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5. Polygons and Polyhedra.

Figure: Polyhedra.

A polygon is a connected open plane
set whose boundary consists finitely
many different line segments or rays
glued end to end. A polyhedron is a
piecewise flat surface in three space
consisting of finitely many planar
polygons glued pairwise along their
sides. A polyhedron is assumed to
be closed: each side of every
polygon is glued to the side of
another polygon.
We shall abuse notation and call
polyhedron together with its interior
a “polyhedron.”



6. Convex Polyhedra.

Figure: Convex Polyhedron.

A polyhedron is convex if there is a
supporting halfspace at every
boundary point X . That is, there is
a hyperplane L through X such that
the polyhedron is in one of the
closed halfspaces bounded by L.
A polytope is a convex polyhedron.
A convex body is a compact convex
set that contains interior points.

Equivalently, P is convex if for every
pair of points in P, the straight line
segment between the points lies
entirely inside P.



7. Dimensions of a Polyhedron.

Figure: Dimensions of a Polygon.

Associated to each edge Fi of a
polygon (or top dimensional face of
a polyhedron) is a perpendicular
outward unit normal vector ni .

Each face has a length (or area) Li .
The angle at the vertex, ai is the
angle between neighboring normals
(the spherical angle or area in the
unit sphere of the convex hull of
neighboring normals.)

For a closed polygon, the total angle
over all V vertices is the angle of
the circle

V∑
i=1

ai = 2π.

(For polyhedra, the sum of vertex
angles is the area of the unit sphere
which is 4π in R3.)



8. Dimensions of a Polyhedron.-

Figure: Spherical Angle α of a Vertex V .

Translate normal vectors ni to the origin and view them as vectors of the
unit sphere. The spherical angle α of a vertex V is the area of the
spherical convex hull of the normal vectors of faces adjacent to V .



9. Hermann Minkowski.

Figure: Hermann Minkowski
1864–1909.
“Mich interessiert alles, was konvex
ist!” H. Minkowski.

Minkowski was the most respected
graduate student in Göttingen when
Hilbert began his studies.

Minkowski studied number theory using
geometrical methods, culminationg in
his Geometrie der Zahlen (1896). His
highly innovative ideas contributed to
the development of synthetic geometry
and convexity theory.

He provided the first proof for the
“Minkowski Problem” for polyhedra
using a variational argument.



10. Minkowski’s Problem for Polyhedra.

Minkowski asked a reconstruction question for polyhedra P ⊂ R3.

Given distinct outward normal vectors N = {ni}i=1,...,V and
positive numbers {βi}i=1,...,V , does there exist a convex
polyhedrom P whose unit normals are exactly the vectors N
and whose side areas at corresponding sides is

Ai = βi , for all i = 1, . . . ,V?

It turns out that the normals and lengths have to satisfy geometric
necessary conditions.



11. Necessary Conditions for Minkowski Data.

Hemisphere Condition for Normals. The set of normals cannot lie in any
single closed semicircle (hemisphere).

For example if this were not the case, there is a unit vector w such that

ni •w ≥ 0, for all i = 1, . . . ,V .

Then the polygon would not be closed in the −w direction and there
would have to be sides of infinite length.

Eqivalently, the positive cone of the normals

Cone+(N ) =

{
V∑

i=1

θini : θi ≥ 0

}

would have to be the entire space R3.



12. Necessary Conditions for Minkowski Data. -

Both Sides Equal Condition for Area. For each unit vector w, the area of
the sides facing in the w direction have the same shadow as the sides
facing the −w direction. In other words

V∑
i=1

Ai (ni •w) = 0, for all unit vectors w ∈ S2

where S2 is the 2 sphere, the set of unit vectors of R3 based at the
origin. The area of the projection of the ith face to n⊥ is Ai (ni •w). It
is positive for faces on the w side of P, and negative for those of the
other side. Note that this condition would fail if the Hemisphere
Condition did not hold.

Because we may write every w in a basis {e1, e2, e3} for R3, the the
Both Sides Equal Condition reduces to 3 equations

V∑
i=1

Ai (ni • ej) =

(
V∑

i=1

Aini

)
• ej = 0, for j = 1, 2, 3. (1)



13. Construction of a Polyhedron with Minkowski Data.

Theorem (Construction Theorem for Minkowski’s Problem for Polyhedra)

Suppose we are given V ≥ 3 distinct vectors N = {ni}i=1,...,V in S2 and
positive numbers {βi}i=1,...,V that satisfy the vector Both-Sides-Equal
Condition

V∑
i=1

βi ni = 0.

Then there exist a convex polyhedrom P with V sides whose outer unit
normals are exactly the vectors N and whose side areas at corresponding
sides are the given

Ai = βi , for all i = 1, . . . ,V .

There is only one solution up to translation.



14. Uniqueness of a Polygon with Minkowski Data.

Assuming there are solutions with given Minkowski Data, the solutions
are uniquely determined (up to translation). In d = 2 this is elementary.

Theorem (Uniqueness Theorem for Minkowski’s Problem for Polygons)

Suppose we have two convex polygons P and P ′ with V ≥ 2 vertices
whose outer normals ni = n′i and corresponding lengths Li = L′i coincide.
Then P ′ is a translation of P.

