n+p)(N−n+p+1)k2T

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p

, (50)

and for all τ ≥ 0,

|an,p| ≤
(

n−1

p

)
τp

(
sn2−1 +

2p + 2
1 + k1τ

)
. (51)
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Proof. First,
S0

β(τ)
≤ s + [1− s] e−k1τ (52)

thus, for any T > 0 and all τ ∈ [0, T ],
S0

β(τ)
≤ e−k2τ .

where k2 is chosen so that y(T ) = z(T ) where y(τ) = s + [1 − s]e−k1τ and z(τ) = e−k2τ . The inequality
follows from the maximum principle since y′′ − k2

1y ≥ z′′ − k2
1z because by the arithmetic-geometric mean

inequality, y(T ) ≥ e−(1−s)k1T so k2 ≤ k1(1− s).
The estimate (50) follows iteratively using the differential recursion. For convenience, we let

An,k(τ) := β(τ)(n−k)2−1an,k(τ).

This satisfies the recursion
d

dτ
An,k =

(n− k)An,k−1

β(τ)2n−2k+1
. (53)

For our initial data, this means An,0(z, τ) = Sn2−1
0 = Mn,0. We majorize the terms inductively as long as

n− p ≥ N by

An,1 = (n− 1)S(n−1)2−1
0

τ∫
0

S2n−1
0

β(τ)2n−1
dτ

� (n− 1)S(n−1)2−1
0

τ∫
0

e−(2n−1)k2τ dτ

= (n− 1)S(n−1)2−1
0

(
1− e−(2n−1)k2τ

)
(2n− 1)k2

= Mn,1

· · ·

An,p = (n− p)

τ∫
0

An,p−1

β(τ)2n−2p+1
dτ

= Sn2−1
0 bn− 1cp

τ∫
0

τn−p∫
0

· · ·
τ2∫
0

dτn−p · · · dτ1

β(τn−p)2n−2p+1 · · ·β(τ)2n−1

� (n− p)S2p−2n−1
0

τ∫
0

S2n−2p+1
0

β(τ)2n−2p+1
Mn,p−1 dτ

≤ (n− p)
(

n−1

p−1

)
S

(n−p)2−1
0

τ∫
0

e−(2n−2p+1)k2τ

(
1− e−(2n−2p+3)k2τ

(2n− 2p + 3)k2

)p−1

dτ

≤
(

n−1

p

)
S

(n−p)2−1
0

(
1− e−(2n−2p+1)k2τ

(2n− 2p + 1)k2

)p

.

The last inequality can be checked by comparing derivatives of both sides and using that (1− e−ax)/a is a
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decreasing function of a. If n− p = N − 1 then the last inequlity becomes

An,n−N+1 ≤ (n− p)
(

n−1

p−1

)
S

(n−p)2−1
0

τ∫
0

e−(2N−1)k2τ

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p−1

dτ

≤ (n− p)
(

n−1

p−1

)
S

(n−p)2−1
0 e2k2T

τ∫
0

e−(2N+1)k2τ

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p−1

dτ

=
(

n−1

p

)
S

(n−p)2−1
0 e2k2T

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p

.

Thus for n− p < N − 1,

An,p ≤
(

n−1

p

)
S

(n−p)2−1
0 e(2+4+···+2(N−n+p))k2T

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p

,

which completes inequality (50)
To get (51), we observe from Jensen’s inequality on (52),

Sq
0

βq
≤ sq + [1− sq]e−k1τ (54)

yields an estimate on an,0. Put N = (2n− 2p + 1) + (2n− 2p + 3) + · · ·+ (2n− 1) = 2np− p2. Rearranging
the order of integration and noting that β(τp) ≤ β(τj) yields

I = p!

τ∫
0

τ∫
τ1

· · ·
τ∫

τp−1

SN
0 dτp · · · dτ1

β(τp)2n−2p+1 · · ·β(τ1)2n−1
(55)

≤ p!

τ∫
0

τ∫
τ1

· · ·
τ∫

τp−1

SN
0 dτp · · · dτ1

β(τp)N

≤ p!

τ∫
0

τ∫
τ1

· · ·
τ∫

τp−1

(
sN + [1− sN ]e−k1τp

)
dτp · · · dτ1

= sNτp + [1− sN ]p

τ∫
0

(τ − τp)p−1e−k1τp dτp

= sNτp + [1− sN ]

τp − k1

τ∫
0

(τ − τp)pe−k1τp dτp

 .

By Jensen’s inequality,

k1

∫
(τ − τp)pe−k1τ dτp ≥ 1− e−k1τ

kp
1

(
e−k1τ − 1 + k1τ

1− e−k1τ

)p

≥
(
1− e−k1τ

)
τp

(
1− 1

2e−k1τ + k1τ

)p

≥ τp

(
1− 2p + 1

1 + k1τ

)
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and the (51) follows using (54).
Another estimate is obtained as follows. First we use piecewise constant bounds on β to simplify the

integrations.
A third estimate is obtained as follows. We assume piecewise constant bounds on β.

Lemma 8. Let β ∈ C1 satisfy β′ > 0, β(0) = S0 > 0 and limx→∞ β(x) = S1. Let the constants ξ > 0 and
ŝ > š > 0 such that

S0

β(τ)
≤
{

ŝ, if τ < ξ
š, if τ ≥ ξ

(56)

Suppose Φn satisfies (42) and Φn(z, 0) = zn. Then

an,p ≤


(
n−1

p

)
ŝn2−1τp, if τ < ξ;(

n−1
p

) p∑
j=0

(
p
j

)
ŝ2n(p−j)−(p−j)2 š(n−p+j)2−1ξp−j(τ − ξ)j , if τ ≥ ξ;

(57)

Proof. Again, using the recursions (37) for An,k = (β/S0)(n−k)2−1an,k, namely

d

dτ
An,p = (n− p) (β/S0)

2n−2p+1
An,p−1,

we get upper bounds by integrating the equations in which (56) replaces the power. Hence

An,0 ≤ 1,

An,p ≤


bn− 1cp

p!
ŝ2np−p2

τp, if τ < ξ;

bn− 1cp
p∑

j=0

ŝ2n(p−j)−(p−j)2 šj2+2nj−2pj

j!(p− j)!
ξp−j(τ − ξ)j , if τ ≥ ξ;

and (57) follows using (56).

Lemma 9. Let β, ξ > 0 and ŝ > š be as in Lemma 8. Assume (56) and ŝ = S0/β(ξ). Suppose Φn satisfies
the forced version of (42), namely

d

dτ

(
β(n−p)2−1an,p

)
= β(n−p)2−1 ((n− p)an,p−1 + fn,p) (58)

with initial data Ψn(0) = 0 and where fn,n = f(τ) and fn,j = 0 for j 6= n. Then

|an,0| ≤ I1(τ) (59)

|an,p| ≤



bn− 1cp
(

ŝβ

S0

)2np−p2

Ip+1(τ), if τ < ξ;

bn− 1cp

((
šβ

S0

)2np−p2

Ip+1(τ) + if τ ≥ ξ.

+
p∑

j=1

[(
š

ŝ

)(n−j)2−1

−
(

š

ŝ

)n2−1
]

Ij+1(ξ)(τ − ξ)p−j

(p− j)!

 ,

(60)

where
I1(τ) =

∫ τ

0

|f(σ)| dσ and Ik+1(τ) :=
∫ τ

0

Ik(σ) dσ for all k ≥ 1.
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Proof. Use the recursions (58) for An,k = (β/S0)(n−k)2−1an,k and Fn,k = gfn,k where g = (β/S0)n2−1.
Arguing as in Lemma 8. we get supersolutions for p = 1 . . . n− 1,

An,0 ≤ J1(τ)

An,p ≤



bn− 1cp ŝ2np−p2
Jp+1(τ), if τ < ξ;

bn− 1cp
(

š2np−p2
Jp+1(τ)+ if τ ≥ ξ.

+
p∑

j=1

š(2n−j−p)(p−j)
[
ŝ2nj−j2

− š2nj−j2
] Jj+1(ξ)(τ − ξ)p−j

(p− j)!

)
,

where J1 =
∫ τ

0
F (σ) dσ and Jk+1 =

∫ τ

0
Jk(σ) dσ. (60) follows from Jp ≤ gIp which hold since g is increasing

and Jp(ξ) ≤ ŝ1−n2
Ip(ξ).

Lemma 10. Suppose β ∈ C1([0,∞)) is increasing and satisfies S0 = β(0) > 0 and ξ, š ∈ (0, 1), so that
S0/β ≤ š if τ ≥ ξ. Then

∞∑
n=1

(τ + n) an,n−1

(
c1 +

1
τ

)n−1

≤ C(β)(F + F ′)
(

(τ − ξ)(1 + τ)
τ − ξτ − ξ

)

as τ →∞ where F (z) =
∑∞

j=1 šj2−1zj.

Proof. Let ŝ = 1. Thus if τ > c1τ + ξ,

an,n−1 ≤
n−1∑
j=0

(
n−1

j

)
šj2+2jξn−1−j(τ − ξ)j .

Hence the first sum

∞∑
n=1

an,n−1

(
1 +

1
τ

)n−1

≤
∞∑

n=1

(
c1 +

1
τ

)n−1 n−1∑
j=0

(
n−1

j

)
šj2+2jξn−1−j(τ − ξ)j

=
∞∑

j=0

šj2+2j(τ − ξ)j
∞∑

k=1

(
j+k−1

j

)
ξk−1

(
c1 +

1
τ

)k+j−1

= τ
∞∑

j=0

šj2+2j (τ − ξ)j(1 + c1τ)j

(τ − c1ξτ − ξ)j+1

=
τ

(τ − ξ)(1 + c1τ)
F

(
(τ − ξ)(1 + c1τ)

τ − c1ξτ − ξ

)
which is finite for (1− ξ)τ > ξ. Similarly for the second sum,

∞∑
n=1

n an,n−1

(
c1 +

1
τ

)n−1

≤
∞∑

n=1

n

(
c1 +

1
τ

)n−1 n−1∑
j=0

(
n−1

j

)
šj2+2jξn−1−j(τ − ξ)j
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=
∞∑

j=0

šj2+2j(τ − ξ)j
∞∑

k=1

(
j+k−1

j

)
(j + k)ξk−1

(
c1 +

1
τ

)k+j−1

=
∞∑

j=0

šj2+2j(j + 1)(τ − ξ)j
∞∑

k=1

(
j+1+k−1

j+1

)
ξk−1

(
c1 +

1
τ

)k+j−1

=
τ2

(τ − c1τξ − ξ)2

∞∑
j=0

šj2+2j (j + 1)(τ − ξ)j(1 + c1τ)j

(τ − c1ξτ − ξ)j

=
τ2

(τ − c1τξ − ξ)2
F ′
(

(τ − ξ)(1 + c1τ)
τ − c1ξτ − ξ

)
.

This estimate implies that the solutions of the linearized equations are relatively asymptotically stable.

Corollary 11. Suppose β ∈ C1([0,∞)) satisfies S0 = β(0) > 0, β′ > 0 and β ≤ S1 < ∞. Let Φ be a
solution of the buoyant combustion equation (35) linearized about the rising circle. Let R(τ) be the radius of
the rising circle. Then limτ→∞ Φ/R = 0. In particular, for any α > 0,

|Φ(τ, •)|0 = o (exp (τα)) (61)

as τ →∞.

