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5. Convex Sets.

Let S ⊂ E2 be a compact (closed and bounded) set.

A set is convex if for every pair of points in the set x , y ∈ S , the line
segment from x to y is also contained in the set.

A compact convex set is called a convex body. The set of all convex
bodies in E2 is denoted K2.

Figure: Convex Body S in E2.



6. Minkowski Addition of Sets.

Figure: Hermann Minkowski
1864–1909.
“Mich interessiert alles, was konvex
ist!” H. Minkowski.

Minkowski Addition of any two sets
A,B ⊂ E2 is defined to be

A�B := {x +y : x ∈ A and y ∈ B}.

For s ≥ 0, the Minkowski Dilation
by factor s is defined to be

sA = {sx : x ∈ A}.

For example, the Minkowski sum of
dilated rectangles is a rectangle

s([0, a]× [0, b]) � t([0, c]× [0, d ])

= [0, sa + tc]× [0, sb + td ].

(1)



7. Minkowski Addition of Sets.

Figure: Minkowski Addition of a Triangle and a Rectangle.



8. Kinematic interpretation of Minkowski Addition.

Figure: Minkowski Addition as Smear.

Minkowski Addition may be written

A � B =
⋃
x∈B

A � {x}.

It is the union of all translates of A
by points of B. The A set is
smeared around by the B set.



9. Morphing interpretation of Minkowski Addition.

Figure: (1− r)A � rB as sections of
convex hull of K = A× {0} ∪ B × {1}.

For 0 ≤ r ≤ 1, (1− r)A � rB linearly
morphs A at r = 0 into B at r = 1.

In (x , y , r) space draw A and B in
different planes
K = {(x , y , 0) : (x , y) ∈ A}∪

{(x , y , 1) : (x , y) ∈ B}
and consider the three dimensional
convex hull K̂ (outlined in green in
the Figure.) Then the r = const.
section is the Minkowski convex
combination
{(x , y , r) : (x , y) ∈ R2}

⋂
K̂

= {(x , y , r) : (x , y) ∈ (1−r)A�rB}.



10. Minkowski’s Theorem. Definition of Mixed Area.

Theorem (Minkowski)

Let A and B be convex bodies in the plane. Then the area of the linear
combination sA � tB is a quadratic form for nonnegative s and t,

A(sA � tB) = a11s
2 + 2a12st + a22t

2.

Coefficients of s2 and t2 are evidently areas a11 = A(A) and a22 = A(B).
The cross term defines A(A,B) := a12, called the mixed area.

For A,B,C ∈ K2 and nonnegative s,t the following hold:

A(A,B) ≥ 0;

A(A,B) = A(B,A);

If ρ is a rigid motion then A(ρA, ρB) = A(A,B);

A(A,A) = A(A);

A(sA � tB,C ) = s A(A,C ) + tA(B,C );

If A ⊂ B then A(A,C ) ≤ A(B,C ).



11. The Mixed Area of a Set and Line Segment is its Projected Width.

Figure: Addition of Set and Segment.

Let K ∈ K2 and
L = {r(cos θ, sin θ) : 0 ≤ r ≤ 1}, a
line segment in the θ direction. The
sum is the smear of sK along tL.
The area of sK � tL consists of the
sK part and the rest, whose area is
tw(θ + π

2 ), where w(θ + π
2 ) is the

width of the body K projected to
the perpendicular line.

A(sK � tL) =

= A(K )s2 + 2A(K , L)st +A(L)t2

= A(K )s2 + w(θ + π
2 )st + 0.

Hence A(K , L) = 1
2w(θ + π

2 ).



12. Coordinates of a line.

An unoriented line in the plane is determined by two numbers, p the
distance to the origin and θ, the direction to the closest point.
The variable range is 0 ≤ p and 0 ≤ θ < 2π.
Equivalently, we may take the range −∞ < p̃ <∞ and 0 ≤ η < π.

Figure: (p, θ) coordinates for the line L.

The equation of the line L(p, θ) in Cartesian coordinates is

cos(θ)x + sin(θ)y = p (2)



13. Support function and width.

Figure: Width and support function of convex Ω in θ direction.

For θ ∈ [0, 2π), the support function, h(θ), is the largest p such that
L(p, θ) ∩ Ω 6= ∅. The width is w(θ) = h(θ) + h(θ + π).



14. Length of a convex curve in terms of its support function.

Figure: Tangent Velocity Vector Z ′.

For a C2 strictly convex Ω, h(θ)
determines the position Z (θ)
uniquely. N(θ) = (cos θ, sin θ) is the
outward normal vector. Thus
N ′ = (− cos θ, sin θ) and N ′′ = −N.

Z (θ) is the position so Z ′(θ) is the
velocity with N · Z ′ = 0. The
support function h(θ) satisfies

h(θ) = Z (θ) · N(θ).

Differentiating wrt θ,

h′ = Z · N ′ + Z ′ · N = Z · N ′.

Hence Z = hN + h′N ′.

The speed is
ds

dθ
= |Z ′| =

= |h′N +hN ′+h′′N ′−h′N| = h+h′′.

Also the curvature is

dθ

ds
= κ =

1

h + h′′
> 0.



