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2. References

The URL for these Beamer Slides: “Steiner Symmetrization and
Applications”

http://www.math.utah.edu/treiberg/Steiner/SteinerSlides.pdf



3. Outline.

Steiner Symmetrization.

Symmetrization preserves area.

Symmetrization reduces diameter.

Isodiametric inequality.

Symmetrization reduces length.

Steiner’s proof of the isoperimetric inequality.

Existence of a solution of the isoperimetric problem.

Other Geometric Problems solved by symmetrization.

Proof that a circular tambourine has the lowest bassnote among
tambourines of the same area.



4. Steiner Symmetrization setup

Let Ω ⊂ Rn be a bounded domain with piecewise C 1 boundary. Let
Ln−1 ⊂ Rn be a hyperplane through the origin.

Rotate space so that L is the xn = 0 hyperplane. For each x ∈ L let the
perpendicular line through x ∈ L be

Gx = {x + yen : y ∈ R}.

Let mx = |Ω ∩ Gx | be the measure (total length) of the slice.
Replacing the slices by intervals centered on the L with the same length
yields the symmetrized domain

SL(Ω) =
{
x + yen : x + zen ∈ Ω for some z and −1

2mx ≤ y ≤ 1
2mx

}
.

Let Π : Rn → L be the orthogonal projection.



5. Steiner Symmetrization



6. History

Figure: Jakob Steiner (1796–1863)

“Calculating replaces thinking while
geometry stimulates it”.

Jakob Steiner, a self made Swiss
farmer’s son and contemporary of Gauss
was the foremost “synthetic geometer.”
He hated the use of algebra and analysis
and distrusted figures. He proposed
several arguments to prove that the
circle is the largest figure with given
boundary length. Besides
symmetrization, his four-hinge method
has great intuitive appeal, but is limited
to two dimensions. He published several
proofs trying to avoid analysis and the
calculus of variations.



7. Steiner Symmetrization Preserves Volume

Let ω = Π(Ω) be the projection in L. The result follows from Fubini’s
Theorem.

V (Ω) =

∫
(x1,...,xn−1)∈ω

(∫
xn∈Gx∩Ω

dxn

)
dx1 dx2 · · · dxn−1

=

∫
(x1,...,xn−1)∈ω

m(x1,...,xn−1,0) dx1 dx2 · · · dxn−1

=

∫
(x1,...,xn−1)∈ω

(∫
xn∈Gx∩S(Ω)

dxn

)
dx1 dx2 · · · dxn−1

= V (SL(Ω)).



8. Steiner Symmetrization Reduces Diameter.

The diameter is the largest distance between points.

diam(Ω) = sup
x,y∈Ω

d(x, y).

Choose (x, z) and (y,w) in S(Ω) where x, y ∈ L.
To see that their distance apart is at most diam(Ω), we must show that

δ̃2 = d
(
(x, z), (y,w)

)2
≤
(

mx + my

2

)2

+ ‖x− y‖2

≤ sup
p ∈ Gx ∩ Ω,
q ∈ Gy ∩ Ω

d(p,q)2

= δ2

≤ diam(Ω)2



9. Proof that symmetrization decreases diameter

Let a = min(Gx ∩ Ω),
b = max(Gx ∩ Ω), c = min(Gy ∩ Ω),
d = max(Gx ∩ Ω) so that

δ2 = (b − d)2 + ‖x− y‖2 ≤ diam(Ω)2.

This is the longer diagonal so
(b − c)2 ≥ (d − a)2.
By symmetrizing,
2b̃ = −2ã = mx ≤ b − a and
2d̃ = −2c̃ = my ≤ d − c
Thus

4δ̃2 =
(
2b̃ + 2d̃

)2
+ 4‖x− y‖2

≤ (b − a + d − c)2 + ‖x− y‖2

≤ (2[b − c])2 + 4‖x− y‖2 = 4δ2.



10. Isodiametric Inequality

Theorem (Bieberbach, 1915)

Let K ⊂ Rn be a compact domain. Then the volume satisfies

|K | ≤ |B1| diam(Ω)n

2n
. (1)

Equality holds if and only if K is a closed ball of radius 1
2 diam(Ω).

Luen-Fai Tam’s proof of (1) requires finitely many symmetrizations.
Choose a family of n mutually perpendicular hyperplanes {Li} (e.g., the
coordinate hyperplanes) and perform Steiner symmetrizations.