Proof. First observe that the radius grows exponentially in τ . Since

S0 ≤
d logR

dτ
= β(R) ≤ S1,

we get R0 exp(S0τ) ≤ R(τ) ≤ R0 exp(S1τ). Hence, assuming (61), Φ/R → 0 uniformly. Using notation
from the previous lemma,

|Φ| =

∣∣∣∣∣
∞∑

n=1

Cn Φn

∣∣∣∣∣
≤ sup

n∈N
|Cn|

∞∑
n=1

an,n−1

(
c1 +

1
τ

)n−1

≤
τ supn∈N |Cn|

(τ − ξ)(1 + c1τ)
F

(
(τ − ξ)(1 + c1τ)

τ − c1ξτ − ξ

)
.

However, F (z) is an entire fuction of order zero which implies (61). This holds since for any α > 0,
šn2−1 ≤ n−n/α for n large. Hence order does not exceed α [15].

The estimate in Lemma 7. provides a short time existence theorem for analytic solutions for general β
case analogous to the β constant case. For initial data ak(0) = 0 for k 6= n and an(0) = 1 majorizing the
solution using (46),

Φn(z, τ) =
n−1∑
k=0

an,kikzn−k �
n∑

k=1

(
n−1

k−1

)
zn−kτk = z (z + τ)n−1

.

As in Theorem 6., by analyticity, the Fourier coefficients |fj | ≤ Ka|j| for all j for some positive constants
a < 1 and K. Majorizing to establish convergence,

u(θ, t) =
f0

S0
β(R(t)) + 2<e

{ ∞∑
n=1

fnΦn

(
eiθ, τ(t)

)}

� |f0|S1

S0
+ 2a

∞∑
n=1

Kan−1 (1 + τ)n−1
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which converges uniformly on 0 ≤ τ ≤ τ2 provided that a(1 + τ2) < 1.
But using lemma 7., one gets long time existence of an analytic solution.

Theorem 12. Suppose f(θ) ∈ L2(S1) so that f =
∑∞

n=0 Cnzn. Suppose β ∈ C1([R0,∞)) satisfies (47) and
β(0) = S0 for some positive constants k1, S1, S0. Then there exists a solution u(·, t) ∈ C1((0,∞), Cω(S1))
to (10) of the form

u =
∞∑

n=0

CnΦn(z, τ)

where Φn are the solutions with initial data Φn(z, 0) = zn. The series converges since the there holds for all
n, τ ≥ 0 and 0 < η < 1,

|Φn| ≤
(

β(τ)
S0

) 1
2η2k2

2

(
η + (1− η)e−

τ
η

)n− 1
(62)

where k2 is defined in (48)

Proof. We select constants N,T, V > 0 for now and esimate Φn from Lemma 7.. We split the sum into
two parts, the first may be zero if n < N . Using (1 − e−aτ )/a is decreasing in a and V (n − p − 1) ≤
(n− p)2 − 1 + (V/2− 1)2, we may majorize using Lemma 7.

Φn �
n∑

p = 0
p ≤ n−N

Mn,pz
n−p

β(n−p)2+1
+

n∑
p = 0

p > n−N

Mn,pz
n−p

β(n−p)2+1

≤ β(τ)(V/2−1)2

S
(V/2−1)2

0

z

 ∑
N≤n−p

(
n−1

p

)
S

V (n−p−1)
0 zn−p−1

β(τ)V (n−p−1)

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p

+
∑

N>n−p

(
n−1

p

)
S

V (n−p−1)
0 zn−p−1e(N−n+p)(N−n+p+1)k2T

β(τ)V (n−p−1)

(
1− e−(2N+1)k2τ

(2N + 1)k2

)p


≤ β(τ)(V/2−1)2

S
(V/2−1)2

0

eN(N−1)k2T z

(
e−V k2τz +

1− e−(2N+1)k2τ

(2N + 1)k2

)n−1

.

Since the Fourier expansion f =
∑∞

0 Cnzn has bounded coefficients, we get convergence of
∑

CnΨn to an
analytic solution provided that the series converges uniformly. This happens if g < 1 in [0, T ] for appropriate
choices of N,V depending on β and T but not on n, p, where

g(τ) = e−V k2τ +
1− e−(2N+1)k2τ

(2N + 1)k2
.

But g′(0) < 0 provided 1 < V k2. Also g < 1 as τ →∞ if (2N + 1)k2 > 1. These conditions imply g < 1 on
(0,∞).

For concreteness, choose (2N − 1)k2 = V k2 ≤ 1/η < (2N + 1)k2. Then g ≤ η + (1 − η)e−τ/η. Since
S0e

k2T ≤ β we obtain the inequality (62)
We show that as time proceeds, every mode grows relative to higher modes.

Lemma 13. Suppose β ∈ C1([R0,∞)) satisfies β′ > 0, β(R0) = S0 and (47) for positive constants
k1, S0, S1, R1. Let Φn(τ, z) =

∑n−1
k=0 an,kck

1ikzn−k satisfy (35) with initial condition Φn(z, 0) = zn. Then the
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coefficients satisfy the following inequalities for 0 ≤ p < n < N ,

(n− p− 1)S2n−2p−1τ ≥ an,p+1

an,p
≥ n− p− 1

p + 1
τ, (63)(

n−1

p

)
an,n−1

an,p
≥ τn−1−p, (64)

an+1,p

an,p
≥ ns2n+1

n− p
. (65)

min
{

1
2k2(τ)

, τs2n+1 +
2[1− s2n+1]τ

2 + k1τ

}
≥ an+1,n

an,n−1
≥ s2n+1τ (66)(

s2n+1 +
2[1− s2n+1]

2 + k1τ

)N−n

τN−n ≥ aN,N−1

an,n−1
≥ sN2−n2

τN−n (67)

an,n−1

(
c1 +

1
τ

)n−1

≥ |Φn| (68)

Proof. First we observe that since β(n−p)2−1an,p is increasing,

β(n−p−1)2−1an,p+1 = (n− p− 1)

τ∫
0

β−2n+2p+1β(n−p)2−1an,p

≤ (n− p− 1)S−2n+2p+1
0 τβ(n−p)2−1an,p

and the first inequality of (63) follows.
Let Rn,p = an,p+1/an,p. Dividing the relation (42) by β(n−p)2−1an,p yields

((n− p)2 − 1)
βτ

β
+

(an,p)τ

an,p
=

n− p

Rn,p−1
.

Subtracting gives equations for Rn,p when 0 < p < n,

(Rn,0)τ

Rn,0
=

n− 1
Rn,0

+ (2n− 1)
βτ

β
(69)

(Rn,p)τ

Rn,p
+

n− p

Rn,p−1
=

n− p− 1
Rn,p

+ (2n− 2p− 1)
βτ

β
. (70)

Using the representation (44), Rn,p(0) = 0 and β′ > 0, one finds Rn,0 ≥ (n− 1)t and then checks the right
side of (63) by induction.

The inequalities (64) then follow from (63). Inequality (65) follows directly from (44) using S0 ≥ sβ.
Combining (64) and (65) with p = n− 1 and repeating yields the second inequality of (67). The first follows
from (55) which implies

an+1,n = n

τ∫
0

(
S0

β(τ0)

)2n+1

yn(τ0) dτ0

≤ nyn(0)

τ∫
0

(
S0

β(τ0)

)2n+1

dτ0

≤ nan,n−1 min
{

τ, s2n+1τ + [1− s2n+1]
1− ek1τ

k1
,
1− e(2n+1)k2τ

(2n + 1)k2

}
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since

yn = (n− 1)!

τ∫
τ0

τ∫
τ1

· · ·
τ∫

τn−1

Sn2−1
0 dτn · · · dτ1

β(τn)3 · · ·β(τ1)2n−1

is a decreasing function of τ0. To improve we must integrate from infinity. To this end, consider the
differential equation satisfied by yn(σ) for σ ∈ [0, τ ].

dyn+1

dσ
= −n

(
S0

β

)2n+1

yn.

y1 ≡ 1, yn(0) = an,n−1(τ) and yn(τ) = 0 for all n ≥ 1. Now let qn = yn+1/yn. We have q1 ≡ y2 so qn(τ) = 0
if n ≥ 2. Also As before we find the differential equation for qn if n > 1,

(q1)σ

q1
= − 1

q1

(
S0

β

)3

(qn)σ

qn
= − n

qn

(
S0

β

)2n+1

+
n− 1
qn−1

(
S0

β

)2n−1

Since difference quotients increase with σ, we see that

q1 =

τ∫
σ

(
S0

β(τ0)

)3

dσ ≤
∫ τ

σ

s3 + [1− s3]e−k1σ dσ

= (τ − σ)
(

s3 +
[1− s3](e−k1σ − e−k1τ )

k1(τ − σ)

)
≤ (τ − σ)

(
s3 +

2[1− s3]
2 + k1τ

)
By induction we check that

q̀n(σ) = (τ − σ)
(

s2n+1 +
2[1− s2n+1]

2 + k1τ

)
is a supersolution. To see this, using Jensen’s inequality,

(q̀n)σ

q̀n
= − 1

τ − σ

≤ −1
τ − σ

(
1

s2n−1 + 2[1−s2n−1]
2+k1τ

)(
s2n−1 + [1− s2n−1]e−k1τ

)

≤ −1
τ − σ

 n(
s2n+1 + 2[1−s2n+1]

2+k1τ

) 2n−1
2n+1

− n− 1

s2n−1 + 2[1−s2n−1]
2+k1τ

(S0

β

)2n−1

≤ −1
τ − σ

 n
(

S0
β

)2

s2n+1 + 2[1−s2n+1]
2+k1τ

− n− 1

s2n−1 + 2[1−s2n−1]
2+k1τ

(S0

β

)2n−1

= − n

q̀n

(
S0

β

)2n+1

+
n− 1
q̀n−1

(
S0

β

)2n−1

.

Substituting σ = 0 completes (67).
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Finally, using (64),

|Φn| ≤

∣∣∣∣∣
n−1∑
p=0

an,pc
p
1i

pzn−p

∣∣∣∣∣ ≤
n−1∑
p=0

an,pc
p
1 ≤ an,n−1

n−1∑
p=0

(
n−1

p

)
cp
1τ

1−n+p

and (68) follows.
Polynomial solutions satisfy their own energy estimates. The consequences are strong enough to yield

global analytic existence.

Lemma 14. Suppose β ∈ C1([0,∞)) are there are positive constants S0, S1, k1, T so that (47) for all τ ≥ 0.
Then for all n > p ≥ 0, and k1τ ≥ 2 log S − log ε,

an,p ≤
τp

bn + 1cp log(S − ε)p
.

Proof. Let the polynomial energy

En =
n−1∑
p=0

kp
2(T )

(n− p + 1)!

(
e−k2(T )τβ(τ)

S0

)(n−p)2−1

an,p

where k2 is given by (48) for τ ∈ [0, T ]. Since we have the recursion (53) for τ ∈ [0, T ], differentiating yields
dEn/dτ ≤ 0. Thus En ≤ En(0) = 1/(n + 1)!.

Since the coefficients are postitve, each term is bounded above by

an,p ≤
1

bn + 1cpkp
2

(
S0e

k2τ

β

)(n−p)2−1

.

The lemma follows since for k1T ≥ 2 log S − log ε, there holds

k2T = − log(s(1 + [S − 1]e−k1T ))

≥ log
(

S

1 + [S − 1]s2ε

)
≥ log (S(1− [1− s]sε)) .