15. Length of a convex curve in terms of its support function.

Figure: Augustin Louis Cauchy
1789–1857

Theorem (Cauchy’s Formula [1841])

Let Ω be a bounded convex domain. Then

L(∂Ω) =

∫ 2π

0
h(θ) dθ =

∫ π

0
w(θ) dθ. (3)

Thus the average width of Ω is
L(∂Ω)

π
.

L(∂Ω) =

∫
∂Ω

ds =

∫ 2π

0
h + h′′ dθ =

=

∫ 2π

0
h(θ) dθ =

∫ π

0
h(θ) + h(θ + π) dθ

=

∫ π

0
w(θ) dθ.



16. Area in terms of support function.

Theorem

Suppose Ω is a compact, convex domain
with a C2 boundary. Then

A(Ω) =
1

2

∫ 2π

0
h ds =

1

2

∫ 2π

0
h2 − ḣ2 dθ.

(4)

Figure: Area in Polar Coordinates.

Since
ds

dθ
= h + ḧ so

A(Ω) =

∫
Ω

dA

=
1

2

2π∫
0

h ds

=
1

2

2π∫
0

h(h + ḧ) dθ

=
1

2

2π∫
0

h2 − ḣ2 dθ.



17. Support Function of a Minkowski Sum.

Suppose A,B ∈ K2 and s, t ≥ 0. Let hA(θ) and hB(θ) be their support
functions. Let U(θ) = (cos θ, sin θ). Since the support function may be
written

hA(θ) = max
z∈A

z · U(θ)

and
sA � tB = {sx + ty : x ∈ A and y ∈ B }

we have
hsA�tB(θ) = shA(θ) + thB(θ).

The support function of a Minkowski linear combination is the linear
combination of support functions.

E.g., since the support function of a point {(a, b)} is a cos θ+ b sin θ, the
support function of the translation of a body K by (a, b) is

h
K�{(a,b)}(θ) = hA(θ) + a cos θ + b sin θ.



18. Proof of Minkowski’s Theorem and a Formula for Mixed Area.

Minkowski proved his theorem first for polygons where it is easier and
then approximated convex bodies by polygons. For piecewise C1 convex
bodies, A,B ∈ K2 and s, t ≥ 0, Minkowski’s theorem is an immediate
consequence of the area formula.

A(sA � tB) =
1

2

∫ 2π

0
h2
sA�tB − ḣ2

sA�tB dθ

=
1

2

∫ 2π

0
(shA + thB)2 −

(
sḣA + tḣB

)2
dθ

=

(
1

2

∫ 2π

0
h2
A − ḣ2

A dθ

)
s2 +

(∫ 2π

0
hAhB − ḣAḣB dθ

)
st

+

(
1

2

∫ 2π

0
h2
B − ḣ2

B ds

)
t2

= A(A)s2 + 2A(A,B)st +A(B)t2.

Thus the area is quadratic. Moreover,

A(A,B) =
1

2

∫ 2π

0
hAhB − ḣAḣB dθ.



19. Properties of the mixed area.

For piecewise C2 strictly convex bodies A,B, convexity implies
hB + h′′B > 0. Since we may translate the body without changing the
mixed area, we may assume that the origin 0 ∈ A so that hA ≥ 0.
Positivity of the mixed area follows. Integrating by parts, using that hA

and hB are 2π-periodic,

A(A,B) =
1

2

∫ 2π

0
hAhB − ḣAḣB dθ

=
1

2

∫ 2π

0
hA

(
hB + ḧB

)
dθ

≥ 0.

The other properties we listed are proved similarly.



20. Steiner’s Formulas.

The r -Parallel Set Ωr of a convex body Ω is
the set of points within distance r ≥ 0 of Ω.

Ωr = {x ∈ E2 : dist(x ,Ω) ≤ r} = Ω � rB

where B is the closed unit ball.

Theorem (Steiner’s Formulas)

The area and boundary length of the
r-parallel set of a convex body Ω are

A(Ωr ) = A(Ω) + L(∂Ω)r + πr2, (5)

L(∂Ωr ) = L(∂Ω) + 2πr , (6)

L(∂A) = 2A(A,B). (7)
Figure: Jakob Steiner
1796–1863.

A(A � rB) = A(A) + 2A(A,B)r +A(B)r2

so Steiner’s Formula (5) implies (7).



21. Steiner’s Formula is Obvious for Polygons.

Figure: Parallel set Pr of polygon has area A(P) + L(∂P)r + πr2.



22. Proof of Steiner’s Formulas.

Figure: Parallel set Ωr .

We indicate the proof if ∂Ω is C1. Let h(θ)
be the support function of Ω and r the
support function of rB centered at the
origin. Hence the support function of
Ω � rB is h + r .The area and length
formulas give

A(Ωr ) = 1
2

∫ 2π
0 (h + r)2 − ḣ2 dθ

= 1
2

∫ 2π
0 h2 − ḣ2 dθ + 1

2

∫ 2π
0 2hr + r2 dθ

= A(Ω) + L(∂Ω)r + πr2;

L(∂Ωr ) =
∫ 2π
0 h + r dθ

=
∫ 2π
0 h dθ + 2πr

= L(∂Ω) + 2πr .