Proof. Assume that the sides are numbered consecutively
counterclockwise. The vertices are determined by the side lengths and
vertex angles. Denoting by R the +90◦ rotation, the vector on the side
is Fj = Lj Rnj and Xj+1 = Xj + Fj for j = 1, . . . V , where XV+1 = X1

since the polygon closes. Since Lj and nj are the same for both polygons,
the translation is just the difference of starting vertices

X ′
j = Xj + (X ′

1 − X1)

for all j = 1, . . . ,V .



15. A. D. Alexandrov.

Figure: Aleksandr Danilovich
Aleksandrov 1912–1999.

A. D. Alexandrov was a highly original
geometer began in the era when
Riemannian Geometry was being
extended to high dimensions. He
founded the Leningrad School of
geometry. He spearheaded the
development of synthetic methods in
geometry and introduced geometric
methods in the solution of nonlinear
elliptic PDE’s.

Among mathematicians trained by
Alexandrov’s School are some of the
leaders of modern geometry: Pogorelov,
Gromov and Perelman.



16. General Setup to Solve Minkowski’s Problem.

Figure: Setup for Minkowski’s Problem: Show φ is Onto.

φ is the map that assigns to an actual polyhedron in three space the
vector of the areas of each of its faces.



17. Alexandrov’s Mapping Lemma.

A topoligcal space T is d-dimensional manifold if every point possesses a
neighborhood which is homeomorphic to an open ball of Rd . Examples:
Sd or an open set in Rd .
Alexandrov’s Minkowski Problem solution depends on Mapping Lemma.

Theorem (Alexandrov’s Mapping Lemma)

Suppose ϕ : A → B is a mapping between n-dimensional manifolds that
satisfies the following conditions

1 Every component of B contains image points of A.

2 ϕ is one-to-one.

3 ϕ is continuous

4 ϕ has closed graph: if {Bj} ⊂ B is a sequence consisting of image
points Bj = ϕ(Aj) for some Aj ∈ A which converges Bj → B in B
as j →∞, then there exists A ∈ A with ϕ(A) = B and a
subsequence Aim of {Ai} which converges to A as m →∞.

Then ϕ is onto, i.e., ϕ(A) = B.



18. Proof of the Mapping Lemma.

Open and Closed Argument.
Proof. By (4), the inverse function is continuous. As ϕ is also
continuous, it is also a homeomorphism. By the Invariance of Domain
Theorem, which is proved in an algebraic topology course, such as
Math 6520, the image ϕ(A) is open in B. By (4), ϕ(A) is also closed.
By (1), every component of B has image points of A. Thus if B′ is
any component of B then since ϕ(A) ∩ B is a nonempty, open and
closed subset of B′, it must agree with it ϕ(A) ∩ B = B′. Since this
holds for all components, we conclude ϕ(A) = B.

UNIQUENESS & ESTIMATES =⇒ EXISTENCE!

:-o A differential equator’s mantra. :-|
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19. Support Distance.

Figure: Support Distances.

One way to determine the ith face

of a convex polyhedron is by its
support distance which is the signed
distance hi of the plane of the face
from the origin. If the origin is
interior to the body then all hi > 0.
If X ∈ Li is a point in the ith face,
then

hi = X • ni .

The polyhedron may be expressed as
the intersection of halfspaces

P =
V⋂

j=1

{
X ∈ Rd : X • nj ≤ hj

}
(2)



20. How Translation Changes Support Numbers.

Suppose P is a polyhedron with V faces in the directions ni and support
numbers hi . Suppose that we translate P by the vector a. The translated
polyhedron is

P ′ = P + a = {X + a : X ∈ P}.

P ′ has the same normal directions. But if X is a point on the jth face of
p then X ′ = X + a is a point on the jth face of P ′. Hence

h′j = X ′ • nj = (X + a) • nj = hi + a • nj . (3)



21. Proof of Minkowski’s Theorem for Polygons.

Suppose we are given a finite collection of V ≥ 4 distinct unit vectors ni

that satisfy the Hemisphere Condition.

We define A, the manifold of realizations (polyhedra that exist in R3).

We define B, the manifold of configurations, the manifold of Minkowski
Data (boundary areas satisfying the Both-Sides-Equal Condition).

For h ∈ A, we define the mapping ϕ(h) ∈ B as the vector of support
distances in the ni directions for the polyhedron P(h).

The Minkowski Theorem holds if every configuration b ∈ B is realizable:
There is an polyhedron a ∈ A such that ϕ(a) = b. In other words, if

ϕ(A) = B.



22. Realization Manifold of Polyhedra, A.

Each polyhedron is determined by V support numbers by (2). For
arbitrary h, the polyhedron P(h) gotten by intersecting halfspaces may
be empty or may not have a 2 dimensional face for every normal nj . We
call such P(h) not full.

We regard as all translates as equivalent, so we divide out by all
translations. Let M : R3 → RV be the full-rank linear transformation

M(a) = (n1 • a, . . . ,nV • a).

For the translation a ∈ R3, by (3), the two support vectors differ by
h′ = h + M(a).

A = {h ∈ RV : P(h) is full.}/M(R3)

P(h) being full is an open condition, since small perturbations of h do
not destroy faces of P(h) for full P(h). Thus A is a quotient of an open
set of V dimensions by a 3-dimensional linear subspace. Thus, it is a
(linear) manifold of dimension V − 3.



23. Configuration Manifold of Minkowski Data, B.

The vector of facial areas is a vector of V positive numbers βj ∈ RV
+.