If for some k4 > 0 there holds β(τ) ≤ S0e
k4τ then a lower bound for energy Ẽn with k4 in place of k2

follows in the same way Ẽn ≥ 1/(n + 1)!.
It follows from Lemma 7. that the polynomial solutions (43) of the heat equation have the following time

dependent majorizations.

|Ψn(z, t)| ≤ {1 + c1τ}n−1

(
Sn2−1

0

Sn2−1
1

+
4n + 3
1 + k1τ

)
,

<e
(
i−nΨn(i, t)

)
≥ Sn2−1

0

Sn2−1
1

{1 + c1τ}n−1
.

Observing that maxθ |Ψn(eiθ, τ)| = i−nΨn(i, τ), computing the instantaneous relative fingering criterion

1 =
d log R

dτ

∣∣∣∣
τ=0

<
d log (i−nΨn(i, τ))

dτ

∣∣∣∣
τ=0

= −(n2 − 1)β′(R0)R0 + max{n− 1, 0}c1
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we see that Ψ0 and Ψ1 are relatively stable but there are fingering modes (integer solutions n > 1) whenever
c1 is relatively large, namely, it is sufficient that 3β′(R0)R0 +1 ≤ c1. Hence, in this case the unstable modes
are 2 ≤ n and

n < 1 +
c1 +

√
8β′(R0)2R2

0 − 4β′(R0)R0 + c2
1

2β′(R0)R0
.

In the case β = S1e
−b/R means that Φn is is instantaneously fingering if (n + 1)bS1 + R0S1 < c1R0e

−b/R0 .
Thus there is a critical number

nc =
c1R0e

−b/R0

bS1
− R0

b
− 1

above which the modes are instantaneously relatively nonincreasing. This analysis agrees with the linearized
stability analysis of Zhu [18].

We expect to sharpen sufficient conditions for instability since β ≈ S0 at initial times.

Lemma 15. Assume that β(R) satisfies the conditions of Lemma 7. and

β(R0e
τ ) ≤ S0e

k3τ

for some k3 > 0. Then for k = n = 0 or 1 ≤ k ≤ n,

an,k ≥
(

n−1

k

)
τk

(
1− k3(6n(n− k)− 6 + k(2k + 1))τ

6

)
. (71)

Proof. Let ∆ be the simplex 0 ≤ τ1 ≤ · · · ≤ τk ≤ τ . By Jensen’s inequality,

ak,n(τ) ≥
(

n−1

k

)
k!e−k3((n−k)2−1)τ

∫
∆

e−k3
Pk

j=1(2n−2j+1)τj dτn−k · · · dτ1

≥
(

n−1

k

)
τke−k3((n−k)2−1)τ exp

−k3

k∑
j=1

(2n− 2j + 1)k!
τk

∫
∆

τj dτn−k · · · dτ1


=

(
n−1

k

)
τke−k3((n−k)2−1)τ exp

(
−k3k(6n− 4k + 1)τ

6

)
and the Lemma follows.

We have the estimate for (43) using (46)

|<eΦn(θ, τ)| =

∣∣∣∣∣<e
n−1∑
k=0

an,kikeiθ(n−k)

∣∣∣∣∣
≤

∣∣∣∣∣<e
n−1∑
k=0

(
n−1

k

)
(iτ)k

ei(n−k)θ

∣∣∣∣∣+
∣∣∣∣∣
n−1∑
k=0

ik
[
an,k(τ)−

(
n−1

k

)
τk

]
ei(n−k)θ

∣∣∣∣∣ ,
≤

∣∣∣<eeiθ
(
eiθ + iτ

)n−1
∣∣∣+ k3τ

6

n−1∑
k=0

(
n−1

k

)
τk(6n(n− k)− 6 + k(2k + 1)),

≤
∣∣∣<eeiθ

(
eiθ + iτ

)n−1
∣∣∣+ 2k3n

2τ (1 + τ)n−1
.

Since řeiθ̌ = eiθ + iε implies sin2(θ− θ̌) ≤ ε2 and ř2 = 1 + 2ε sin θ + ε2. Thus we get (θ− θ̌)2 ≤ ε2 cos2 θ(1 +
ε sin θ)−2 and |(eiθ + ε)p − řpeipθ| ≤ 2ε for all θ and ε ≤ 1/2. Then if 2τ ≤ 1,

|<eΦn(θ, τ)| ≤ | cos nθ|
∣∣1 + τ2 + τ sin θ

∣∣n−1
+ n22nτ (1 + k3)
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Here we derive a simple way to see that solutions have the property that the norm increases whenever
sin θ > 0. Thus, expanding the norm

|Φn|2 =
n−1∑
k=0

n−1∑
`=0

ik ı̄`an,k(τ)an,`(τ)zn−kz̄n−`

=
n−1∑
k=0

an,k(τ)2 + 2
n−1∑
j=1

n−1−j∑
k=0

an,k(τ) an,j+k(τ) cos
((

θ − π
2

)
j
)
.

This time, consider the expansion of Ψn in terms of τ . By Lemmas 7. and 15. we have∣∣∣∣an,k(τ)−
(

n−1

k

)
τk

∣∣∣∣ = O(τk+1).

near τ = 0. Thus

|Φn|2 = 1 +
(

2an,0(0)
d an,0

d τ

∣∣∣∣
τ=0

+ 2an,0(0)an,1(0) sin(θ)
)

τ + · · ·

= 1 +
(
−2(n2 − 1)β′(R0)R0

c1
+ 2(n− 1) sin θ

)
τ + · · ·

Again, this shows that the n-th mode is infinitessimally stable if

(n + 1)β′(R0)R0 ≥ c1,

and infinitessimally relatively stable if

(n− 1)c1 ≤ β(R0) + (n2 − 1)β′(R0)R0

which is sharper than the previous criterion. Again, in the diffusive case β′ > 0 all sufficiently high modes
are stable, and there are more stable modes whenever the combustion effect is stronger than the fluid effect.

8. Gevrey like energy estimates for the linearized equation.

The instantaneous analyticity of solutions of the linearized equation may be shown using Gevrey type energy
estimates. We define a norm which is L2 at the initial time, and which shows that for positive time, the
coefficients have strong enough decay so that the solution is analytic in a neighborhood of the the unit circle.
The estimates have no convergence problem for polynomial initial data since the sums remains finite. Thus
the validity for initial data in L2 or L1 may be established using approximation. We assume that the solution
and right dside is expanded by

Φ =
∞∑

k=0

ak(τ) i−k zk, F =
∞∑

k=0

Fk(τ) i−k zk. (72)

Then the solution of the inhomogeneous linearized equation satisfies (53)

d

dτ

[(
β

S 0

)k2−1

ak

]
=
(

β

S0

)k2−1

[kak+1 +RFk] . for k ≥ 0. (73)

The zeroth coefficient is given by

a0(τ) = β(τ)
[
C0

S0
+
∫ τ

0

R(σ)F0(σ)
β(σ)

dσ

]
,

thus this need not be estimated.
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Lemma 16. Suppose β ∈ C1([0,∞)) are there are constants 0 < S0 < S1 so that β(0) = S0, β′ > 0 and
limτ→∞ β(τ) = S1. Let s = S0/S1. Choose 1 < M < ∞ and T > 0 so that 2M − 1 ≥ e2MT . If the initial
data

Φ(0, z) =
∞∑

n=0

Ck i−k zk

is in L2 then for 0 ≤ τ ≤ T , the energy

E1(τ) =
∞∑

k=1

fk(τ)

∣∣∣∣∣
(

β

S0

)k2−1

ak

∣∣∣∣∣
2

≤ ‖Φ(0)‖0 +
∫ τ

0

R(σ)2E3[F ](σ) dσ (74)

where

fk = exp

(
−2Mk

∫ τ

0

(
S0

β

)2k

dτ

)
and F (·, τ) is assumed to have bounded (integrable)

E3[F ] =
∞∑

k=1

fk(τ)

∣∣∣∣∣
(

β

S0

)k2+k−1

Fk

∣∣∣∣∣
2

.

Proof. We first prove the result for polynomial initial data
∑N

k=1 Cki−kzk and polynomial right side∑N
k=1 Fki−kzk whose solution stays polynomial.
Observe that E1(Φ) ≤ E2(Ξ) where Ξ satisfies the system (73) but with initial data

∑N
k=0 |Ck|i−kzk and

right side
∑N

k=0 |Fk|i−kzk. This follow inductively from the fact that aN is constant and that the solutions
of dy/dτ = g(τ) with y(0) = C have |y(τ)| bounded by the solution of dz/dτ = |g(τ)| and z(0) = |C| because
|y(τ)| = |C +

∫ τ

0
g| ≤ |C|+

∫ τ

0
|g|.

For convenience, let Qk = (β/S0)k2−1|ak| and Pk = (β/S0)k2−1R|Fk|. Differentiating, we find for ε > 0,
ηk > 0,

d

dt
E1(Ξ) =

∞∑
k=1

(fk)τQk
2 + 2fkQk(Qk)τ

=
∞∑

k=1

(fk)τQk
2 + 2kfkQk

(
S0

β

)2k+1

Qk+1 + 2fkQkPk

≤
∞∑

k=1

(fk)τQk
2 + kfk

[
εQ2

k +
1
ε
Q2

k+1

](
S0

β

)2k+1

+ ηkfkQ2
k +

fkP 2
k

ηk

≤
∞∑

k=1

(fk)τQk
2 + kεfkQ2

k

(
S0

β

)2k+1

+
k − 1

ε
fk−1

(
S0

β

)2k−1

Q2
k + ηkfkQ2

k +
fkP 2

k

ηk

Taking ε = β/S0, ηk = (S0/β)2k, and using the definition of fk,

d

dt
E1(Ξ) ≤

∞∑
k=1

[(1− 2M)kfk + (k − 1)fk−1 + fk]
(

S0

β

)2k

Q2
k.
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Now note that

(2k − 2)
∫ τ

0

(
S0

β

)2k−2

≥ 2k

∫ τ

0

(
S0

β

)2k−2

− 2τ ≥ 2k

∫ τ

0

(
S0

β

)2k

− 2τ

so that
fk−1 ≤ fke2Mτ .

If we restrict to the interval τ ∈ [0, T ] so that e2Mτ ≤ 2M − 1 then

(1− 2M)kfk + (k − 1)fk−1 + fk ≤ (1− 2M)kfk + (k − 1)fke2Mτ + fk < 0,

so
d

dτ
E1[Ξ] ≤ R(t)2E3[F ](τ)

and the Lemma follows.
The energy estimate (74) says that ΦN , solutions for truncated data form a Cauchy sequence since the

partial sums are Cauchy in Φ in L2. In particular, E1 is uniformly bounded for the truncations of the solution,
hence bounded for Φ.

Note that fk(T ) ≥ exp(−2MkT ) so that Lemma 16. implies that the hypothesis of Lemma 17. is fulfilled.

Lemma 17. Suppose β, F , M , S0 and T are as in Lemma 16. Let 1 > s1 = S0/β(T ). Suppose for some
solution (72) of the linearized equation the solution satisfies

E2 =
∞∑

n=1

s1
2+2ck−2k2

|ak(T )|2 < ∞

where c = −MT/ ln s1. Then for T ≤ τ < ∞, the energy satisfies

E2(Φ) =
∞∑

k=1

s1
2ck

∣∣∣∣∣
(

β

S 0

)k2−1

ak

∣∣∣∣∣
2

≤ E2e
c2(τ−τ1) +

∫ τ

τ1

ec2(τ−σ)R(σ)2E2[F ](σ) dσ

where c2 = 1− s1e
MT−1/ ln s1.