23. Wirtinger’s Inequality.

Wirtinger’s Inequality bounds the L2 norm of a function by the L2 norm
of its derivative. It is also known as the Poincaré Inequality in higher
dimensions. We state stronger hypotheses than necessary.

Figure: Wilhelm Wirtinger
1865–1945.

Theorem (Wirtinger’s inequality)

Let f (θ) be a piecewise C 1(R) function
with period 2π (for all θ, f (θ+2π) = f (θ)).
Let f̄ denote the mean value of f

f̄ = 1
2π

∫ 2π
0 f (θ) dθ.

Then∫ 2π
0

(
f (θ)− f̄

)2
dθ ≤

∫ 2π
0 (f ′(θ))2 dθ.

Equality holds iff for some constants a, b,

f (θ) = f̄ + a cos θ + b sin θ.



24. Proof of Wirtinger’s Inequality.

Idea: express f and f ′ in Fourier series. Since f ′ is bounded and f is
continuous, the Fourier series converges at all θ

f (θ) = a0
2 +

∑∞
k=1 {ak cos kθ + bk sin kθ}

where the Fourier coefficients are determined by formally multiplying by
sin mθ or cos mθ and integrating to get

am = 1
π

∫ 2π
0 f (θ) cos mθ dθ, bm = 1

π

∫ 2π
0 f (θ) sinmθ dθ,

hence 2f̄ = a0. Since the sines and cosines are complete, the Parseval
equation holds ∫ 2π

0

(
f − f̄

)2
= π

∑∞
k=1

(
a2
k + b2

k

)
. (8)

Formally, this is the integral of the square of the series, where after
multiplying out and integrating, terms like

∫
cos mθ sin kθ = 0 or∫

cos mθ cos kθ = 0 if m 6= k drop out and terms like
∫

sin2 kθ = π
contribute π to the sum.



25. Proof of Wirtinger’s Inequality..

The Fourier Series for the derivative is given by

f ′(θ) ∼
∞∑

k=1

{−kak sin kθ + kbk cos kθ}

Since f ′ is square integrable, Bessel’s inequality gives

π

∞∑
k=1

k2
(
a2
k + b2

k

)
≤

∫ 2π

0
(f ′)2. (9)

Wirtinger’s inequality is deduced form (8) and (9) since∫ 2π

0
(f ′)2 −

∫ 2π

0

(
f − f̄

)2 ≥ π

∞∑
k=2

(k2 − 1)
(
a2
k + b2

k

)
≥ 0.

Equality implies that for k ≥ 2, (k2 − 1)
(
a2
k + b2

k

)
= 0 so ak = bk = 0,

thus f takes the form f (θ) = f̄ + a cos θ + b sin θ.



26. Brunn’s Inequality.

The theorem of Hermann Karl Brunn (1862–1939) says that since the
Minkowski addition tends to “round out” the figures being added, the
area of the added figure exceeds the area of the summands.

Theorem (Brunn’s Inequality)

Let A,B ∈ E2 be arbitrary bounded measurable sets in the plane. Then,√
A(A � B) ≥

√
A(A) +

√
A(B). (10)

Equivalently, the mixed area satisfies

A(A,B)2 ≥ A(A)A(B). (11)

Minkowski proved that equality holds if and only if A and B are
homothetic. Two figures A and B are homothetic if and only if they are
similar and are similarly situated, which means there is a point x and
r ≥ 0 so that A = rB � {x}.



27. Proof of Brunn’s Inequality from Wirtinger’s inequality.

First, the expressions (10) and (11) are equivalent because

A(A � B) = A(A) + 2A(A,B) +A(B),(√
A(A) +

√
A(B)

)2
= A(A) + 2

√
A(A)A(B) +A(B).

In case of C1 convex bodies, let hA and hB be the support functions.
Their averages are proportional to boundary lengths LA, LB by Cauchy’s
Formula

1

2π

∫ 2π

0
hA dθ =

LA

2π
,

1

2π

∫ 2π

0
hB dθ =

LB

2π
.

Let f (θ) = LBhA(θ)− LAhB(θ). Its average

1

2π

∫ 2π

0
f dθ = 0.



28. Proof of Brunn’s Inequality from Wirtinger’s inequality..

Applying Wirtinger’s Inequality to f ,

L2
B

∫
h2
A − 2LALB

∫
hAhB + L2

A

∫
h2
B =∫

(LBhA − LAhb)
2 =∫

f 2 ≤
∫

ḟ 2

=

∫
(LB ḣA − LAḣb)

2

= L2
B

∫
ḣ2
A − 2LALB

∫
ḣAḣB + L2

A

∫
ḣ2
B

Thus

L2
B

(∫
h2
A − ḣ2

A

)
+ L2

A

(∫
h2
B − ḣ2

B

)
≤ 2LALB

(∫
hAhB − ḣAḣB

)
L2

B A(A) + L2
AA(B) ≤ 2LALB A(A,B). (12)



29. Proof of Brunn’s Inequality from Wirtinger’s inequality...

Subtracting 2LALB

√
A(A)A(B) yields

L2
B A(A)− 2LALB

√
A(A)A(B) + L2

AA(B)

≤ 2LALB A(A,B)− 2LALB

√
A(A)A(B)

so inequality (11) follows

0 ≤
(
LB

√
A(A)− LA

√
A(B)

)2
≤ 2LALB

(
A(A,B)−

√
A(A)A(B)

)
.