But not all positive vectors satisfy necessary conditions, so we restrict
areas to those that satisfy the Both-Sides-Equal Condition

B =

(β1, . . . , βV ) ∈ RV
+ :

V∑
j=1

βjnj = 0


There are 3 linear equations that hold on an open subset of V
dimensions. Thus B is a (linear) manifold of dimension V − 3.



24. Checking the conditions of the Mapping Lemma. (Onto Components)

Verify Assumption (1).

The manifold B is the
intersection of the positive
orthant in RV , an open convex
cone, with the V − 3
dimensional subspace, the kernel
of N : RV → R3 given for
b = (β1, . . . , βV ) ∈ RV by

N(b) =
V∑

j=1

βjnj .

Hence B is a convex open set in
the subspace, which is connected
(one component!)

To show (1), we show ϕ(A) 6= ∅. But
for u = (1, . . . , 1) ∈ A, P(u) is full. So
ϕ(u) ∈ B. The vectors ni are interior
points of the ith faces.

Figure: Polyhedron P(u), where
u = (1, 1, 1, 1, 1).



25. Formula for the Volume of a Polyhedron.

Let K be a compact convex
polyhedron whose faces have
normal vectors ni , support
numbers hi and face areas Ai .
Translate so that 0 ∈ K . Then
hi ≥ 0. The volume may be
expressed as the sum of volumes
of pyramids for each face, the
face is the base and 0 is the
apex. Thus the height is hi and

V (K ) =
1

3

n∑
i=1

hiAi .



26. Checking the conditions of the Mapping Lemma. (Injective)

Verify Assumption (2): all polyhedra with equal corresponsing face areas
are translates of one another. Thus ϕ is one-to-one.

Theorem (Uniqueness Theorem for Minkowski’s Problem for Polyhedra)

Suppose we have two bounded convex polyhedra P and P ′ in R3 whose
outer normals ni = n′i and corresponding areas Ai = A′i > 0 coincide.
Then P ′ is a translation of P.

Proof. Our proof depends on an inequality of Minkowsi.



27. Minkowski’s Inequality

Theorem (Minkowski’s Inequality)

Suppose we have two bounded convex polyhedra P and P ′ in R3 with
the same normals {ni}i=1,...,V . Let Ai , hi and A′i , h′i denote areas and
support numbers in the ni directions. (Some areas may be zero.) Then
the mixed volume V (P,P ′,P ′) satisfies

V (P,P ′,P ′) =
1

3

V∑
i=1

hiA
′
i ≥ V (P)1/3V (P ′)2/3. (4)

If equality holds, then P and P ′ = cP + a are homothetic translates.

Minkowski’s theorem holds for general closed convex sets K and K ′, not
just polyhedrons.

After two applications we’ll define mixed volume, show it equals sum
in (4) and derive Minkowski’s from Brunn-Minkowski’s Inequality.



28. Applying Minkowski’s Inequality to Verify (2), Uniqueness.

Suppose that P and P ′ are two solutions of the Minkowski Problem.
Then Ai = A′i = βi for each i . Then the mixed volume

V (P,P ′,P ′) =
1

3

V∑
i=1

hiA
′
i =

1

3

V∑
i=1

hiAi = V (P).

From Minkowski’s Inequality,

V (P) = V (P,P ′,P ′) ≥ V (P)1/3V (P ′)2/3

follows
V (P) ≥ V (P ′).

By reversing the roles of P and P ′, we find by the same argument that
V (P ′) ≥ V (P). It follows that V (P) = V (P ′) and equality holds in (4).
By the uniqueness statement in Minkowski’s Theorem, P and P ′ are
homothetic translates. But since they have the same volume, c = 1
so P and P ′ are translates and correspond to the same point in A, the
realization manifold of polyhedra.



29. Minkowski’s Inequality Implies the Isoperimetric Inequality.

Minkowski’s inequality gives us the Isoperimetric Inequality, that says
that the largest the volume convex set can have for a given surface area
is the volume attained attained by the ball.

If U ⊂ R3 is the unit ball and K is a compact convex set, then, as we
shall see, the surface area is given by the mixed volume

3V (U ,K ,K ) = A(∂K ).

By Minkowski’s Inequality

1
3 A(∂K ) = V (U ,K ,K ) ≥ V (U)1/3V (K )2/3 =

(
4
3π
)1/3

V (K )2/3.

In other words,
A(∂K )3/2 ≥ 6

√
πV (K ). (5)

Equality holds iff K is a ball. For the ball B of radius R,

A(∂B)3/2 = (4πR2)3/2 = 6
√

π(4
3πR3) = 6

√
πV (B).



30. Checking the conditions of the Mapping Lemma. (Continuity)

Verify Assumption (3).

For h ∈ A, the polygon P(h) is full. If we fix hi with i 6= j and vary hj ,
the edge moves parallel in and out continuously with hj . As the edges of
the jth face are cut by planes of some other faces, its length varies
continuously. It follows that P(h) is a continuous vector function.



31. Geometric Estimate for Support Numbers.

Figure: hi =Ht. of Pyramid with
Base= Ai .

Assume 0 is interior point of P.

Let P be a polyhedron with side
areas Ai and support numbers hi .
Assume all side areas are bounded:
0 < α ≤ Ai ≤ β. Then

A(∂P) =
n∑

j=1

Aj ≤ nβ.