Proof. Arguing as in the previous lemma, where fk = s2ck
1 we find that

dE2(Ξ)
dt

≤

≤
∞∑

k=1

[
ks−c

1 fk

(
S0

β

)2k+1

+ (k − 1)sc
1fk−1

(
S0

β

)2k−1

+ fk

]
Q2

k + fkP 2
k

≤
∞∑

k=1

[
ks2ck−c

1 s2k+1
1 + (k − 1)s2c(k−1)+c

1 s2k−1
1 + s2ck

1

]
Q2

k + s2ck
1 P 2

k

≤
∞∑

k=1

[
ks2k+1

1 + (k − 1)s2(k−1)+1
1 + sc

1

]
s2ck−c
1 Q2

k + s2ck
1 P 2

k

≤ (1 + 2s−c
1 M2)E2[Ξ] +R2E2[F ],

since the function x 7→ xs2x+1
1 is bounded by M2 = −s1/2e ln s1. The conlusion follows as before.
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9. Coalescence of Fingers in the linearized equation.

It is a feature in this equation that the evolution proceeds to move energy from high frequency modes to low
frequency since the lower modes have faster growth in time. Speaking picturesquely about the linearization,
it means that an initial n-fingered perturbation of the circle eventually collapses into a perturbation whose
fingers are concentrated near i on the circle, and then these fingers join together to form a single bump.
This finger collapsing must be evidence that the linearization of the circle fails to portray the stability of the
perturbed figure, once the nonlinear fingering process has progresses away from the circle.

As an application of lemma 13., we show that solutions to (35) eventually coarsen, that is they become
one fingered. This global property of the linearized solution shows that

Lemma 18. Let Ψk = eiθ0z(z + iτ)n−1 be a solution of (35) with β = S1 > 0 constant. Then, when
τ > 3n, the solution is single peaked. This means that u = <eΨn has a single minimum at θ1 and a single
maximum at θ2 such that θ1 < θ2 < θ1 + 2π and u is strictly increasing on (θ1, θ2) and strictly decreasing
on (θ2, θ1 + 2π).

Proof. Let X : θ 7→ eiθ(eiθ + iτ)n−1. Note that for τ > 1 the minimum and maximum distances of
X(S2) to the origin are d1 = (τ − 1)n−1 and d2 = (τ + 1)n−1. We show that for τ sufficiently large, X
is a diffeomorphism of S1 to a convex curve in the plane enclosing the origin. Then <e(eiθ0X(θ)) is single
peaked.

The curvature is computed as usual: the tangent vector

t =
Xθ

|Xθ|
, n = it,

dt
ds

=
tθ

|Xθ|
= κn

so that since curvature is real,

κ =
tθ

it|Xθ|
=

1
iXθ

(
Xθθ

|Xθ|
− Xθ(|Xθ|)θ

|Xθ|2

)
=
=m

(
XθXθθ

)
|Xθ|3

.

For this X and n ≥ 2 we get

κ =
1
M

(
1 +

(n− 2)(1 + sin(θ)τ)
1 + 2 sin(θ)τ + τ2

+
n2 + n sin(θ)τ

n2 + 2n sin(θ)τ + τ2

)
where

M =
(
1 + 2 sin(θ)τ + τ2

)n−2
2
[
n2 + 2n sin(θ)τ + τ2

] 1
2 .

Thus κ > 0 if τ ≥ 3n.
The same method shows that fingers coalesce for arbitrary β and polynomial initial data. The first step

is to prove that the norm of a solution with polynomial initial data is uniformly positive for large time.

Lemma 19. Let β ∈ C1([0,∞)) satisfy (47) for some constants k1, S0, S1. Let Ξ(z, τ) be a solution of (35)
with initial data f =

∑N
n=0 Cnzn so that CN 6= 0. Then for all ε ∈ (0, 1), there is a sufficiently large time

τ > c(S0, S1, ε, f) such that the solution is positive and satisfies

|Ξ(z, τ)− Ξ(0, τ)| ≥ ε|CN |aN,N−1. (75)

Moreover, the solution is single peaked.

Proof. When f is polynomial of degree N = 1 then Ξ = C0β(τ)/S0 +C1e
iθ and Ξ(S1, τ) and is a circle. Put

Φ0 = β(τ)/S0. For convenience, write real coefficients for the polynomial basis functions (43) for n ≥ 1 as

Φn =
n−1∑
k=0

an,kikzn−k =
n−1∑
k=0

an,k ei(π
2 k+(n−k)θ). (76)
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Now for N ≥ 2, set X =
∑N

n=1 CnΦn. First, using Lemma 13. we have

∣∣∣Φn − an,n−1e
i( π

2 (n−1)+θ)
∣∣∣ =

∣∣∣∣∣
n−2∑
q=0

an,pe
−i( π

2 p+(n−p)θ)

∣∣∣∣∣
≤ +an,n−1

n−2∑
p=0

(
n−1

p

)
t1−n+p

= an,n−1
(1 + τ)n−1 − τn−1

τn−1

≤ an,n−1
n(1 + τ)n−2

τn−1

which is less than enτ−1an,n−1 if τ ≥ n. Second, by Lemma 13., if τ ≥ N ,∣∣∣∣∣
N∑
1

CnΦn

∣∣∣∣∣ ≥ |CN |aN,N−1

(
1− eN

τ

)
−

N−1∑
n=0

|Cn|an,n−1

(
1 +

en

τ

)
≥ |CN |aN,N−1

(
1− eN

τ

)
− 4aN,N−1

N−1∑
n=0

|Cn|SN2−n2
τn−N

≥ aN,N−1

|CN | −
|C•|0

(
eN + 8SN2

)
τ


and (75) complete.

To prove single peakedness we argue as in Lemma 18.∣∣∣∣dΦm

dθ
+ iam,m−1e

−i( π
2 (m−1)+θ)

∣∣∣∣ =

∣∣∣∣∣
m−2∑
q=0

am,q(m− q)e−i( π
2 q+(m−q)θ)

∣∣∣∣∣
≤ am,m−1

m−2∑
p=0

(
n−1

p

)
(n− p)t1−n+p

= am,m−1
(1 + τ)m−2(m + τ)− τm−1

τm−1

≤ am,m−1
2m(1 + τ)m−2

τm−1

which is less than 2emt−1am,m−1 if t ≥ m. Similarly,∣∣∣∣d2Φn

dθ2
+ an,n−1e

i( π
2 (n−1)+θ)

∣∣∣∣ =
∣∣∣∣∣
n−2∑
p=0

an,p(n− p)2ei( π
2 p+(n−p)θ)

∣∣∣∣∣
≤ an,n−1

n−2∑
p=0

(
n−1

p

)
(n− p)2t1−n+p

= an,n−1
(1 + τ)n−3(n2 + (3n− 1)τ + τ2)− τn−1

τn−1

≤ an,n−1

[
n2

τ2
+

4n

τ

](
1 +

1
τ

)n−3
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which is less than 5enτ−1an,n−1 if t ≥ n. It follows that

=m
(
XθXθθ

)
=

N∑
m=1

N∑
`=1

CmC`

(
−iam,m−1e

−i( π
2 (m−1)+θ)+[

dΦ̄m

dθ
+ iam,m−1e

−i( π
2 (m−1)+θ)

])
×

×
(

iam,m−1e
i( π

2 (m−1)+θ) +
[
d2Φm

dθ2
+ iam,m−1e

−i( π
2 (m−1)+θ)

])
≥

N∑
m=1

|Cm|2a2
m,m−1 − 2

N−1∑
m=1

N∑
`=m+1

|Cm||C`|am,m−1a`,`−1 −

− 2
N∑

m=1

N∑
`=1

|Cm||C`|am,m−1a`,`−1

{
2m(1 + τ)m−2

τm−1
+

+
[

`2

τ2
+

4`

τ

](
1 +

1
τ

)`−3

+
2m(1 + τ)m−2

τm−1

[
`2

τ2
+

4`

τ

](
1 +

1
τ

)`−3
}

≥ |CN |2s2N2−2τ2N−2 −

(
N∑

m=1

|Cm|

)2 (
2N3 + 9N2 + 6N

)
(1 + τ)2N−3

which is positive for large τ .
Single peakedness can also be proved for nonploynomial initial data, provided that it satisfies a nonde-

generacy condition satisfied by polynomials.

Lemma 20. Let β ∈ C1([0,∞)) satisfy (47) for some constants k1, S0, S1. Let Ξ(z, τ) be a solution of (35).
Assume that the initial data is nonpolynomial f =

∑∞
n=0 Cnzn and satisfies the nondegeneracy condition

lim sup
τ→∞

ε(τ) <
1
6

where

ε(τ) =
∑∞

n=1 |Cn|an,n−1(τ)(nτ + n2)
(
1 + 1

τ

)n−1

τ2 |
∑∞

n=1 Cnin−1an,n−1(τ)|
. (77)

Then, for a sufficiently large time τ > c(C•, S0, S1, χ, f), the solution is single peaked.

Proof. As before, write the polynomial basis functions (43) for n ≥ k ≥ 1 as Φn. Set X =
∑∞

n=0 CnΦn. Let

F (τ) =

∣∣∣∣∣
∞∑

k=1

Cnin−1an,n−1

∣∣∣∣∣
This time, as in Lemma (19.),

|Xθ| ≥

∣∣∣∣∣
∞∑

k=1

Cnin−1an,n−1

∣∣∣∣∣− 2
∞∑

k=1

n|Cn|
τ

an,n−1

(
1 +

1
τ

)n−1

≥ F (τ)(1− 2ε),

|Xθ| ≤ F (τ)(1 + 2ε),

|Xθθ − iXθ| ≤
∞∑

k=1

|Cn|an,n−1

[
n2

τ2
+

6n

τ

](
1 +

1
τ

)n−1

≤ 6εF (τ).
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We find that curvature is a positive multiple of

=m
(
XθθXθ

)
= =m

(
iXθXθ + (Xθθ − iXθ)Xθ

)
≥ |Xθ|2 − |(Xθθ − iXθ)||Xθ|
≥ (F − 2ε)2 − 6εF (F + 2ε).