Kn = SLn ◦ SLn−1 ◦ · · · ◦ SL1(K )



11. Isodiametric Inequality Proof

These n symmetrizations result in a star-shaped Kn that is a centrally
symmetric body. Since d(x,−x) ≤ diam(Ω) for every x ∈ Kn it follows
that Kn ⊂ Br (0) closed ball with radius r = 1

2 diam(Ω), and (1) follows.

The proof that equality implies Ω is a ball is similar to the proof of
equality in the isoperimetric inequality, which shall be discussed later.



12. Isoperimetric Inequality

Among all domains in the plane with a fixed boundary length, the circle
has the greatest area. For simplicity we focus on domains bounded by
simple curves.

Theorem (Isoperimetric Inequality)

Let γ ⊂ E2 be a simple closed curve in the plane whose length is L
and that encloses an area A. Then the following inequality holds

4πA ≤ L2. (2)

If equality holds in (2), then the curve γ is a circle.

Simple means curve is assumed to have no self intersections.
A circle of radius r has L = 2πr and encloses A = πr2 = L2

4π .
Thus II says if γ is a simple closed curve of length L and encloses an area
A, then γ encloses an area no bigger than the area of the circle with the
same length.



13. Convex Sets

A set K ⊂ E2 is convex if for every pair of points x , y ∈ K , the straight
line segment xy from x to y is also in K , i.e., xy ⊂ K .
The bounding curve of a convex set is automatically rectifiable. The
convex hull of K , denoted K̂ , is the smallest convex set that contains K .
This is equivalent to the intersection of all halfspaces that contain K ,

K̂ =
⋂

C is convex
C ⊃ K

C =
⋂

H is a halfspace
H ⊃ K

H.

A halfspace is a set of the form H = {(x , y) ∈ E2 : ax + by ≤ c}, where
(a, b) is a unit vector and c is any real number.



14. Reduce proof of Isoperimetric Inequality to convex curves case

Since K ⊂ K̂ by its definition, we have Â ≥ A.
Taking convex hull reduces the boundary length because the interior
segments of the boundary curve, the components of γ − ∂K̂ of γ are
replaced by straight line segments in ∂K̂ .

KK

 

K

K

Figure: The region K and its convex hull K̂ .



15. Reduce proof of Isoperimetric Inequality to convex curves case-

Thus the isoperimetric inequality for convex sets implies

4πA ≤ 4πÂ ≤ L̂2 ≤ L2.

Furthermore, one may also argue that if 4πA = L2 implies 4πÂ = L̂2 so
that if the second part of the isoperimetric inequality holds and K̂ is a
circle, then so is K . The basic idea is to consider the the extreme points
∂∗K̂ ⊂ ∂K̂ of K̂ , that is points x ∈ ∂K̂ such that if x = λy + (1− λ)z
for some y , z ∈ K̂ and 0 < λ < 1 then y = z = x . K̂ is the convex hull
of its extreme points. However, the extreme points of the convex hull lie
in the curve ∂∗K̂ ⊂ γ ∩ ∂K̂ . K̂ being a circle implies that every boundary
point is an extreme point, and since they come from γ, it means that γ
is a circle.



16. Basic facts about symmetrization

Theorem

Let K ⊂ Rn be a compact set and SL Steiner symmetrization with
respect to a hyperplane L.

If K1 ⊆ K2 then SL(K1) ⊆ SL(K2).

If 0 ∈ L then SL(Br (0)) = Br (0).

If 0 ∈ L and λ > 0 then SL(λK ) = λSL(K ).

If K is convex the SL(K ) is convex.

If K is a polyhedron then so is SL(K ).

If K has piecewise smooth boundary then so does SL(K ).



17. Symmetrizatiom Reduces Surface Area

For simplicity, we assume that K ⊂ R3 is convex, compact, positive
volume and with piecewise smooth boundary. A general set may be
approximated by piecewise smooth sets (or even polyhedra). The proof
for general sets that area decreases under symmetrization is similar to the
convex case.

Let ω = (Π(K ))◦ be the interior of the projection. Split ∂K into three
pieces, lower part M1, upper part M2 and side M3.



18. Proof of Area Reduction.

By convexity

the lower surface M1 is the graph of the convex function z = u1(x , y);

upper surface M2 is the graph of the concave function z = u2(x , y).

Symmetrization preserves convexity with

upper surface M̃2 given by the concave function ũ2 =
1

2
(u2 − u1).

M3 consists of vertical segments so A(M3) = A(SL(M3)).

The area of M1 is given by

A(M1) =

∫
ω

√
1 +

(
∂u1

∂x

)2

+

(
∂u1

∂y

)2

dx dy



19. Proof of Area Reduction.-

Write p1 = ∂u1
∂x , p2 = ∂u1

∂y , q1 = ∂u2
∂x , q2 = ∂u2

∂y .