The volume of the pyramid from the
origin to the ith face is less than the
total volume

1

3
hiAi ≤

1

3

n∑
i=1

hiAi = V (P).



32. Geometric Estimate for Support Numbers.

By the isoperimetric inequality (5), the volume is less than the volume of
a ball with the same surface area

V (P) ≤ 1

6
√

π
A(∂P)3/2.

It follows that
1

3
hiα ≤

1

3
hiAi ≤

1

6
√

π
(nβ)3/2.

from which it follows that

hi ≤
n3/2β3/2

2
√

πα
.



33. Checking the conditions of the Mapping Lemma. (Closed Graph)

Verify Assumption (4).
It is a compactness argument. Assume that Ai ∈ A are polygons with
face areas Bi = ϕ(Ai ) that converge Bi → B as i →∞ (B is positive!)

By translating Ai we may assume that 0 is interior to Ai . A convergent
sequence is bounded, 0 < α ≤ Bi ≤ β for all i . Hence by the geometric
estimate for the jth support numbers of Ai ,

0 ≤ hi ,j ≤ K

for all (i , j).
But a bounded sequence in a finite dimensional space is sequentially
compact. There is a subsequence ik such that

hik ,j → h∞,j as k →∞

so Aik → A∞ in A. By continuity

B = lim
k→∞

Bik = lim
k→∞

ϕ (Aik ) = ϕ

(
lim

k→∞
Aik

)
= ϕ(A∞).



34. Minkowski Addition of Sets.

To prove Minkowski’s Inequality, we use the Brunn-Minkowski Inequality.
The mixed volume of polyhedra is related to the Minkowski Addition.

Minkowski Addition of any two sets A,B ⊂ Rd is defined to be

A + B := {x + y : x ∈ A and y ∈ B}.

For s ≥ 0, the Minkowski Dilation by factor s is defined to be

sA = {sx : x ∈ A}.

For example, the Minkowski sum of dilated rectangles is a rectangle

s([0, a]× [0, b]) + t([0, c]× [0, d ])

= [0, sa + tc]× [0, sb + td ].
(6)



35. Minkowski Addition of Sets.

Figure: Minkowski Addition of a Triangle and a Rectangle in the Plane.



36. Kinematic interpretation of Minkowski Addition.

Figure: Minkowski Addition as Smear.

Minkowski Addition may be written

A + B =
⋃
x∈B

A + {x}.

It is the union of all translates of A
by points of B. The A set is
smeared around by the B set.



37. Morphing interpretation of Minkowski Addition.

Figure: (1− r)A + rB as section of
cvx hull of K = A× {0} ∪ B × {1}.

For 0 ≤ r ≤ 1, (1− r)A + rB linearly
morphs A at r = 0 into B at r = 1.

In (x , y , z , r) space draw A and B in
different hyperplanes
K = {(x , y , z , 0) : (x , y , z) ∈ A}∪

{(x , y , z , 1) : (x , y , z) ∈ B}
and consider the three dimensional
convex hull K̂ (outlined in green in the
Figure.) Then the r = const. section is
the Minkowski convex combination
{(x , y , z , r) : (x , y , z) ∈ R3}

⋂
K̂ =

{(x , y , z , r) : (x , y , z) ∈ (1− r)A + rB}.



38. Definition of Mixed Volume. Polynomial Nature of V (sA + tB).

Theorem (Polynomial Nature of Sum. [Due to Minkowski])

Let A and B be convex bodies in the R3. Then the volume of the linear
combination sA + tB is a cubic form for nonnegative s and t,

V (sA + tB) = a000s
3 + 3a001s

2t + 3a011st
2 + a111t

3.

Coefficients of s3 and t3 are evidently volumes a000 = V (A) and
a111 = V (B). The cross terms define V (A,B,B) := a011 and
V (A,A,B) = a001 called the mixed volumes.

For A,B,C ,D convex sets and nonnegative s,t the following hold:

V (A,B,B) ≥ 0;
V (A,B,B) = V (B,B,A);
If ρ is a rigid motion then V (ρA, ρB, ρB) = V (A,B,B);
V (A,A,A) = V (A);
V (sA + tB,C ,C ) = sV (A,C ,C ) + tV (B,C ,C );
If A ⊂ B then V (A,C ,C ) ≤ V (B,C ,C ) and
V (A,A,C ) ≤ V (B,B,C ).



39. Proof of the Polynomial Nature Theorem.

We prove it for polyhedra. Let ni denote all normals of both A or B. If
Pi is the ni boundary plane of X and hi its support number,

V (X ) =
1

3

n∑
i=1

hi A(Pi ∩ X ).

If Pi ,j is the vj boundary line of Pi ∩ X in Pi and hi ,j its support number,

A(Pi ∩ X ) =
1

2

ni∑
j=1

hi ,j L(Pi ,j ∩ X ).

If wk are the two directions in the line Pi ,j and hi ,j ,k support numbers of
the endpoints of Pi ,j ∩ X ,

L(Pi ,j ∩ X ) = hi ,j ,1 + hi ,j ,2.



40. Proof of the Polynomial Nature Theorem. -

Let h′i , h′′i and hi denote support numbers of A, B and X = sA + tB,
resp., in the ni direction. They satisfy

hi = sup
sa+tb∈X

(sa + tb) · ni = s sup
a∈A

a · ni + t sup
b∈B

x · ni = sh′i + th′′i .