Since F (τ) →∞ as τ →∞, this quantity is positive for large τ such that (1− 6ε)F > 1.
The constant can be improved by better estimates of the derivatives. The condition holds for initial data

whose coefficients decay sufficiently fast and which do not alternate. For example, we may assume that the
arguments of the Cnin−1 are all the same and the coefficients are monotone in the sense that for a constant
α ∈ (0, 1),

|Cn+2|(n + 2)2 + |Cn+1|(n + 1) ≤ αn|Cn|

for large n. Then, for a sufficiently large time the solution is single peaked. Since any finite number of terms
of ε are negligible for large τ , we may suppose that ρ > 0 is arbitrarily small to be chosen, and

s2n+1 +
2

2 + k1τ
≤ ρ

for n ≥ N . Then, using Lemma 13.,

∞∑
k=N

|Cn|an,n−1

[
n2

τ2
+

6n

τ

](
1 +

1
τ

)n−1

≤
∞∑

k=N

|Cn|
[
n2ρ2an−2,n−3 + nρan−1,n−2

](
1 +

1
τ

)n−1

≤
∞∑

k=N

{
|Cn+2|(n + 2)2ρ2

(
1 +

1
τ

)n+1

+ |Cn+1|(n + 1)ρ
(

1 +
1
τ

)n
}

an,n−1

≤
∞∑

k=N

{
ρ2

(
1 +

1
τ

)2

+ ρ

(
1 +

1
τ

)}(
1 +

1
τ

)n

αn|Cn|an,n−1

≤ 8
49

∣∣∣∣∣
∞∑

k=N

Cnin−1an,n−1

∣∣∣∣∣
provided α < (1−α)τ and 7αρ < 1. An example of data satisfying such a recursion formula is Cnin−1 = sn2

where s ∈ (0, 1).
Consider the function

F (z, τ) =
∞∑

n=1

cnin−1an,n−1(τ)
τn−1

zn−1

where K = 1/ log(S/2). By the estimate an,n−1 ≤ 2Kn−1τn−1/(n + 1)! from Lemma (7.?), we see that F is
an entire function. Moreover, it is majorized by eKτ so it has order one. Let ν(r) be the central index of F .
That is, it is the index of the maximal term,

|ck|ak,k−1

τk−1
rk−1 ≤ µ =

|cν |aν,ν−1

τν−1
rν−1 >

|c`|a`,`−1

τ `−1
r`−1

for all k < ν and ` > ν. Let n be the central index corresponding to r = ατ where α ∈ (0, 1). Then

|ck|ak,k−1 ≤ |cn|an,n−1α
n−k

33



for all k. In particular, ∣∣∣∣∣
n∑

p=1

cpap,p−1

∣∣∣∣∣ ≥ |cn|an,n−1 −
n−1∑
p=0

|cp|ap,p−1

≥ |cn|an,n−1 − |cn|an,n−1

n−1∑
p=0

αn−p

≥ |cn|an,n−1
1− 2α + αn+1

1− α

≥ 1
2
|cn|an,n−1 if α =

1
3

10. Estimates for the integral operator.

The operator is (8)

N [u](θ, τ) =
1
2π

π∫
−π

K(θ, η, τ)
d

dη

[
eu(η,τ)−u(θ,τ) cos(η)

]
dη

where the kernel is given by (9).

Lemma 21. For any 0 < ε < α there is a constant c2(ε, j, k) so that for j, k = 0, 1, 2, . . . and ∂j
θ∂k

τ u ∈
C1+α,(1+α)/2 then

|∂j
θ∂k

τN [u]|ε,(1+ε)/2 ≤ c2e
2ωPj(|∂j

θ∂k
τ u|1+α,(1+α)/2). (78)

where
ω = sup

θ,η∈S1
|u(θ, τ)− u(η, τ)| ≤ |uθ|0

is the oscillation of u and Pj(x) = x(1 + x)j+k+3.

Proof. We regroup the kernel

K =
AB + uθ(θ, τ) + C

A+ 1
where

A(θ, η, τ) =
ch(u(η, τ)− u(θ, τ))− 1

1− cos(η − θ)
, (79)

B(θ, η, τ) =
sh(u(η, τ)− u(θ, τ))− u(η, τ) + u(θ, τ)

ch(u(η, τ)− u(θ, τ))− 1
, (80)

C(θ, η, τ) =
u(η, τ)− u(θ, τ) cos(η − θ)− uθ(θ, τ) sin(η − θ)

1− cos(η − θ)

=

∫ θ

η
(u(s, τ) + uθθ(s, τ)) sin(s− η) ds

1− cos(η − θ)
. (81)

D(θ, η, τ) = eu(θ,τ)−u(θ,τ) [uη(η, τ) cos(η)− sin(η)] (82)

The operator satisfies the following estimate.
The functions A, B, D and uθ cause no trouble. A is essentially the difference quotient and B is a

bounded analytic function with bounded dericative of u(η, τ)− u(θ, τ). For u ∈ C1+α we have that the first
order Taylor polynomial approximates

|u(η)− uθ(θ) sin(η − θ)− u(θ) cos(η − θ)| ≤ c|u|1+α|η − θ|1+α.
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To avoid the singularity at θ− η = π, choose χ(s) ≥ 0 to be a smooth 2π-periodic even cutoff function such
that on [−π, π], χ(s) = 1 if |s| ≤ 1, χ(s) = 0 if |s| ≤ 2 and |χ|3 ≤ 100. Then we may decompose K as follows.
Let

f =
(u(η)− uθ(θ) sin(η − θ)− u(θ) cos(η − θ))χ(θ − η)

sin(η)
.

Then f ∈ Cα. It follows that the nonlinear operator may be decomposed

N [u](θ, τ) = N(θ, η, θ, τ)

where

N(θ, η, ζ, τ) =

=

π∫
−π

A(ζ, η, τ)B(ζ, η, τ) + uθ(ζ, τ) + C(ζ, η, τ)(1− χ(θ − η))
2π(A(ζ, η, τ) + 1)

D(η) dη +

+
1
2π

PV

π∫
−π

f(ζ, η, τ)D(η)
A(ζ, η, τ) + 1

cot
(

θ − η

2

)
dη

=
1
2π

π∫
−π

K1(θ, η, τ) dη +H [K2(·; ζ, τ)] (θ)

and H designates the Hilbert transform. For u ∈ C1+α,(1+α)/2 K1 is Hölder continuous in θ, so first integral
has the same regularity. Since D is exact, the same argument as Lemma (24) works but no regularity is lost
for ζ and τ since |D| is integrable. The Hilbert transform preserves Hölder continuity with respect to η by
Privalov’s theorem, but loses regularity in ζ and τ according to Lemma (24). The dependence is as follows.
A is like a squard difference quotient so behaves like u2

θ. f and C is a linear combination of u’s and uθ’s. C
is an average. Writing c for constants independent of u we find for ∂j

θu ∈ C1+α,(1+α)/2 that in φ = θ or ζ
spatial derivatives, for m = 1, 2 and j = 0, 1, 2,

|∂j
φKm|α,α/2 ≤ ce2ω(|u|1+α,(1+α)/2 + |∂j

φu|1+α,(1+α)/2)(1 + |u|j+3
j+1,α/2).

The result follows from Lemma (24).
The integrals can be differentiated with respext to ζ or τ provided that the resulting derivative has some

extra θ Hölder regularity to maintain integrable dominating functions.

11. Apriori estimates for the nonlinear equation.

To study the nonlinear equation we regard the nonlocal term as given forcing function

∂

∂τ
u(θ, τ) =

1
c1

α

(
−uθθ + uθ

2 + 1

Reu (1 + uθ
2)3/2

) √
1 + uθ(θ, τ)2

eu(θ,τ)
− 1

c1
α

(
1
R

)
+ f(θ, τ) (83)

This equation is parabolic since we assume 0 < α ∈ C1 and α′ < 0. Note that when the curvature is positive,
we may replace α(x) = β(1/x) as usual. The β notation suffers no loss of generality since our arguments
such as the application of the maximum principle occurs at points where curvature is positive. Be begin by
showing solutions satisfy an apriori C0 estimate.
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Lemma 22. Suppose there are positive constants S0 < S1 and s = S0/S1, S = S1/S0 so that β ∈ C1(Q)
where Q = S1 × [0,∞) satisfies the usual hypotheses:

β′ > 0, β(0) = S0, s <
S0

β(R(τ))
≤ s + (1− s)e−k1τ (84)

Suppose f satisfies the inequality
|f | ≤ c2 (85)

for positive c2. Then a solution u ∈ C2(Q) has the estimate

min
{

e−|u0|0 ,
S0

S1 + c2

}
≤ eu ≤

(
e|u0|0 +

S1

c2

)
ec2τ . (86)

If c2 < S1 then u is bounded above

eu ≤ S
S1
k1

(
e|u0|0 +

S1

S1 − c2

)
. (87)

If β satisfies the additional condition ∣∣∣∣βτ

β

∣∣∣∣ ≤ c4e
−k1τ . (88)

for some c4 > 0 and c2 < S1, and f decays

|f | ≤ c5e
−k2τ (89)

for some constants c5 and k2, then the solution tends to zero at best like e−S0τ , namely

(e−|u0|0 − 1)e−S1τ+c7 min{τ,1/k1} − c5c6e
c7/k1V(τ) ≤

≤ eu − 1 ≤ (e|u0|0 − 1)e−S1τ+(c4+S0) min{τ,1/k1} + c5c6e
(c4+S0)/k1V(τ)

where the bound 1/c6 ≤ eu ≤ c6 is given by (86) and (87), c7 = S0 + c4c
1+k1/S1
6 and

V =


e−k2τ − e−S1τ

S1 − k2
, if S1 6= k2,

τe−S1τ , if S1 = k2.

Proof. Bounds are gotten by using the maximum principle to find ODEs that guarantee that their solutions
M(τ) are sub or supersolutions for u. For an upper bound in (86) we suppose that the initial data |u0|0 ≤
M(0) and that if (τ0, θ0) is the first point where u = M then Mτ ≥ uτ at that point. There uθ = 0 and
uθθ ≤ 0 or in other words the curvature κ ≥ e−M (which is positive.) Since β is increasing, we obtain at
(θ0, τ0)

uτ = e−Mβ

(
R
κ

)
− β(R) + f

≤ e−Mβ(ReM )− β(R) + f (90)
≤ S1e

−M + c2 = Mτ .

Integrating this linear ODE in eM gives the first upper bound. If c2 < S1 then (90) yields

uτ − S1e
−M ≤ g = c2 −

S1

1 + (S − 1)e−k1τ
.
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Using
S1

k1
ln s + (S1 − c2)τ ≤ −

∫ τ

0

g =
S1

k1
ln
(
1− s + sek1τ

)
− c3τ ≤ (S1 − c3)τ

in the solution

eM ≤ e|u0|0 exp
(∫ τ

0

g

)
+ S1

∫ τ

0

exp
(∫ τ

τ ′
g

)
dτ ′

yields the estimate (87).
Observe that assuming (88),

β′(R)R =
βτ (R)
β(R)

≤ c4e
−k1τ ≤ c4

(
R
R0

)−k1/S1

we have
d

dx
β(Rx) = β′(Rx)R ≤ c4

x

(
Rx

R0

)−k1/S1

≤ c4Sx−1−k1/S1e−k1τ (91)

which decreases in τ so that we can refine the inequality (90) to

eMMτ ≤ β(R) + c4e
−(1+k1/S1)Me−k1τ (eM − 1)− β(R)eM + feM

(eM − 1)τ ≤ (−β(R) + c4e
−k1τ )(eM − 1) + c5e

−k2τeM

yτ ≤ (−S1 + (c4 + S0)e−k1τ )y + c5c6e
−k2τ ,

where c6 is an upper bound for eM given by (87). For convenience, let E[c](x) =
∫ x

0
ecx dx for any real

number c. Integrating yields

y ≤ e−S1τ
(
y0e

(c4+S0)E[k1](τ) + c5c6e
(S0+c4)/k1E[S1 − k2](τ)

)
.

The inequality (90) follows.
Consider now the subsolution u ≥ m. Again, let θ0 be the point where u(·, τ0) is minimum and equals

m. There uθ = 0 and uθθ ≥ 0, or what is the same, κ ≤ e−u. Since α is decreasing,

uτ = e−mα
( κ

R

)
− β(R) + f

≥ e−mβ (Rem)− β(R) + f

≥ S0e
−m − (c2 + S1) = mτ .