Equality in Brunn’s Inequality implies equality in Wirtinger’s Inequality.
So using f̄ = 0,

LbhA − LAhB = f = a1 cos θ − b1 sin θ

or in other words, A and B are homothetic up to translation.



30. Isoperimetric Inequality.

Among all domains in the plane with a fixed boundary length, the circle
has the greatest area. For simplicity we focus on domains bounded by
simple curves.

Theorem (Isoperimetric Inequality.)

1 Let C be a simple closed curve in the plane whose length is L and
that encloses an area A. Then the following inequality holds

4πA ≤ L2. (13)

2 If equality holds in (13), then the curve C is a circle.

Simple means curve is assumed to have no self intersections.
A circle of radius r has L = 2πr and encloses A = πr2 = L2

4π .
Thus the Isoperimetric Inequality says if C is a simple closed curve, then
C encloses an area no bigger than the area of the circle with the same
boundary length.



31. Convex Hull

The convex hull of K , denoted K̂ , is the smallest convex set that contains
K . This is equivalent to the intersection of all halfspaces that contain K ,

K̂ =
⋂

Ω is convex
Ω ⊃ K

Ω =
⋂

H is a halfspace
H ⊃ K

H.

A halfspace is a set of the form H = {(x , y) ∈ E2 : ax + by ≤ c}, where
(a, b) is a unit vector and c is any real number.



32. Reduce proof of Isoperimetric Inequality to convex domain case.

Since K ⊂ K̂ by its definition, we have A(K̂ ) ≥ A(K ).

Taking convex hull reduces the boundary length because the interior
segments of the boundary curve, the components of ∂K − ∂K̂ of ∂K are
replaced by straight line segments in ∂K̂ . Thus also L(∂K̂ ) ≤ L(∂K ).

Figure: The region K and its convex hull K̂ .



33. Reduce proof of Isoperimetric Inequality to convex curves case..

Thus the isoperimetric inequality for convex sets implies

4πA ≤ 4πÂ ≤ L̂2 ≤ L2.

Furthermore, one may also argue that equality 4πA = L2 implies equality
4πÂ = L̂2 in the isoperimetric inequality for convex sets so that K̂ is a
circle. But then so is K .

The basic idea is to consider the the extreme points ∂∗K̂ ⊂ ∂K̂ of K̂ ,
that is points x ∈ ∂K̂ such that if x = λy + (1− λ)z for some y , z ∈ K̂
and 0 < λ < 1 then y = z = x . K̂ is the convex hull of its extreme
points. However, the extreme points of the convex hull lie in the curve
∂∗K̂ ⊂ ∂K ∩ ∂K̂ . K̂ being a circle implies that every boundary point is
an extreme point, and since they come from ∂K , it means that ∂K is a
circle.



34. Minkowski’s proof of Isoperimetric Inequality from Brunn’s Ineq.

The Isoperimetric Inequality follows from Steiner’s Formula and Brunn’s
Inequality. Let Ω be a convex body with piecewise C1 boundary and B
the closed unit ball. Then by (7) and (11),

L(∂Ω)2 = 4A(Ω,B)2

≥ 4A(Ω)A(B)

= 4πA(Ω).

as desired.

Equality implies equality in Brunn’s Inequality. Thus up to translation, Ω
is homothetic to B, or hΩ is constant so Ω is a ball.

Another proof using (12) is just as fast:

4π2A(Ω) + πL(∂Ω)2 = L2
B A(Ω) + L2

ΩA(B)

≤ 2LΩLB A(Ω,B)

= 2πL(∂Ω)2.



35. Better Inequality for Polygons.

Figure: K Circumscribes Unit Circle with Same Normals as P.

Let P be a convex polygon with n sides and let ni denote its outward
unit normal vectors. Let K be the polygon that circumscribes the unit
circle having the same normal directions as P.



36. Compute the Area of K Circumscribing the Unit Circle.

Figure: Area of Sector from ni to ni+1.

The total area of K is larger than
circle so A(K ) > π.

Let OQRS denote the sector of K
from the ni side to the ni+1 side.
Let αi = ∠(ni ,ni+1). It is also the
exterior angle from QR to RS and
twice the angle αi/2 = ∠(QOR).
Thus the area of the triangle

A(QOR) =
1

2
bh =

1

2
tan

(αi

2

)
· 1

which equals A(SOR) by reflection
across line OR.
Hence, adding over all n sectors, the
area of K is

A(K ) =
n∑

i=1

tan
(αi

2

)
. (14)



37. Compute the Mixed Area of P and K .

Figure: Enlarge all support numbers for Polygon P by r . Get P � rK .

A(P � rK ) = A(P) + r L(∂P) + r2A(K ) so that

2A(P,K ) = L(∂P). (15)



38. Isoperimetric Inequality for Polygons with Given Angles.

Theorem (Lhuilier’s Inequality.)