Similarly in the parallel planes Pi , P ′i , P ′′i and lines Li ,j , L′i ,j , L′′i ,j

hi ,j = sh′i ,j + th′′i ,j ; hi ,j ,k = sh′i ,j ,k + th′′i ,j ,k .

Combining, we see that the volume of sA + tB is a cubic polynomial

V (X ) =
1

6

n∑
i=1

ni∑
j=1

2∑
`=1

(sh′i + th′′i )(sh′i ,j + th′′i ,j)(sh
′
i ,j ,k + th′′i ,j ,k).

Moreover, since the volume, area and length are unchanged by
translation, we may move the origins independently in each or the planes
and lines so that they are in the interior of the A, B, Pi ∩ A, Pi ∩ B,
Pi ,j ∩A and Pi ,j ∩B. Hence all coefficients h so also aijk are positive.



41. Derivative of Volume.

Figure: Volume increase due to
increasing ∆hi

Let P be a polyhedron with face
directions ni , support numbers hi

and face areas Ai . The increase in
volume by increasing the support
number from hi to hi + ∆hi is
thickness times area plus higher
order terms.

∆V = Ai ∆hi + o(∆hi ).

Hence
∂V

∂hi
= Ai .



42. Two Formulas for Mixed Volume.

Lemma

For convex polyhedra A and B we have V (A,A,B) = 1
3

∑n
i=1 h′′i A′i .

Proof. V (A,A,B) = a001 where

V (sA + tB) = a000s
3 + 3a001s

2t + 3a011st
2 + a111t

3.

We differentiate volume in two ways.

∂
∂t

∣∣
t=0

V (A + tB) = 3a001.

Also, using the chain rule,

∂
∂t

∣∣
t=0

V (A + tB) = ∂
∂t

∣∣
t=0

V (P(h′ + th′′))

=
∑n

i=1 h′′i
∂

∂hi
V (P(h′ + th′′))

∣∣∣
t=0

=
∑n

i=1 h′′i A′i .



43. Brunn-Minkowski Inequality.

The theorem of Hermann Karl Brunn (1862–1939) says that since the
Minkowski addition tends to “round out” the figures being added, the
volume of the added figure exceeds the volume of the summands.

Theorem (Brunn-Minkowski)

Let A,B ∈ Rd be proper convex polyhedra. Then,

V (A + B)
1
d ≥ V (A)

1
d + V (B)

1
d . (7)

Equality holds if and only if A and B are homothetic. Two figures A and
B are homothetic, i. e., they are similar and are similarly situated, which
means there is a translation and dilation so that

A = rB + {x}.

The inequality (7) is due to Brunn. Minkowski proved that equality
implies homothety.

The theorem continues to hold if A and B are arbitrary bounded
measurable sets.



44. Minkowski’s Inequality follows from the Brunn-Minkowski Theorem.

Pf. To show for all proper polyhedra A, B,

V (A,A,B) ≥ V (A)2/3V (B)1/3 (4)

and “=” implies A, B homothetic. Using V ((1− t)A + tB) =

V (A)(1− t)3 + 3V (A,A,B)(1− t)2t + 3V (A,B,B)(1− t)t2 + V (B)t3,

by Brunn-Minkowski, f : [0, 1] → R is nonnegative and concave down,

f (t) = V ((1− t)A + tB)
1
3 − (1− t)V (A)

1
3 − tV ((B)

1
3

Differentiating at t = 0, the result follows from

0 ≤ ∂f

∂t

∣∣∣∣
t=0

= V (A)−
2
3 [−V (A) + V (A,A,B)] + V (A)

1
3 − V (B)

1
3 .

Equality in (4) implies f (t) ≡ 0 so “=” holds in the Brunn-Minkowski
Theorem, whence A and B are homothetic.



45. Recall the Brunn-Minkowski Inequality.

Theorem (Brunn-Minkowski)

Let A,B ∈ Rd be proper convex sets and 0 ≤ λ ≤ 1. Then,

V ((1− λ)A + λB)
1
d ≥ (1− λ)V (A)

1
d + λV (B)

1
d .

Equality holds if and only if A and B are homothetic.



46. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality.

Without loss of generality we may assume that volumes are both one and
then the general case follows. Indeed, if λ ∈ (0, 1), we let

λ̄ =
λV (B)

1
d

(1− λ)V (A)
1
d + λV (B)

1
d

then applying (7) to unit volume V (A)−
1
d A and V (B)−

1
d B gives

V

(
(1− λ̄)

A

V (A)
1
d

+ λ̄
B

V (B)
1
d

B

) 1
d

≥ (1− λ̄)

V (A)
1
d

V (A)
1
d +

λ̄

V (B)
1
d

V (B)
1
d = 1.

But the left side is

V

(1− λ)V (A)
1
d

A

V (A)
1
d

+ λV (B)
1
d

B

V (B)
1
d

(1− λ)V (A)
1
d + λV (B)

1
d


1
d

=
V ((1− λ)A + λB)

1
d

(1− λ)V (A)
1
d + λV (B)

1
d

.



47. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality. -

Figure: Left Portion of A.

The idea is to prove the inequality
inductively on dimension. Let the
convex bodies A,B ⊂ Rd with
V (A) = V (B) = 1.