Integrating the linear equation in em gives the left inequality of (86).
Finally, assuming (88) and using (91) then the inequality becomes

(em − 1)τ ≥ β(Rem)− β(R)em − fem

≥ −β(R)(em − 1) + c4(em − 1)e−k1τe−(1+k1/S1)m − c5e
me−k2τ

≥ −
(
S1 − (S0 + c4c

1+k1/S1
6 )e−k1τ

)
(em − 1)− c5c6e

−k2τ

where e−m ≤ c6 is from (87). Integrating the inequality yields (90).
Next we consider apriori gradient estimates. The computation seems to be facilitated by making the

change of variables
v = Atn(uθ) (92)

37



Then we rewrite the curvature of X = eu(θ))(cos θ, sin θ) as

κ = e−u(1− vθ) cos v,

κθ = −e−u[vθθ cos v + (1− v2
θ) sin v],

Thus curvature is positive provided that vθ < 1.
From this we can compute the evolution equation for v by differentiating the equation for u

ut = β

(
R
κ

)
e−u sec v − β(R) + f

vt = uxτ cos2 v

= −β′
(
R
κ

)
κθRe−ucos v

κ2
− β

(
R
κ

)
e−u(1− vθ) sin v + fθ

= β′
(
R
κ

) R [vθθ + (1− v2
θ) tan v

]
(1− vθ)2

− β

(
R
κ

)
e−u(1− vθ) sin v + fθ

Also we can write the evolution equation for w = vθ.

wτ = β′
(
R
κ

)
Rwθθ

(1− w)2
+ β′′

(
R
κ

) R2eu
[
wθ + (1− w2) tan v

]2 sec v

(1− w)4

+β′
(
R
κ

)
2R
[
wθ + (1− w2) tan v

]
(1− w)3

+β′
(
R
κ

) R [wθ + (1− w2) tan2 v − (w + w2) sec2 v
]

1− w

+β

(
R
κ

)
e−u [(1− w) sin v tan v + wθ sin v − (1− w)w cos v] + fθθ

A similar equation holds for z = vθθ

zτ = β′
(
R
κ

)
Rzθθ

(1− w)2
− β

(
R
κ

)
e−uz cos v + · · ·+ fθθθ

where the dots correspond to terms which are at most first derivatives of w and that have coefficients
involving derivatives of β, v or w. The pattern continues for more space and time derivatives. For example,
the evolution of the time derivative y = uτ satisfies

zτ = β′
(
R
κ

) Re−u
[
yθθ + e−uy(1 + u2

θ − uθθ)
]

κ2(1 + u2
θ)

−β

(
R
κ

)
ye−u

√
1 + u2

θ + b1uxyθ + b2e
−k1τ + fτ

where bi(u, uθ, uθθ, τ) are bounded functions.
We have an apriori gradient estimate.

Lemma 23. Suppose β ∈ C1 satisfies (84) and (88) and f ∈ C1,0(Q) so that

|f |0 < S1, |f |1 ≤ c7e
−k2τ .

If u ∈ C3,1(Q) is a solution to (83) with initial condition u(θ, 0) = u0(θ) then if |u0|1 and c2 are sufficiently
small, then there is a bound on uθ. There are constants τ1, C1,C2 c8, c9 depending on c4, k1, R0, S0, S1
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and |u0|0 |u0,θ| ≤ C1 and c7 ≤ C2 then uθ is bounded and tends to zero exponentially. The estimate holds in
two parts: For 0 ≤ τ ≤ τ1,

|uθ|√
1 + u2

θ

≤

(
|u0,θ|0√

1 + |u0,θ|20
+

c7

c9 + k2

)
ec9τ .

For τ1 ≤ τ ,
|uθ|√
1 + u2

θ

≤

(
|u0,θ|0√

1 + |u0,θ|20
+

c7

c9 + k2

)
ec9τ1e−c8S0(τ−τ1)/2 + c7W(τ)

where

W(τ) =



2e−k2τ

c8S0 − 2k2
, if c8S0 > 2k2,

τe−2k2τ , if c8S0 = 2k2,

2e−k2τ1e−c8S0(τ−τ1)/2

2k2 − c8S0
, if c8S0 < 2k2.

Proof. We define a supersolution M to (92) as the solution to an ODE with M(0) = |u0|1 and verify that
M ≥ v using the maximum principle. Since u(−θ, τ) solves the problem with f replaced by f(−θ, τ), a
lower bound is also given by −M . Let (θ0, τ0) be the first point where v = M where vθ = 0 and vθθ ≤ 0.
At such a point curvature is positive so we may write β. By Lemma (22.) there are constant so that
0 < c8 ≤ e−u ≤ c−1

8 and β′R ≤ c4e
−k1τ . Hence (91) implies

β′(Reu sec v)R ≤ c4

(
R0

R

) k1
S1
(

cos v

c8

)1+
k1
S1

≤ c4S

(
cos v

c8

)1+
k1
S1

e−k1τ .

Thus at the maximum point there is c9 so that

vτ ≤ β′(Reu sec v)R tan v − βe−u sin v + fθ

≤ c9e
−k1τ sin v − c8S0 sin v + c7e

−k2τ .

A simple estimate is to consider first τ in the interval [0, τ1] where

2c9e
−k1τ1 = c8S0.

If τ1 < 0 we set τ1 = 0 and skip to the second interval. On this interval, multiplying by cosine,

(cos v)vτ ≤ c9 sinM + c7e
−k2τ = (cos M)Mτ

Integrating we find

sinM ≤
(

sin(|v0|0) +
c7

c9 + k2

)
ec9τ .

For |u0,θ|0 and c7 sufficiently small sinM < 1 and so uθ remains finite. For concreteness, this holds provided
3|v0|0ec9τ1 ≤ 1 and 3c7e

c9τ1 ≤ c9 + k2.
For τ ≥ τ1 we have the inequality

(cos v)vτ ≤ −
1
2
c8S0 sinM + c7e

−k2τ = (cos M)Mτ
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whose integral satisfies in the notation of Lemma (22.),

sinM ≤ sin(M(τ1))e−c8S0(τ−τ1)/2+

+c7

(
E

[
c8S0

2
− k2

]
(τ)− E

[
c8S0

2
− k2

]
(τ1)

)
e−c8S0τ/2.

This implies the estimate. Choosing c7 smaller if necessary implies M < 1 for all time and uθ → 0
exponentially. In particular we require that c7 also satisfy 3c7τ1 < ek2τ1 if c8S0 = 2k2 and 6c7 < |c8S0 −
2k2|ek2τ1 otherwise.

Along the same lines we show that convexity can be proved for solutions of the equation. We obtain
higher derivative estimates.

Lemma 24. For j, k natural numbers suppose β ∈ Cj+k satisfies (84), (88) and∣∣∣∣(βτ

β

)
τ

∣∣∣∣
j,k

≤ c4e
−k1τ . (93)

Assume f ∈ Cj,1(Q) so that
2|f |0 < S1, |f |j,k ≤ c7e

−k2τ .

For any 0 < δ < 1 there are positive constants τ1, C1, C2, C3 and c8, c9, c11 depending on c4, δ, k1, R0, S0,
S1 and |u0|1 so that if |v0|j,1 ≤ C1, c7 ≤ C2 and k2 ≤ C3 then vθ < δ and tends to zero exponentially. c11

tends to zero as C1 + C2 → 0. The estimate is given in two intervals. For 0 ≤ τ ≤ τ1,

|v|j,k ≤ (|v0|j,k + c11) ec9τ .

For τ1 ≤ τ ,
|v|j,1 ≤ (|v0|j,k + c11) ec9τ1e−c8(τ−τ1)/2 + c11e

−k2τ min{τ − τ1, 1}.

Proof. We proceed as before one derivative at a time starting with the first. The ODE for a supersolution
M will be valid as long as M ≤ δ (so that the curvature is positive.) We show that if the initial data and
right side are small enough, M ≤ δ for all τ . By lemmas (22.) and (23.), for the correct choice of C1 and
C2 we can arrange that

|eu − 1|+ | tan v| ≤ c5e
−k2τ ≤ δ.

Computing as before,

β′′(R)R2 =
(

βτ

β

)
τ

− β′(R)R

thus,

β′′
(
R
κ

)
R2 ≤ c6e

−k1τ .

At a possible point (θ0, τ0) where a solution first touches w(θ0, τ0) = M(τ) ≤ δ we have wθ = 0 and wθθ ≤ 0.
The terms which aren’t linear in w contain factors sin v, tan v and fθθ which decay c10e

−k2τ where c10 can be
made small by requiring C1 and C2 to be small.The term βe−u(1−w) cosp v ≥ c8 > 0 is uniformly positive.
The remaining linear term is β′R sec2 v(1− w)−1(1 + w)w ≤ c9we−k1τ . Thus at the maximum point,

wτ ≤ −c8w + c9we−k1τ + c10e
−k2τ

which is exacly the differential inequality discussed in Lemma (23.).
The lower bound is obtained in the same way. δ is unnecessary as the denominators help in this case.

The equation for the next higher derivative and time derivative has the same form and is handled in the
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same way, each time using the previous decaying terms to handle the junk terms. Since j + k is finite, the
procedure stops.

It follows that for small data, an initially convex curve remains convex. Notice that for second derivatives
and higher, the

Lemma 25. Suppose β ∈ C1(I) so that β′ > 0 and

s ≤ S0

β(R(τ))
≤ s + (1− s)ek1τ

for all τ ∈ I. Then
R0s

S1/k1eS1τ ≤ R ≤ R0e
S1τ

Proof. R satisfies
S1e

k1τ

ek1τ + S − 1
≤ dR
Rdτ

= β(R) ≤ S1

Thus integrating yields
S1

k1
ln
(

ek1τ + S − 1
S

)
≤ ln

R
R0

≤ S1τ

and the lemma follows.
The condition corresponds to the Hölder continuity of α at zero. Note that if α(κ) = S1 − aκ + o(κ) is

C1 in a neighborhood of zero then β satisfies the better inequalities

S1 − ae−S1τ ∼= β ≥ S1

1 + (S − 1)e−k1τ
≥ S1 − S1(S − 1)e−k1τ

thus
k1
∼= S1.

12. Long time solvability the nonlinear equation.

In this section, we show that for sufficiently small c1, the strength of the fluid effects compared to the
combustion the nonlinear problem (83) admits an infinte time solution u ∈ C2(S1× [0,∞) for arbitrary, but
small initial data u0 ∈ C2. For some small constant k2 depending on β ∈ C2+δ[0,∞) and c1, we shall show
that the solution satisfies |u|2,1 ≤ c2e

−k2τ for all (θ, τ) ∈ Q = S1× [0,∞). Let QT = S1× [0, T ]. This implies
that a solution is strongly asymptotically stable. In other words, in regimes where combustion dominates,
any small perturbation of the rising circle is asymptotic in the sense that in the original time and radius
variables, ∣∣∣∣R(θ, t)−R(t)

R(t)

∣∣∣∣
2,1

≤ c2t
−k2/S1

as t →∞.
We prove that in any finite time interval, the Cauchy problem admits a solution. This is done by fixed

point theorem in an appropriate weighted Hölder space. Since we have derived estimates independent of the
time interval solutions dont degenerate with time.