Let P be a compact convex polygon with n sides, whose exterior angles
are αi for i = 1, . . . , n. Then

L(∂P)2 ≥ 4A(P)
n∑

i=1

tan
(αi

2

)
.

Equality holds if P circumscribes a circle.

Proof. Let K the polygon circumscribing the unit circle with the same
normal directions as P. By (15) and Brunn’s Inequality (11),

L(∂P)2 = 4A(P,K )2 ≥ 4A(P)A(K ) = 4A(P)
n∑

i=1

tan
(αi

2

)
(16)

as desired. Equality implies equality in Brunn’s Inequality. Then, up to
translation, P is homothetic to K , so P circumscribes a circle.



39. Jensen’s Inequality.

Theorem (Jensen’s Inequality.)

Let φ : (a, b) → R be a strictly
convex function and ξi ∈ (a, b) be
points and µi > 0 be weights for
i = 1, . . . , n. Then

φ

(∑n
i=1 µiξi∑n
i=1 µi

)
≤

∑n
i=1 µiφ(ξi )∑n

i=1 µi
.

(17)
Equality holds if and only if
ξ1 = · · · = ξn.

Proof. Consider the points
(ξi , φ(ξi )) with weights µi . The
center of mass of these points

(ξ̄, η̄) =
(Pn

i=1 µiξiPn
i=1 µi

,
Pn

i=1 µiφ(ξi )Pn
i=1 µi

)

lies in their convex hull, thus is
above the curve: φ(ξ̄) ≤ η̄.
Let λ be linear function supporting
φ so that ψ = φ− λ has a strict
minimum at ξ̄. Then equality
holding in (17) implies equality in

ψ(ξ̄)
∑
µi ≤

∑
µiψ(ξi )

which implies ξi = ξ̄ for all i .

Figure: Center of Gravity of Points on a
Convex Curve is Above the Curve.



40. Smallest Circumscribing Polygon with n Sides is Regular.

Theorem (The n-gon of least area containing a circle is regular.)

Let K be a compact polygon containing the unit circle with n or fewer
sides. Then

A(K ) ≥ n tan
(

π
n

)
.

Equality holds if and only if K is a regular n-gon.

Proof. Area is reduced by pulling in sides, so we may assume K
circumscribes the circle. By (14), such an n-gon K has

A(K ) =
∑n

i=1 tan
(

αi
2

)
,

where 0 < αi < π are the exterior angles whose total is
∑
αi = 2π.

The function φ(ξ) = tan(ξ/2) is convex on (0, π). Using Jensen’s
inequality with weights µi = 1/n,

1
n

∑n
i=1 tan

(
αi
2

)
≥ tan

(
1
2n

∑n
i=1 αi

)
= tan

(
π
n

)
.

Equality holds if and only if αi = 2π
n for all i .



41. Isoperimetric Inequality for n-gons.

Theorem (Isoperimetric Inequality for n-gons.)

Let P be a compact polygon with n or fewer sides. Then

L(∂P)2 ≥ 4n tan
(π

n

)
A(P).

Equality holds if and only if P is a regular n-gon.

Proof. We have observed that we can replace P by its convex hull P̂,
which is a polygon with n or fewer sides. Applying (16)

L(∂P)2 ≥ L(∂P̂)2 ≥ 4A(P̂,K )2 ≥ 4A(P̂)A(K ) ≥ 4A(P)A(K ),

where K is the circumscribing polygon with the same normals as P̂. The
Minimum Area theorem for circumscribing K finishes the inequality.
Equality implies P = P̂ and P is regular.



42. How Much Greater is the Polygon Isoperimetric Constant?

The Polygonal Isoperimetric Constant In = 4n tan
(π

n

)
The ratio to the usual Isoperimetric Constant

In

4π

n Polygon Isop. Const. In Ratio of Isop. Consts. In
4π

3 20.78460969099 1.65398668628
4 16.00000000000 1.27323954474
5 14.53085056017 1.15632834699
6 13.85640646061 1.10265779085
8 13.25483399599 1.05478617516
12 12.86156123674 1.02349052335
16 12.73039151234 1.01305236834
20 12.67075522600 1.00830666346
100 12.57050641898 1.00032911687
∞ 12.56637061436 1.00000000000

Table: Polygonal Isoperimetric Constants



43. Stable Versions of Geometric Inequalities.

The Isoperimetric Inequality and the Brunn-Minkowski Inequality say
that some geometric quantity has a lower bound for all domains and if
equality holds then the domain is special. E.g., the Isoperimetric Ratio

I(Ω) :=
L(∂Ω)2

4πA(Ω)
− 1 ≥ 0

for all Ω ∈ K2 and “=” holds if and only if Ω is a circle.

A modern trend is to study a Stability Inequality version: If the quantity
is close to its lower bound then the domain is close to special. E.g., we’ll
show for the Isoperimetric Ratio

I(Ω) ≥ 6πD2
2(Ω,Dz) (18)

where Dz is the circular Steiner disk of Ω and D2 is a standardized L2

measure of the distance. In particular, if I vanishes, Ω equals its Steiner
Disk, and thus is circular. The stability inequality implies the equality
case: the special nature of Ω when equality holds.