Choose a direction, say the x1 axis.
The projection of A is [α1, α2] on
the axis. Cut the body along the
x1 = ξ plane. Define the left portion
and face by

A[ξ] = {x ∈ A : x1 ≤ ξ},
a[ξ] = {x ∈ A : x1 = ξ}.

Similarly for B. Let τ ∈ [0, 1] denote
the volume of the portion and ρ(τ)
and σ(τ) denote the corresponding
x1 coordintes

τ = V (A[ρ(τ)]) = V (B[σ(τ)]).



48. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality. - -

Rewriting volumes τ = V (A[ρ(τ)]) = V (B[σ(τ)]),

τ =

∫ ρ(τ)

α1

v(a[ξ]) dξ =

∫ σ(τ)

β1

v(b[η]) dη,

where v is the d − 1 dimensional volume. Differentiating, we find

1 = v(a[ρ(τ)])
dρ

dτ
= v(b[σ(τ)])

dσ

dτ
. (8)

Base Case. For d = 1, if A = [α1, α2] and B = [β1, β2] then
(1− λ)A + λB = [(1− λ)α1 + λβ1, (1− λ)α2 + λβ2] so that Thus the
volume of the Minkowski sum

V ((1− λ)A + λB) = (1− λ)α2 + λβ2 − [(1− λ)α1 + λβ1]

= (1− λ)[α2 − α1] + λ[β2 − β1]

= (1− λ)V (A) + λV (B).



49. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality. - - -

Induction Case. For d > 1 we assume that Brunn-Minkowski holds for
d − 1. Let γ(τ) = (1− λ)ρ(τ) + λσ(τ). The Minkowski sum

Sλ = (1− λ)A + λB

is defined for x1 ∈ [(1− λ)α1 + λβ1, (1− λ)α2 + λβ2]. Its γ(τ) slice
contains the Minkowski sum of the sections

sλ[γ(τ)] ⊃ (1− λ)a[ρ(τ)] + λb[σ(τ)]. (9)

Its volume is given by the integral

V (Sλ) =

∫ (1−λ)α2+λβ2

(1−λ)α1+λβ1

v(sλ[ζ]) dζ.



50. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality. - - - -

Change variables to ζ = γ(τ) using (8). By (9) and the induction
hypothesis,

V (Sλ) =

∫ 1

0
v
(
sλ[γ(τ)]

)dγ

dτ
dτ

≥
∫ 1

0
v
(
(1− λ)a[ρ(τ)] + λb[σ(τ)]

)(
(1− λ)

dρ

dτ
+ λ

dσ

dτ

)
dτ

≥
∫ 1

0

(
(1− λ)v(a[ρ(τ)])

1
d−1 + λv(b[σ(τ)])

1
d−1

)d−1

·
(

1− λ

v(a[ρ(τ)])
+

λ

v(b[σ(τ)])

)
dτ

≥ 1 = (1− λ)V (A)
1
d + λV (B)

1
d ,

using Jensen’s Inequality and unity of volumes.



51. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality.- - - - -

Figure: Convex φ(u) = u−
1

d−1 .

The inequality between
heights of the curve and
chord is called
Jensen’s Inequality.

Jensen’s Inequality for φ(u) = u−
1

d−1 says

(1−λ)φ(u1)+λφ(u2) ≥ φ((1−λ)u1 +λu2).

Let u1 = 1
v(a[ρ(τ)]) and u2 = 1

v(b[σ(τ)]) .
Hence

(1− λ)

(
1

v(a)

)− 1
d−1

+ λ

(
1

v(b)

)− 1
d−1

≥
(

1− λ

v(a)
+

λ

v(b)

)− 1
d−1

and the desired inequality follows.

Equality implies u1 = u2.



52. H. Kneser & W. Süss’s Proof of the Brunn-Minkowski Inequality.- - - - - -

To see that equality in (7) implies A and B are homothetic, it suffices to
show in case V (A) = V (B) that A and B are translates.

To this end we translate A and B so that they have a common center of
mass since (7) is independent of translation. Expressing the x1

coordinate of the center of mass, by (8),∫ α2

α1

ξ v(a[ξ]) dξ =

∫ 1

0
ρ(τ)v(a[ρ(τ)])

dρ

dτ
dτ =

∫ 1

0
ρ(τ) dτ

=

∫ β2

β1

ξ v(b[ξ]) dξ =

∫ 1

0
σ(τ)v(b[σ(τ)])

dσ

dτ
dτ =

∫ 1

0
σ(τ) dτ

(10)



53. H. Kneser & W. Süss’s Proof of Brunn-Minkowski Inequality.- - - - - - -

Equality in (7) implies equality in Jesen’s Inequality. Thus for every
τ ∈ (0, 1) we have v(a[ρ(τ)]) = v(b[σ(τ)]). It follows from (8) that

ρ(τ)− σ(τ) = const.,

and from (10) that the const. = 0.

Finally, since ρ(τ) = σ(τ) for 0 < τ < 1, it follows that

α2 = lim
τ→1

ρ(τ) = lim
τ→1

σ(τ) = β2.

Thus in the direction of the x1-axis, the support planes of A and B
coincide, and thus the support numbers in this direction are equal.

Since we could have chosen any direction for the x1-axis, the support
numbers of A and B are identical in all directions, hence A and B are
identical, as claimed.



54. Other Problems Soluble by Alexandrov’s Mapping Lemma.

Figure: Find Polyhedron with
Vertices on Rays with Given
Angles

Polyhedra with Vertices on Given Rays.