A(∂K )− A(∂SL(K )) =

∫
ω

√
1 + p2

1 + p2
2 +

√
1 + q2

1 + q2
2

− 2

∫
ω

√
1 +

(
q1 − p1

2

)2

+

(
q2 − p2

2

)2

≥ 0,

by Minkowski’s inequality.

Equality holds if and only if

q1 = −p1 and q2 = −p2 almost everywhere.

Then by integrating that u2 = −u1 = ũ2 on ω up to additive constant.



20. Minkowski’s Inequality

Lemma (Minkowski’s Inequality.)

For any numbers ai and bi ,√√√√ p∑
i=1

(ai + bi )2 ≤

√√√√ p∑
i=1

a2
i +

√√√√ p∑
i=1

b2
i .

Equality holds if and only if (a1, . . . , ap) is proportional to (b1, . . . , bp).

Thus we have proved:

Theorem

Let K ⊂ R3 be compact, convex with |K | > 0 and piecewise smooth
boundary, zero center of mass. Let 0 ∈ L be a plane. Then

A(∂SL(K )) ≤ A(∂K ). (3)

Equality in (3) holds iff L is a plane of symmetry and SL(K ) = K.



21. Steiner’s Conclusion

Thus if Ω is such a compact convex body that has least boundary area
among all bodies with volume V , then SL(Ω) can’t have smaller area and
equality holds in (3). Thus Ω has L as a plane of symmetry. As L was
arbitrary, Ω is symmetric with restect to all L, thus is the ball.

Theorem (Isoperimetric Inequality)

Let K ⊂ R3 be compact, convex, |K | > 0 and piecewise smooth
boundary. Let B̄r ⊂ R3 be a closed ball such that |Br | = |K |. Then

A(∂B̄r ) = 6
2
3 π

1
3 |K |

2
3 ≤ A(∂K ) (4)

Equality in (4) holds if and only if K is a closed ball of radius r .



22. Not a proof

Figure: L. Dirichlet (1805–1859)

As O. Perron put it, it’s like
trying to argue that 1 is the
greatest natural number by
showing that for every other
number x there is a larger one,
namely x2.

This is not a proof because there is no
demonstration of the existence of a
minimizing figure. Dirichlet tried several
times to persuade Steiner that his
proofs were incomplete on that account.
But Steiner insisted that this was self
evident. However, in one of the 1842
papers Steiner conceded

“and the proof is readily made
if one assumes that there is a
largest figure.”

Existence was first proved by
Weierstraß(1875) and Schwarz(1884)
using calculus of variations.
Caratheodory and Study(1909) gave
rigorous treatment of Steiner’s method
without the calculus of variations.



23. The space of compact sets

Let X0 denote the space of nonempty compact sets in Rn.

For r > 0 the r -neighborhood Fr of a set F ∈ X0 is given by

Fr = {x ∈ Rn : d(x,F ) ≤ r}.

The Hausdorff distance between E ,F ∈ X0 is given by

dH(E ,F ) = inf{r > 0 : E ⊆ Fr and F ⊆ Er}

(X0, dH) is a complete metric space.

Diameter is a continious function: If a sequence of compact sets

An → A0 in dH as n →∞ =⇒ lim
n→∞

diam(An) = diam(A0).

Volume (Lebesgue measure) is a upper-semicontinious function: If a
sequence of compact sets

An → A0 in dH as n →∞ =⇒ lim sup
n→∞

|An| ≤ |A0|.

Steiner symmetrization is also only a semicontinuous transformation.

An → A and S(An) → Ã as n →∞ =⇒ Ã ⊂ S(A).



24. Blaschke-Hadwiger Selection Theorem

Theorem

Let Q ⊂ X0 be an infinite family of nonempty compact sets which are
uniformly bounded: all sets Q ∈ Q are contained in some fixed ball
Q ⊂ U. Then there exists a subsequence {Qn} ⊂ Q and a compact set
Q0 ∈ X0 such that Q0 ⊂ U and

dH

Qn −→ Q0 as n →∞



25. Ljusternik-Gross Sphericalization Theorem

Let {Li}i=1,...,k be a finite set of hyperplanes containing 0 and Si be
Steiner symmetrization relative to Li . A multiple symmetrization is the
composite

S∗ = Sk ◦ Sk−1 ◦ · · · ◦ S1.

For Ω ∈ X0 let S denote the set of all S∗(Ω) multiple symmetrizations of
Ω.