We begin by defining our time weighted Banach spaces. Let ℘ ∈ C[0,∞) be a weight function. We have
in mind

℘(τ) = e−k2τ
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where k2 > 0. Then define the weighted Banach space

Ck+δ,(k+δ)/2
℘ (Q) =

{
u ∈ C

k+δ,(k+δ)/2
loc (Q) : |u|℘,k+δ,(k+δ)/2 < ∞

}
where the norm

|u|℘,k+δ,(k+δ)/2,Q := sup
τ≥0

℘(τ)|u|Ck+δ,(k+δ)/2(S1×{τ})

The apriori estimates say that rate of decay of the solution is the least of the rate of the decay of the
inhomogeneous term, and a rate determined by the equation. The constants k2 is chosen to be smaller than
the rates arising from finitely many estimates for ∂j

θ∂k
τ u ∈ C

1+δ,(1+δ)/2
℘ . Then setting f = N [u] which is

in C
1+δ/2,1/2+δ/4
℘ then the etimates say that solutions of (94) satisfy |w|℘,j,k ≤ c13|v|℘,j,k for j = 0, 1, 2 for

some constant c13 depending on δ, β, δ, and R0.
We state and prove the existence theorem.

Theorem 26. Let β ∈ C5+δ([0,∞) satisfy conditions (84),∣∣∣∣βτ

β

∣∣∣∣
5

≤ c4e
−k1τ

where 0 < S1 < S2 and 0 < c4, k1, R0. Then there is a constants c3, c4, c5, c6 depending on c2, S1, S2, k1, R0

so that if δ ≤ c6, |u0|2+δ ≤ c3, c1 ≤ c4 and k2 ≤ c5 then there is a solution u ∈ C
2+δ,1+δ/2
℘ (Q) to (83) such

that u(θ, 0) = u0(θ).

Proof. Choose T < ∞ We set up a Shauder Fixed Point Theorem argument in QT . Let v ∈ B where
B = {x ∈ X : ‖x‖X ≤ r} is a ball of radius r ≤ 1 in X = C

2+δ,(1+δ)/2
℘ (QT ). Define a mapping T : B → X

where w = T v is defined to be the unique solution of the inhomogeneous mean curvature flow equation

wτ = α

(
κ[w]
R(τ)

)
e−w

√
1 + w2

θ − β(R(τ) + c1N [v](θ, τ). (94)

Since v ∈ C2+δ,(1+δ)/2(QT ) it follows from Lemma (21.) that N [v], (N [v])θ ∈ Cε,ε/2 where ε = δ/2. Fur-
thermore, |N [u]|X ≤ c5r where c5 is a universal constant. By lemmata (22.), and (23.), we know that
any solution w remains bounded in C1. Hence the equation is uniformly elliptic along solutions. Thus, by
cutting off growth of |wθ| above its bound in the equation, we obtain a uniformly elliptic equation whose
ellipticity constants depend on T . By the existence theorem for the one dimensional fully nonlinear uni-
formly elliptic equations, (e.g. [10]), the equation has a solution w ∈ C2+γ,1+γ/2 where γ depends on T . The
equation for wθ is now also uniformly elliptic. Again, by the unique existence theorem there is a solution
wθ ∈ C2+γ′,1+γ′/2(QT ) which equals the derivative of w by uniqueness. γ′ depends on T here also. Note
that the time Hölder constant < N >

(1+γ)/2
τ ≤ c|u|2+δ,1+δ/2. Also since wθ has a Hölder continuous time

derivative, the left side of the equation for w is differentiable in time, thus the solution w ∈ C3+γ,(3+γ)/2. In
any case, the mapping T is compact.

Thus we need to prove that any fixed points of the mapping

T u = c1N [u]

are strictly within a fixed ball, and then the result follows from the Schauder fixed point theorem. The idea
is to use bootstrapping on the solution to prove that u is sufficiently differentiable.

Since u ∈ C2,1
℘ , equations for derivatives are uniformly parabolic on [0, T ]. Start with u ∈ Ck+γ,(k+γ)/2(S1×

[T1, T ]). We haveN [u] ∈ Ck−1+γ′,(k+γ′)/2(S1×(T1, T ]). This implies u ∈ Ck+1+γ′′,(k+1+γ′′)/2(S1×[T1+ε, T ]).
Repeating five times proves that ∂j

θ∂k
τ u for j + k ≤ 3, k ≤ 2 are C2,1(S1× [5ε, T ]) and therefore the gradient
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estimates apply. The inital values for w,wθ, wθθ and therefore uτ are given by v. The regularity at τ = 0
is handled letting the flow smooth the solution for τ ∈ [0, 1] and assuming γ(1) ≥ δ and ε = 0.1. Thus the
fundamental inequality implies for constants c9 depending on δ. β, R0, k1, c− 4 that for 0 ≤ τ ≤ 1

|u|2+δ,1+δ/2 ≤ |u0|2+δe
c9τ + c1c4c9

and ∑
j+k≤3, k≤2

|∂j
θ∂k

τ u|0,S1×{5ε} ≤ c9|u0|2+δ + c1c9.

For τ ≥ 1, using the the estimates on higher derivatives, Lemma (24.),

|u|2+δ,1+δ/2 ≤
∑

j+k≤3, k≤2

|∂j
θ∂k

τ u|0

≤ c9(|u0|2+δe
c9τ + c1c4c9)e−S1τ+min{τ−1,1/k1} + c1c9e

−k2 .

In particular, for an appropriate choice of c1 and |u0|2+δ small enough then

|u|℘,2+δ,1+δ/2 < r

for any fixed point.

13. Appendix A. Derivation of the linearized equation about the rising circle.

We wish to linearize the equations around the rising circle solution Γ(t). Thus suppose X(t, θ; ε) ∈ C1(R×
S1×(−δ, δ)) is a parameterization such that X̂(t, θ; 0) = X(t, θ). Thus we replace R(t) by R̂ = R(t)+εu(t, θ)
and take

X̂(t, θ; ε) = ((R(t) + εu(t, θ)) cos θ, (R(t) + εu(t, θ)) sin θ + F (t))

where F and R are as before. This is general since n is transverse to the circle at ε = 0. This fixes a
parameterization for other ε. Let t = (− sin θ, cos θ) be the tangential vector field. Then the normal vector
up to first order in ε,

n̂ =
(R + εu)n− εuθt√
(R + εu)2 + ε2uθ

2
= n− εuθ

R
t + . . .

so
〈n̂, ∂2〉 = sin θ − εuθ

R
cos θ + . . .

First we compute the linearization of N . The normal velocity of Γ̂ is

V̂ =

〈
n̂,

∂X̂

∂t

〉
= V + ε

(
ut +

g[ρ]`2

24µR
uθ cos θ

)
+ . . . (95)

Assume that the pressure is given by the harmonic functions of the form

P̂1 = −gρ1 (r sin θ + F (t))− g[ρ]R(t)2

2r
sin θ

+εg[ρ]
∞∑

k=1

r−k {ak cos kθ + bk sin kθ}+ . . . ,

P̂2 = −gρ1 (r sin θ + F (t))− g[ρ]r
2

sin θ +

+εg[ρ]

(
c0 +

∞∑
k=1

rk {ck cos kθ + dk sin kθ}

)
+ . . . .
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Then the jump condition [P̂ ] = 0 holds at ε = 0. Since

P̂2 − P̂1 = −g[ρ]
2

(
r − R2

r

)
sin θ + εg[ρ]c0 (96)

+εg[ρ]
∞∑

k=1

{
ckrk − akr−k

}
cos kθ +

{
dkrk − bkr−k

}
sin kθ

We also assume that [P̂ ]|r=R̂ = 0 for all ε, thus d/dε|ε=0[P̂ ] = 0 implies

u sin θ = c0 +
∞∑

k=1

{
ckRk − akR−k

}
cos kθ +

{
dkRk − bkR−k

}
sin kθ (97)

Now assume that we have the expansion

u(θ) = u0 +
∞∑

k=1

uk cos kθ + vk sin kθ

then using identities like 2 cos kθ sin θ = sin(k + 1)θ − sin(k − 1)θ to expand u sin θ yields

2c0 = v1,

2Rc1 − 2R−1a1 = v2, (98)
2Rjcj − 2R−jaj = vj+1 − vj−1 for j ≥ 2,
2Rjdj − 2R−jbj = uj−1 − uj+1 for j ≥ 1.

In polar coordinates, the gradient is ∇P = Prn + r−1Pθt so that

∂P

∂n̂

∣∣∣∣
r=R̂

=
〈

Prn +
Pθ

r
t,n− εuθ

R
t + . . .

〉
= Pr(R̂, θ)− εPθ(R, θ)uθ

R2
+ . . .

The first term is using (96), (97),[
∂P̂

∂r

]
= −g[ρ] sin θ +

εg[ρ]u
R

sin θ

+
εg[ρ]
R

∞∑
k=1

{
ckRk + akR−k

}
k cos kθ +

{
dkRk + bkR−k

}
k sin kθ

= −g[ρ] sin θ +
εg[ρ]
R

c0

+
εg[ρ]
R

∞∑
k=1

{
(k + 1)ckRk + (k − 1)akR−k

}
cos kθ (99)

+
εg[ρ]
R

∞∑
k=1

{
(k + 1)dkRk + (k − 1)bkR−k

}
sin kθ

Since θ derivatives of (96) vanish at zeroth order at r = R̂, by (99) and (96) the second summand of [∂P̂ /∂n̂]
vanishes up to the first oder term. Thus equating the jump conditions yields

−g[ρ]〈n̂, ∂2〉 = −g[ρ]
(
sin θ − εuθ

R
cos θ + . . .

)
=

[
∂P̂

∂n̂

]
=

[
∂P̂

∂r

]
+ . . .
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Equating to (99) gives after expanding uθ cos θ,

2c0 = v1

2(j + 1)Rjcj + 2(j − 1)R−jaj = (j − 1)vj−1 + (j + 1)vj+1 for j ≥ 1,
2(j + 1)Rjdj + 2(j − 1)R−jbj = −(j − 1)uj−1 − (j + 1)uj+1

Solving these with (98) yields a1 = 0, and for j ≥ 1,(
aj bj

cj dj

)
=

1
2

(
Rjvj−1 −Rjuj−1

R−jvj+1 −R−juj+1

)
where we interpret v0 = 0. Thus the harmonic functions take the form

P̂1 = −gρ1 (r sin θ + F (t))− g[ρ]R(t)2

2r
sin θ

+
εg[ρ]

2

(
−u0R

r
sin θ +

∞∑
k=2

Rk

rk
{vk−1 cos kθ − uk−1 sin kθ}

)
+ . . . ,

P̂2 = −gρ1 (r sin θ + F (t))− g[ρ]r
2

sin θ

+
εg[ρ]

2

(
v1 +

∞∑
k=1

rk

Rk
{vk+1 cos kθ − uk+1 sin kθ}

)
+ . . . .