Suppose r1, . . . , rm are rays emanating from
the origin such that they don’t all lie in any
halfspace. Suppose we are given positive
numbers ω1, . . . , ωm. The problem is to
find a convex polyhedron with one vertex
on each ray such that the spherical angle at
the vertex on ri is given by ωi .

The spherical angle at the vertex is the area
of the region in the unit sphere which is the
convex hull of the normals of the
neighboring faces. In two dimensions, it is
the angle between neighboring normals.



55. Other Problems: Polyhedra with Vertices on Given Rays.

Let Ωi1,...,ik denote the angle at the origin of the infinite cone which is
the convex hull of the rays H(ri1 , . . . , rik ).

Theorem (Alexandrov)

Let r1, . . . , rm ∈ R3 be rays emanating from the origin such that they
don’t all lie in a halfspace. That the numbers ω1, . . . , ωm be the
spherical angles at the vertices of a polytope whose vertices lie on the
rays r1, . . . , rm it is necessary and sufficient that

1 All ωi > 0.

2
∑m

i=1 ωi = 4π.

3 For every subset of rays ri1 , . . . , rik contained in some halfspace,
there holds

∑
p ωip > Ωi1,...,ik where the sum is over all rays rp not in

the convex hull H(ri1 , . . . , rik ).



56. Other Problems: Polyhedra with Given Net.

Figure: Find Polyhedron with Given Net

Weyl’s Problem for
Polyhedra

Cut apart the surface of a
polytope in R3, unroll it onto
the plane and cut the
resulting development into
polygons. The result is a net,
the gluing plan how to
reassemble the polygons
back into the polytope.

Is it possible to start with a
collection of polygons in the
plane and instructions giving
which polygon sides to glue,
and then find a convex
polyhedron whose surface
has this gluing plan?



57. Other Problems: Polyhedra with Given Net. -

Figure: Net or Gluing Plan

The gluing plan for a polyhedron satisfies
necessary conditions. We are given finitely
many polygons in the plane, labeled at the
corners.
1. Each side of any polygon is identified
with exactly one other side. e.g., EB occurs
exactly twice: as a side of the red square
and as a side of the orange triangle. The
identified sides have equal lengths and the
orientation is preserved. Call this local
planarity. This implies no boundary.
2. For any points, say w and z in the
polygons, there is a connecting path that
may cross polygon to polygon at identified
points on the sides wxyz . Call this
connectedness.



58. Other Problems: Polyhedra with Given Net. - -

Figure: Another Net for the same Polyhedron

There are many other nets
that give the same
polyhedron. Here we give
another for our truncated
cube example.

Note that interior points of a
side may be “corners” of a
polygon, such as E and F in
the red-green-cyan
parallelogram. It may also
happen that sides of the
same polygon get identified.



59. Other Problems: Polyhedra with Given Net. - - -

Figure: Intrinsic Angle at G .

The intrinsic angle depends
only on the net. It is not the
spherical angle.

Gluing the sides together, i.e., taking the
union of polygons and identifying
corresponding sides and corners is the
identification space. It inherits the local
Euclidean structure (lengths, angles, areas)
of the polygons. Call the identified sides
edges and identified corners vertices.

3. At each vertex V , the total angle at the
adjacent corners is at most 2π. e.g., at the
vertex G in the diagram, the sum of angles
is

π

4
+

π

2
+

π

4
+

π

3
=

4π

3
≤ 2π.

This condition is called nonnegative
curvature.



60. Other Problems: Polyhedra with Given Net. - - - -

4. The surface of a convex polyhedron is homeomorphic to the sphere.
The polygons of the boundary satisfy the Euler condition

χ = v − e + f = 2,

where v is the number of identified vertices, e is the number of edges
and f is the number of polygons. In our truncated cube example, v = 7,
e = 12 and f = 7 so that v − e + f = 7− 12 + 7 = 2. χ is called the
Euler Characteristic.

Theorem

The identification space of a connected, planar gluing plan is
homeomorphic to the sphere if and only if v − e + f = 2.



61. Other Problems: Polyhedra with Given Net. - - - - -

To simplify the statement, we consider the double cover of a planar
convex polygon, i.e., two congruent convex polygons lying on top of each
other sewn along their sides as a closed convex polyhedron.

Theorem (Weyl)

Suppose finitely many polygons are given in the plane and a gluing plan
that is locally planar, connected, with nonconvex vertices and such that
the Euler condition holds. Then there closed convex polyhedron that
realizes the gluing plan. This polyhedron is unique up to rigid motion
and reflection.



62. Minkowski’s Proof of Brunn’s Inequality.

Here is Minkowsi’s proof of (7) using induction. The inequality is proved
for finite unions of rectangular boxes first and then a limiting process
gives the general statement. Suppose that A = ∪n

i=1Ri and B = ∪m
j=1Sj

where Ri and Sj are pairwise disjoint open rectangles, that is Ri ∩ Rj = ∅
and Si ∩ Sj = ∅ if i 6= j . The proof is based on induction on ` = m + n.