Theorem

Let Ω be a nonempty compact set and S the family of all multiple
symmetrizations of Ω. Then there is a subsequence {Ωn} ⊂ S and a
closed ball B̄ such that |B̄| = |Ω| and

Ωn → B̄ as n →∞.



26. Convex sets have better compactness properties

Let K0 ⊂ X0 denote the space of convex compact sets with |K | > 0.

Both volume and surface area are now continuous functions: If a
sequence of convex sets {Kn} ⊂ K0 such that

Kn → K0 in dH as n →∞ =⇒


lim

n→∞
V(Kn) = V(K0).

lim
n→∞

A(∂Kn) = A(∂K0).

Steiner Symmetrization is also now a continuous transformation.

Kn → K0 as n →∞ =⇒


K0 ∈ K0 and

S(Kn) → S(K0) as n →∞.



27. Proof that a minimizer exists.

Fix V > 0 and let

A0 = inf{A(∂K ) : K ∈ K0 such that |K | = V }.

Choose a minimizing sequence of Kn ∈ K0 such that |Kn| = V and

lim
n→∞

A(∂Kn) = A0.

By approximation, we may arrange that ∂Kn are piecewise smooth.
Let r > 0 be the radius of a ball such that |B̄r | = V . By the
sphericalization theorem, we may choose a multiple symmetrization S∗i
such that Ti = S∗i (Ki ) ⊂ B̄r+ 1

i
(0). Since area is decreased,

A0 ≤ A(∂Ti ) ≤ A(∂Ki )

so that Ti is also a minimizing sequence

lim
n→∞

A(∂Tn) = A0.



28. Proof that a minimizer exists.-

Now, by the Blaschke-Hadwiger selection theorem, there is a
subsequence {i ′} ⊂ {i} such that

Ti ′ → T0 as i ′ →∞ and T0 ⊂ B̄r+ε for all ε > 0.

Now, by continuity of convex sets,

|T0| = lim
i ′→∞

|Ti ′ | = V

A(∂T0) = lim
i ′→∞

A(∂Ti ′) = A0.

Thus T0 ∈ K0 is the desired minimizer.
Incidentally, since T0 ⊂ B̄r+ε for all ε > 0 we see that T0 = B̄r (0).



29. Other Geometric Problems Solved by Symmetrization

For any nonempty compact Ω ⊂ Rn, the circumradius is the radius of the
smallest ball that contains Ω

rcirc(Ω) = inf{r > 0 : Ω ⊂ B̄r (x) for some x ∈ Rn}.

Theorem

Among all triangles with a given area A, the equilateral triangle, and only
the equilateral triangle, has the smallest boundary length, diameter and
circumradius.

Theorem

Among all quadrilaterals with a given area A, the square, and only the
square, has the smallest boundary length, diameter and circumradius.



30. Diagram of proof of triangle theorem



31. More Problems Solved by Symmetrization

Theorem (Blaschke (1923))

Let K ⊂ R2 be a compact, convex set and T (K ) ⊂ K its largest included
triangle. Then

4π|T (K )| ≥ 3
√

3|K |

with equality only for ellipses.

Theorem (Winternitz (1921))

Let K ⊂ R2 be a compact, convex set with K | > 0. Let L be a line
through its center of mass. Let M1 and M2 be the components of K − L.
Then

4

5
≤ |M1|
|M2|

≤ 5

4
.

Equality holds if and only if K is a triangle and L is parallel to one of its
sides.



32. Even More Problems Solved by Symmetrization

Theorem (Sylvester (1885))

Let K ⊂ R2 be a compact, convex set with |K | > 0. Let ∆(x, y, z)
denote the triangle with vertices x, y, z. Then the ratio of the expected
area of a random triangle to the area of the domain satisfies

35

48π2
≤ 1

|K |4

∫
K

∫
K

∫
K
|∆(x, y, z)| dx dy dz ≤ 1

12
.

The left equality holds if and only if K is an ellipse. The right equality
holds if and only if K is a triangle.

Theorem (Groß(1918))

Let K ⊂ R2 be a compact, convex set. Let ∆ denote the triangle with
least area that contains K. Then

2|K | ≥ |∆|.

Equality holds if and only if K is a parallelogram.



33. Fundamental frequency of a tambourine

Let Ω ⊂ Rn be a compact domain with piecewise smooth boundary. Let
u(x, t) be the vertical displacement of a membrane stretched across Ω.
The vibrating membrane satisfies the wave equation

∂2u

∂t2
= ∆ u =

n∑
i=1

∂2u

∂x2
i

, for x ∈ Ω and t ≥ 0;

u = 0, for x ∈ ∂Ω and t ≥ 0.