44. Steiner Disk.

The Steiner Point z = (a1, b1) is the
support-weighted average normal direction

a1 = 1
2π

∫ 2π
0 h(θ) cos θ dθ

b1 = 1
2π

∫ 2π
0 h(θ) sin θ dθ

The Steiner Disk Dz is centered at z with
the same average width as Ω, which by
Cauchy’s Formula, L(∂Dz) = L(∂Ω).
Expanding in Fourier Series

hΩ(θ) ∼
∑∞

k=0 ak cos kθ + bk sin kθ

then the support function of Dz is

hD(θ) = a0 + a1 cos θ + b1 sin θ.

Figure: Steiner Point z and
Steiner Disk Dz of Ω.

It is a fact that for Ω ∈ K2

then its Steiner Point z ∈ Ω.



45. Sharpen Wirtinger’s Inequality.

Theorem (Wirtinger’s inequality)

Let f (θ) be a piecewise C 1(R) function with period 2π (for all θ,

f (θ + 2π) = f (θ)). Suppose
∫ 2π
0 f (θ) dθ = 0. Then∫ 2π

0 f (θ)2 dθ ≤
∫ 2π
0 (f ′(θ))2 dθ. (19)

Equality holds iff for some constants a1, b1,

f (θ) = a1 cos θ + b1 sin θ.

Suppose in addition
∫ 2π
0 f (θ) cos θ dθ =

∫ 2π
0 f (θ) sin θ dθ = 0. Then∫ 2π

0 f (θ)2 dθ ≤ 1
4

∫ 2π
0 (f ′(θ))2 dθ. (20)

Equality holds iff for some constants a2, b2,

f (θ) = a2 cos 2θ + b2 sin 2θ.



46. Proof of Wirtinger’s Inequality.

Under the second hypotheses

f (θ) =
∑∞

k=2 {ak cos kθ + bk sin kθ} .

Since the sines and cosines are complete, the Parseval equation holds∫ 2π
0 f 2 = π

∑∞
k=2

(
a2
k + b2

k

)
. (21)

The Fourier Series for the derivative is given by

f ′(θ) ∼
∑∞

k=2 {−kak sin kθ + kbk cos kθ}

Since f ′ is square integrable, Bessel’s inequality gives

π
∑∞

k=1 k2
(
a2
k + b2

k

)
≤

∫ 2π
0 (f ′)2. (22)

Wirtinger’s inequality is deduced form (21) and (22) since

1
4

∫ 2π
0 (f ′)2 −

∫ 2π
0 f 2 ≥ π

∑∞
k=2

(
k2

4 − 1
) (

a2
k + b2

k

)
≥ 0.

Equality implies that for k ≥ 3, (1
4k2 − 1)

(
a2
k + b2

k

)
= 0 so ak = bk = 0,

thus f takes the form f (θ) = a2 cos 2θ + b2 sin 2θ.



47. The L2 Measure of Closeness of two Convex Bodies.

Let A,B ∈ K2 and hA and hB their support functions. We define

δ2(A,B) =

[∫ 2π

0

(
hA(θ)− hB(θ)

)2
dθ

] 1
2

= ‖hA − hB‖L2 .

δ2 is a metric on K2. Its completeness follows from

Theorem (Blaschke Selection Theorem)

Let {An} ⊂ K2 be a sequence of bodies and B ∈ K2 such that δ2(An,B)
is bounded. Then there is a body A∞ ∈ K2 and a subsequence {nj}j∈N
with nj →∞ as j →∞ and

δ2
(
Anj ,A∞

)
→ 0 as j →∞.



48. A Stable Version of Brunn’s Inequality.

Theorem (Brunn’s Stability Inequality)

Let A,B ∈ K2 be arbitrary convex bodies in the plane. Then the mixed
area satisfies

A(A,B)2 −A(A)A(B) ≥ 3

2
L2

B A(A)D2
2(A,B) (23)

where D2 is the standardized L2 distance, (25).

Proof. We prove the case that A and B are C1 convex bodies with
support functions hA and hB . Translate each set so that the origin is the
Steiner Point

z(A) = z(B) = 0.



49. Proof of Brunn’s Stability Inequality.

The averages of hA and hB are proportional to boundary lengths LA, LB

by Cauchy’s Formula

1

2π

∫ 2π

0
hA dθ =

LA

2π
,

1

2π

∫ 2π

0
hB dθ =

LB

2π
.

Let
f (θ) = LBhA(θ)− LAhB(θ).

Because Steiner Points are zero,

1

2π

∫ 2π

0
f (θ) dθ =

1

2π

∫ 2π

0
f (θ) cos θ dθ =

1

2π

∫ 2π

0
f (θ) sin θ dθ = 0.