Finally, we get an expression for the hydrodynamic normal velocity

V̂h = 〈n̂, ŵ〉 = − `2

12µ

(
∂P̂2

∂n̂
+ gρ2〈n̂, ∂2〉

)

= −g[ρ]`2

24µ

(
sin θ − εuθ

R
cos θ +

ε

R

∞∑
k=1

{vk+1k cos kθ − uk+1k sin kθ}

)

= −g[ρ]`2

24µ

(
sin θ − ε

2R
v1

)
−εg[ρ]`2

48µR

∞∑
k=2

(k − 1) {(vk+1 − vk−1) cos kθ − (uk+1 − uk−1) sin kθ}

Let U be the harmonic function in the unit disk such that U = u on S1. Let Ũ be a harmonic conjugate
so that Φ := U + Ũ i is analytic in the disk. The conjugate function of ũ is the restriction of Ũ to the unit
circle. It is defined for u ∈ L2(S1) and satisfies ‖ũ‖ = ‖u−u0‖. It is given by the Hilbert transform or series

ũ =
1
2π

PV

∫
S1

u(θ − σ) cot
(σ

2

)
dσ,

=
∞∑

k=1

uk sin kθ − vk cos kθ

where the integral is in the principal value sense. ũ is defined for u ∈ L1 [7] and by Privalov’s theorem,
ũ ∈ Ck+α for u ∈ Ck+α [19]. Applied to our equation, the normal velocity may be expressed

V̂h = −g[ρ]`2

24µ
sin θ +

εg[ρ]`2

24µR

(
uθ cos θ − ∂

∂θ
(ũ sin θ + (u− u0) cos θ)

)
+ . . .
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Consider the curvature term. In these coordinates,

κ̂ =
−R̂R̂θθ + 2R̂θ

2 + R̂2(
R̂2 + R̂θ

2
)3/2

=
−ε(R + εu)uθθ + 2ε2uθ

2 + (R + εu)2

((R + εu)2 + ε2uθ
2)3/2

=
1
R
− uθθ + u

R2
ε + . . .

Thus

V̂c = L(Γ) = α(κ) = α

(
1
R

)
− α′

(
1
R

)
(uθθ + u)

R2
ε + . . . .

Using (95)
∂u

∂t
= Vu = −α′(1/R)

R2

(
∂2u

∂θ2
+ u

)
− g[ρ]`2

24µR

∂

∂θ

(
ũ sin θ + (u− u0) cos θ

)
. (100)

14. Appendix: Eigenvalues of the linearized operator and integral equations.

Now we shall estimate eigencvalues of (29). Suppose y is any nonzero eigenfunction corresponding to a real
eigenvalue. If y is constant then λ = −1. If nonconstant, multiplying the equation and integrating

0 =
∫

(y′′ + c1My + (1 + λ)y) y

= −
∫

(y′)2 + c1

∫
yMy + (1 + λ)

∫
y2

≤ −‖y′‖2 + c1‖y‖‖y′‖+ (1 + λ)‖y‖2

≤ −‖y′‖2 + ‖y′‖2 +
c1

2

4
‖y‖2 + (1 + λ)‖y‖2

hence the eigenvalues are bounded below by −1− c2
1/4 ≤ λ.

We argue that the operator L = β′(∂θθ + 1) + cR−1M is sectorial as a map C2+α → Cα for each t.
Making the change of variables as in (18), we show that V = ∂θθ + gM is sectorial. Thus assume that
v ∈ C2+α ⊂ H1 is a complex eigenfunction

vθθ + gMv + λv = 0

with eigenvalue λ.
V is a real operator V v̄ = Vv but it isn’t necessarily self adjoint. Thus, multiplying the eigenequation by

the complex conjugate and the conjugated equation by the function and integrating we get,∫
v̄vθθ + gv̄Mv dθ = −λ

∫
v̄v dθ,∫

vv̄θθ + gvMv̄ dθ = −λ̄

∫
v̄v dθ.

Subtracting, using v0 = 0 and ‖vMv‖ ≤ ‖vθ‖ ‖v − v0‖, we get

‖vθ‖2 − g‖vθ‖ ‖v‖ ≤
∫

v̄θvθ − g<e(v̄Mv) dθ = <eλ‖v‖2

g‖vθ‖ ‖v‖ ≥ g

∣∣∣∣∫ =m (v̄Mv) dθ

∣∣∣∣ = |=mλ|‖v‖2.
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Thus using Wirtinger’s inequality ‖v − v0‖ ≤ ‖vθ‖ we have for any ε > 0,

|=mλ|‖v‖2 ≤ g‖vθ‖ ‖v‖

≤ ε
(
‖vθ‖2 − g‖vθ‖ ‖v‖

)
+

(1 + ε)2

4ε
g2‖v‖2

≤
(

ε<eλ +
(1 + ε)2g2

4ε

)
‖v‖2.

Minimizing over ε > 0 yields 4<eλ ≥ −g2 and

2|=mλ| ≤ g2 + g
√

g2 + 4<eλ.

The discreteness of the spectrum depends on Fredholm properties of the corresponding integral equations.
The methods of Sherman and Vekua, which coincide on the circle, are to represent the unknown function by
the Cauchy type integral.

Φ(z) = T (µ, c) =
1

2πi

∫
γ

µ(σ)
ζ2

(ζ − z) ln
(

1− z

ζ

)
dζ +

1
2π

∫
γ

µ(σ) dσ + ci

where µ(σ) is an unknown Hölder continuous real function of arclength, ζ = eiσ and c is a real constant. By
Vekua’s Theorem ([14], p.192), the second derivative of this function has Hölder continuous boundary values
on S1 and µ and c are uniquely determined by Φ. This operator has a kernel function which is continuous
up to the circle. Then for |z| < 1,

Φ′(z) = − 1
2πi

∫
γ

µ(σ)
ζ2

[
1 + ln

(
1− z

ζ

)]
dζ,

Φ′′(z) =
1

2πi

∫
γ

µ(σ) dζ

ζ2(ζ − z)
.

The first integral has an integrable kernel function with logarithmic singularity. Thus the limit z → z0 ∈ γ is
obtained by substituting z0 for z. The second is singular. However, in the Hilbert problem, this reduces also
to a Fredholm type kernel function. Inserting the boundary values into (31), using the Sokhotski-Plemelj
formula for the boundary values of the leading order term yields

<e[z2Φ′′(z)] = <e
[
µ(θ)

2
+

1
2πi

∫
γ

z2µ(σ) dζ

ζ2(ζ − z)

]
.

This is transformed to a regular integral using∫
γ

z2µ(σ) dζ

ζ2(ζ − z)
=
∫

γ

z2 − ζ2

ζ2(ζ − z)
µ(σ) dζ +

∫
γ

µ(σ)
ζ − z

dζ.

But the real part of the Cauchy formula may be expressed as a double layer potential (Poisson kernel
function)

<e
[

1
2πi

∫
γ

µ(σ)
ζ − z

dζ

]
=

1
2π

∫
γ

µ(σ)
cos ∠(n, r)

r
dσ

where r = z − ζ. This operator is also Fredholm. Thus as z → γ,

<e
[

1
2πi

∫
γ

µ(σ)
ζ − z

dζ

]
→ 1

2π

∫
γ

cos
(

θ − σ

2

)
µ(σ) dσ,

<e
[

1
2πi

∫
γ

z2 − ζ2

ζ2(ζ − z)
µ(σ) dζ

]
→ − 1

2π

∫
γ

cos2
(

θ − σ

2

)
µ(σ) dσ.
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Also

1 + ln
(

1− z

ζ

)
= ln

[
2e sin

|θ − σ|
2

]
+ i sgn(θ − σ)

(
π

2
− |θ − σ|

2

)
,(

1− z

ζ

)
ln
(

1− z

ζ

)
= 2 sin

|θ − σ|
2

{
sin

|θ − σ|
2

ln
(

2 sin
|θ − σ|

2

)
− cos

|θ − σ|
2

(
π

2
− |θ − σ|

2

)}
+ 2i sin

θ − σ

2

{
ln
(

2 sin
|θ − σ|

2

)
cos

|θ − σ|
2

+ sin
|θ − σ|

2

(
π

2
− |θ − σ|

2

)}
.

This means that we get a Fredholm integral equation for µ. (31).

Nµ := µ(θ) +
∫

γ

K(θ, σ; c, λ)µ(σ) dσ = 0 (101)

where µ and c are unknowns. The adjoint integral equation is defined to be

N ∗ν := ν(θ) +
∫

γ

K(σ, θ; c1, λ)ν(σ) dσ. (102)

We can be more specific about the dependence on constants in the kernel function K. In particular, K may
be decomposed

K(θ, σ; c1, λ) = K1(θ, σ) + c1K2(θ, σ) + (1 + λ)K3(θ, σ).

For w = z/ζ it is convenient to observe that analytic functions f satisfy f(w̄) = f̄(w). For the functions
we have, the coefficients of the power series are real, thus f̄ = f and we may deduce symmetry properties.
The kernel functions K1 and K3 are symmetric and K2(θ, σ) = −K2(σ, θ) is antisymmetric. The Fredholm
theorems apply to these operators. η ∈ C denotes an eigenvalue ofN whenever there is a nontrivial null space
Eη of the operator N + η. The Fredholm theory tell us that there are at most countably many eigenvalues η
and that each eigenspace Eη is finite dimensional. Moreover, the set of eigenvalues is discrete and can only
accumulate at −1 as formulated. The dimensions of the eigenspaces of the equation and adjoint equation
coincide, so that if η is an eigenvalue of N it is an eigenvalue of N ∗. The alternative holds. If η is not an
eigenvalue of N ′ then Nµ + ηµ = f(θ) can be solved uniquely for any f . If η is an eigenvalue, then it can
be solved only if f⊥Eη and the dimension of the solution space equals dim Eη.

Theorem 27. The set of eigenvalues λ of the equation (29) forms a countable discrete set of real numbers
which tend to +∞. For each eigenvalue λ there is a finite dimensional space of eigensolutions.

Proof. The relation between solutions is the following. If Hölder y solves (29), then Φ = Y + iỸ solves (31)
where by choice, ỹ has zero average so Ỹ (0) = 0 so Φ = T (µ, 0). Now Φ = T (µ, c) is a one to one
correspondence such µ is Hölder. Thus solutions of (29) are in one to one correspond to solutions of (101)
via y = <eT (µ, 0). If zero is not an eigenvalue of N ′, then the equation Nµ = 0 has only zero solution.

Let

K1µ(θ) := µ(θ) +
∫

γ

(
K1(θ, σ) + c1K2(θ, σ)− c2

1K3(θ, σ)
)
µ(σ) dσ,

K2µ(θ) :=
∫

γ

K3(θ, σ)µ(σ) dσ.
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Consider the equation Kµ = f . The solubility depends on the K′ whose kernel function is by symmetry
K1 − c1K2 − c2

1K3. In particular this is the integral equation corresponding to the differential equations

y′′ − c1My − c2
1y = 0.

Multiplying by y, integrating,

0 = −‖y′‖2 − c1

∫
γ

yMy − c2
1‖y‖2

≤ −‖y′‖2 + c1‖y‖‖y′‖ − c2
1‖y‖2

which implies y is constant zero. Thus K is invertible with a resolvent which is also a Fredholm operator.
Our eigenvalue problem is equivalent to the Fredholm equation

µ + (c2
1 + 1 + λ)K−1

1 K2µ = 0.

Thus the set of eigenvalues of K−1
1 K2 is a discrete sequence tending to infinity and eigenspaces are finite

dimensional. Moreover, there is a Fredholm alternative [5].
We confirmed the reality assumption by the Hilbert boundary problem solution. The lower estimate then

tells us the eigenvalues run off to infinity.
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49
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