If there is a solution obtained by separating variables

u(x, t) = U(x) T (t)

for some constant λ
T ′′

T
= −λ =

∆ U

U
.

The time function satisfies T ′′ + λT = 0 which gives sinusoidal
dependence in time if λ > 0: there are constants a, b so that

T (t) = a cos
(√

λt
)

+ b cos
(√

λt
)

.



34. Eigenvalues of a domain

Thus the frequencies
√

λ are determined by the eigenvalues of the
domain. Those are numbers λ such that there are non-vanishing
functions U ∈ C 2(Ω) such that

∆ U + λU = 0, for x ∈ Ω;
U = 0, for x ∈ ∂Ω.

(5)

By multiplying by U and integrating by parts,

λ

∫
Ω

U2 =

∫
Ω
|D U|2

which implies λ > 0.



35. Rayleigh Quotient

It turns out that the smallest eigenvalue λ1 or the fundamental frequency
is determined as minimizer of the energy

λ1(Ω) = inf
U∈PC1

0 (Ω)
R(U); where R(U) =

∫
Ω |D U|2∫

Ω U2

R(U) is called the Rayleigh Quotient. It turns out that the function U
that minimizes the Rayleigh quotient satisfies (5) and can be taken
positive U > 0 in Ω◦.

Since the eigenvalue minimizes the Rayleigh Quotient, we can get an
upper estimate from any function V ∈ PC 1

0 (Ω) (functions that are
piecewise C 1 and vanish on ∂Ω.) we get the upper bound

λ1(Ω) ≤ R(V ).



36. Sneaky Trick: Symmetrize in one higher dimension

Let U ∈ PC 1
0 (Ω) be a positive function which vanishes on ∂Ω. Then

consider the compact set in the next higher dimension between 0 and U:

G(U) = {(x, y) ∈ Rn ⊕ R : x ∈ Ω, 0 ≤ y ≤ U(x)}.

If L ⊂ Rn is an (n − 1)-plane through 0 then L⊕ R is a vertical n-plane
in Rn ⊕ R. Symmetrizing gives a domain of the same type:

G(U∗) = SL⊕R
(
G(U)

)
The bottom surface of G(U∗) is just SL(Ω). The upper surface of G(U∗)
is the graph y = U∗(x) which is symmetric with respect to the L⊕ R.
If L is given by xn = 0 then U∗ decreases with xn on xn > 0 and is an
even function

U∗(x1, . . . , xn−1,−xn) = U∗(x1, . . . , xn−1, xn).



37. Symmetrizing G(U) diagram



38. Symmetrization preserves L2

Observe that if U∗ is the symmetrized function, then

G
(
(U∗)2

)
= SL⊕R

(
G(U2)

)
Because symmetrization preserves volume in Rn+1,
the L2 integrals are preserved under symmetrization:∫

Ω
U2 =

∣∣G(U2)
∣∣ = ∣∣G((U∗)2

)∣∣ = ∫
SL(Ω)

(U∗)2.



39. Symmetrization reduces the energy

First observe that

lim
ε→0

1

ε2

∫
A

(√
1 + ε2|Du|2 − 1

)
=

∫
A
|Du|2. (6)

Then if U∗ is the symmetrized function, then G(εU∗) = SL⊕R
(
G(εU)

)
.

Since symmetrization reduces the surface area, for all ε ≥ 0,∫
SL(Ω)

√
1 + ε2|D U∗|2 ≤

∫
Ω

√
1 + ε2|D U|2

with equality at ε = 0. Thus there is an inequality for derivatives at
ε = 0 which implies by (6), the energy is reduced by symmetrization:∫

SL(Ω)
|D U∗|2 ≤

∫
Ω
|D U|2.



40. Symmetrization reduces the fundamental tone

Let U ∈ PC 1
0 (Ω) be a positive eigenfunction so λ1(Ω) = R(U). Its

symmetrization U∗ may not be an eigenfunction of SL(Ω) but can play
the role of V in the upper bound. Using the fact that the L2 is preserved
and energy is diminished under symmetrization,

λ1

(
SL(Ω)

)
≤

∫
SL(Ω) |D U∗|2∫
SL(Ω)(U

∗)2
≤
∫
Ω |D U|2∫

Ω U2
= λ1(Ω).

It turns out that equality holds if and only if Ω is symmetric about L.

Theorem (Faber & Krahn (1923))

Among all compact domains Ω ⊂ Rn with piecewise smooth boundary
and |Ω| = A, the ball and only the ball has the smallest fundamental
tone.



Thanks!