50. Proof of Brunn’s Stability Inequality..

Applying Wirtinger’s Inequality (20) to f ,

4L2
B

∫
h2
A − 8LALB

∫
hAhB + 4L2

A

∫
h2
B =

4

∫
(LBhA − LAhb)

2 = 4

∫
f 2 ≤

∫
ḟ 2 =

∫
(LB ḣA − LAḣb)

2

= L2
B

∫
ḣ2
A − 2LALB

∫
ḣAḣB + L2

A

∫
ḣ2
B

Thus

2LALB

(∫
hAhB − ḣAḣB

)
− L2

B

(∫
h2
A − ḣ2

A

)
− L2

A

(∫
h2
B − ḣ2

B

)
≥ 3

∫ (
L2

Bh2
A − 2LALBhAhB + L2

Ah2
B

)
= 3

∫
(LBhA − LAhB)2

Hence

2LALB A(A,B)− L2
B A(A)− L2

AA(B) ≥ 3

2
L2

AL2
Bδ

2
2

(
1

LA
A,

1

LB
B

)
. (24)



51. Proof of Brunn’s Stability Inequality...

We give an asymmetrical argument, slightly different than before.
From (24),

L2
A

(
A(A,B)2 −A(A)A(B)

)
= A(A)

(
2LALB A(A,B)− L2

B A(A)− L2
AA(B)

)
+

(
LAA(A,B)− LB A(A)

)2

≥ 3

2
L2

AL2
B A(A) δ22

(
1

LA
A,

1

LB
B

)
so inequality (23) follows.

We call the dimensionless Standardized Distance which compares bodies
up to homothety

D2 (A,B) = δ2

(
1

LA
A,

1

LB
B

)
. (25)



52. The Stability Isoperimetric Inequality.

Using the isoperimetric ratio, we see that the problem of what is the
greatest area for fixed length or what is the least length for fixed area are
equivalent.

Theorem (Stability Isoperimetric Inequality.)

Let C be a simple closed curve in the plane whose length is L and that
encloses the region Ω of area A. Then the following inequalities hold for
the isoperimetric ratio and the isoperimetric difference

I(Ω) =
L2

4πA
− 1 ≥ 6πD2

2

(
Ω̂, D̂z

)
, (26)

∆(Ω) = L2 − 4πA ≥ 6π δ22

(
Ω̂, D̂z

)
, (27)

where δ2 is the L2 distance, D is the standardized distance (25), Ω̂ is the

convex hull and D̂z is the Steiner Disk of the convex hull.



53. Proof of the Stability Isoperimetric Inequality.

Proof. We have already observed that the isoperimetric quantities are
decreased under convex hull I(Ω) ≥ I(Ω̂) and ∆(Ω) ≥ ∆(Ω̂). For (26),
we put A = Ω̂ and let B be the unit disk in (23)

I(A) =
L2

A − 4πA(A)

4πA(A)
=

4
(
A(A,B)2 −A(A)A(B)

)
4πA(A)

≥
6A(A)L2

B δ
2
2

(
1
LA

A, 1
LB

B
)

4πA(A)

= 6πD2
2 (A,B) .

Since they are standardized to unit length in D2, scaling the ball doesn’t

matter: D2 (A,B) = D2

(
A, D̂z

)
.



54. Proof of the Stability Isoperimetric Inequality..

For (27), we put B = Ω̂ instead and let A be the unit disk in (23)

∆(B) = L2
B − 4πA(B) = 4

(
A(A,B)2 −A(A)A(B)

)
≥ 6A(A)L2

B δ
2
2

(
1
LA

A, 1
LB

B
)

= 6π δ22

(
D̂z , Ω̂

)
since the circumference of the Steiner Disk is LB so D̂z = LB

LA
A.



55. Green’s Formula for Area.

Alternatively, we can conclude the Isoperimetric Inequality directly from
Wirtinger’s Inequality.

Recall Green’s theorem. If p and q are differentiable functions on the
plane and Γ is a piecwise C 1 curve bounding the region Ω then∮

Γ
p dx + q dy =

∫∫
Ω

(qx − py ) dx dy .

If we take q = x and p = 0 then Green’s theorem says∮
Γ
x dy = A(Ω). (28)

The same formula can be used to make sense of area even for curves that
are merely rectifiable, namely, those whose length is the limit of lengths
of approximating polygonal curves.



56. Hurwitz’s proof of the Isoperimetric Inequality.

Figure: Adolf Hurwitz
1859–1919.

Proof. We suppose that the boundary curve
has length L is parameterized by arclength,
thus given by two piecewise C 1 and L
periodic functions x(s), y(s) that satisfy(

dx

ds

)2

+

(
dy

ds

)2

= 1.

We convert to 2π periodic functions

f (θ) = x

(
Lθ

2π

)
, g(θ) = y

(
Lθ

2π

)
so that writing “ ′ ” = d/dθ gives

(f ′)2 + (g ′)2 =
L2

4π2
. (29)



57. Hurwitz’s proof of the Isoperimetric Inequality..

We now simply to estimate the area integral (28). Using
∫

g ′ dθ = 0,
Wirtinger’s Inequality and (29),

2A =2

∫ 2π

0
fg ′ dθ = 2

∫ 2π

0
(f − f̄ )g ′ dθ

=

∫ 2π

0
(f − f̄ )2 + (g ′)2 − (f − f̄ − g ′)2 dθ

≤
∫ 2π

0
(f ′)2 + (g ′)2 dθ =

∫ 2π

0

L2

4π2
dθ =

L2

2π
,

which is the isoperimetric inequality.