For ` = 2 there are two boxes R = (a1, b1)× (a2, b2)× (a3, b3) and
R = (c1, d1)× (c2, d2)× (c3, d3) so R + S
= (a1 + c1, b1 + d1)× (a2 + c2, b2 + d2)× (a3 + c3, b3 + d3). Then
V (R) =

∏3
i=1 `i , V (S) =

∏3
i=1 wi and V (R + S) =

∏3
i=1(`i + wi ) where

`i = bi − ai and wi = di − ci . Using Arithmetic-Geometric Inequality,

V (R)
1
3 + V (S)

1
3

V (R + S)
1
3

=

∏
`

1
3
i +

∏
w

1
3
i∏

(`i + wi )
1
3

=
3∏

i=1

(
`i

`i + wi

) 1
3

+
3∏

i=1

(
wi

`i + wi

) 1
3

≤ 1

3

(
3∑

i=1

`i

`i + wi
+

3∑
i=1

wi

`i + wi

)
= 1.



63. Minkowski’s Proof of Brunn’s Inequality..

Now assume the induction hypothesis: suppose that (7) holds for
A = ∪n

i=1Ri and B = ∪m
j=1Sj with m + n ≤ `− 1. For A and B so that

m + n = `, we may arrange that n ≥ 2. Then some vertical or horizontal
plane, say x = x1, can be placed between two rectangles. Let
R ′i = Ri ∩ {(x , y) : x < x1} and R ′′i = Ri ∩ {(x , y) : x > x1} and put
A′ = ∪iR

′
i and A′′ = ∪iR

′′
i . By choice of the plane, the number of

nonempty rectangles in #A′ < n and #A′′ < n, but both A′ and A′′ are
nonempty. Select a second plane x = x2 and set
S ′i = Si ∩ {(x , y) : x < x2} and S ′′i = Si ∩ {(x , y) : x > x2} and put
B ′ = ∪iS

′
i and B ′′ = ∪iS

′′
i . Note that #B ′ ≤ m and #B ′′ ≤ m. x2 can

be chosen so that the area fraction is preserved

θ =
V (A′)

V (A′) + V (A′′)
=

V (B ′)

V (B ′) + V (B ′′)
.



64. Minkowski’s Proof of Brunn’s Inequality...

By definiton of Minkowski sum, A+B ⊃ A′+B ′∪A′′+B ′′. Furthermore,
observe that A′ + B ′ is to the left and A′′ + B ′′ is to the right of the
plane x = x1 + x2, so they are disjoint sets. Now we may use the
additivity of area and the induction hypothesis on A′ + B ′ and A′′ + B ′′.

V (A + B) ≥ V (A′ + B ′) + V (A′′ + B ′′)

≥
(
V (A′)

1
3 + V (B ′)

1
3

)3
+
(
V (A′′)

1
3 + V (B ′′)

1
3

)3

=θ
(
V (A)

1
3 + V (B)

1
3

)3
+ (1− θ)

(
V (A)

1
3 + V (B)

1
3

)3

=
(
V (A)

1
3 + V (B)

1
3

)3
.

Thus the induction step is complete.



65. Minkowski’s Proof of Brunn’s Inequality....

Finally every compact region can be realized as the intersection of a
decreasing sequence of open sets An ⊃ An+1 so that A = ∩nAn. An can
be taken as the interiors of a union of finitely many closed squares. For
each ε = 2−n > 0 consider the closed squares in the grid of side ε which
meet the set. Then the interior of the union of these squares is An.
Removing the edges of the squares along gridlines A′n results in a set with
the same area. The result follows since Lebesgue measure of the limit is
limit of the Lebesgue measure for decreasing sequences. Since the
Minkowski sum of a decreasing set of opens is itself a decreasing set of
opens, it follows that

V (A + B)
1
3 = lim

n→∞
V (An + Bn)

1
3 ≥ lim

n→∞
V (A′n + B ′n)

1
3

≥ lim
n→∞

(
V (A′n)

1
3 + V (B ′n)

1
3

)
= V (A)

1
3 + V (B)

1
3

and we are done.



66. Arithmetic-Geometric Inequality.

Theorem (Arithmetic-Geometric Inequality)

Let xi ≥ 0 for i = 1, . . . , n. Then

Geometric Mean = (
∏n

i=1 xi )
1
n ≤ 1

n

∑n
i=1 xi = Arithmetic Mean.

Equality holds if and only if x1 = x2 = · · · = xn.

If x1 = x2 = · · · = xn = c then both sides equal c so equality holds.
Let S =

∑n
i=1 xi . We maximize

f (y) =
∏n

i=1 yi

subject to yi ≥ 0 and
∑n

i=1 yi = S . We have yi ≤ S so the function is to
be maximized over closed and bounded subset of Rn. As f is continuous,
it has a maximum. If S = 0 the maximum is zero at the origin.



67. Arithmetic-Geometric Inequality.

If S > 0 then f > 0 and the maximum occurs in the interior of the
orthant. The Lagrange Multiplier method says the maximum occurs at
critical pints of the function

L = f (y)− µ (
∑n

i=1 yi − S)

At the maximum point z ,

0 =
∂L
∂yi

=
f (z)

zi
− µ

so that µzi = f (z) hence all zi are equal and µ > 0. Adding, zi = S/n so
µS/n = f (z) = Sn/nn. Thus µ = (S/n)n−1. It follows that

(
∏n

i=1 yi )
1
n = f (y)

1
n ≤ f (z)

1
n = 1

nS = 1
n

∑n
i=1 yi .

Equality holds iff y1 = y2 = · · · = yn.



Thanks!