58. Hurwitz’s proof of the Isoperimetric Inequality...

Equality forces equality in Wirtinger’s Inequality so

f (θ) = f̄ + a cos θ + b sin θ

for some constants a, b. Equality also forces the dropped term to vanish∫ 2π

0
(f − f̄ − g ′)2 dθ = 0

so that
g ′ = f − f̄ .

Hence
g(θ) = ḡ + a sin θ − b cos θ.

Hence (29) implies

a2 + b2 =
L2

4π2

so (x(s), y(s)) is a circle of radius L/2π.



59. Minkowski’s Proof of Brunn’s Inequality.

Alternatively, here is Minkowsi’s proof of (10) using induction. The
inequality is proved for finite unions of rectangles first and then a limiting
process gives the general statement. Suppose that A = ∪n

i=1Ri and
B = ∪m

j=1Sj where Ri and Sj are pairwise disjoint open rectangles, that is
Ri ∩ Rj = ∅ and Si ∩ Sj = ∅ if i 6= j . The proof is based on induction on
` = m + n. For ` = 2 there are two rectangles as in (1). The area

A((a, b)× (c , d) � (e, f )× (g , h)) = A((a + e, b + f )× (c + g , d + h))

= (b − a + f − e)(d − c + h − g)

= (b − a)(d − c) + (f − e)(h − g) + (b − a)(h − g) + (f − e)(d − c)

≥ (b − a)(d − c) + (f − e)(h − g) + 2
√

(b − a)(h − g)(f − e)(d − c)

=
(√

(b − a)(d − c) +
√

(f − e)(h − g)
)2

=
(√

A((a, b)× (c , d)) +
√
A((e, f )× (g , h))

)2
,

where we have used the Arithmetic-Geometric Mean Inequality

1
2(|X |+ |Y |)−

√
|X ||Y | = 1

2

(√
|X | −

√
|Y |

)2
≥ 0.

Equality in the Arithmetic-Geometric Mean Inequality implies |X | = |Y |,
so that equality in (14) implies (b − a)(h − g) = (f − e)(d − c) or both
rectangles have the same ratio of height to width. In other words, R and
S are homothetic.



60. Minkowski’s Proof of Brunn’s Inequality..

Now assume the induction hypothesis: suppose that (10) holds for
A = ∪n

i=1Ri and B = ∪m
j=1Sj with m + n ≤ `− 1. For A and B so that

m + n = `, we may arrange that n ≥ 2. Then some vertical or horizontal
plane, say x = x1, can be placed between two rectangles. Let
R ′

i = Ri ∩ {(x , y) : x < x1} and R ′′
i = Ri ∩ {(x , y) : x > x1} and put

A′ = ∪iR
′
i and A′′ = ∪iR

′′
i . By choice of the plane, the number of

nonempty rectangles in #A′ < n and #A′′ < n, but both A′ and A′′ are
nonempty. Select a second plane x = x2 and set
S ′i = Si ∩ {(x , y) : x < x2} and S ′′i = Si ∩ {(x , y) : x > x2} and put
B ′ = ∪iS

′
i and B ′′ = ∪iS

′′
i . Note that #B ′ ≤ m and #B ′′ ≤ m. x2 can

be chosen so that the area fraction is preserved

θ =
A(A′)

A(A′) +A(A′′)
=

A(B ′)

A(B ′) +A(B ′′)
.



61. Minkowski’s Proof of Brunn’s Inequality...

By definiton of Minkowski sum, A�B ⊃ A′�B ′∪A′′�B ′′. Furthermore,
observe that A′ � B ′ is to the left and A′′ � B ′′ is to the right of the
plane x = x1 + x2, so they are disjoint sets. Now we may use the
additivity of area and the induction hypothesis on A′ � B ′ and A′′ � B ′′.

A(A � B) ≥ A(A′ � B ′) +A(A′′ � B ′′)

≥
(√

A(A′) +
√
A(B ′)

)2
+

(√
A(A′′) +

√
A(B ′′)

)2

=θ
(√

A(A) +
√
A(B)

)2
+ (1− θ)

(√
A(A) +

√
A(B)

)2

=
(√

A(A) +
√
A(B)

)2
.

Thus the induction step is complete.



62. Minkowski’s Proof of Brunn’s Inequality....

Finally every compact region can be realized as the intersection of a
decreasing sequence of open sets An ⊃ An+1 so that A = ∩nAn. An can
be taken as the interiors of a union of finitely many closed squares. For
each ε = 2−n > 0 consider the closed squares in the grid of side ε which
meet the set. Then the interior of the union of these squares is An.
Removing the edges of the squares along gridlines A′n results in a set with
the same area. The result follows since Lebesgue measure of the limit is
limit of the Lebesgue measure for decreasing sequences. Since the
Minkowski sum of a decreasing set of opens is itself a decreasing set of
opens, it follows that√

A(A � B) = lim
n→∞

√
A(An � Bn) ≥ lim

n→∞

√
A(A′n � B ′

n)

≥ lim
n→∞

(√
A(A′n) +

√
A(B ′

n)
)

=
√
A(A) +

√
A(B)

and we are done.



Thanks!




