
Math 2270 § 4.
Treibergs −−σιι

Fourth Midterm Part 1 Name: Solution
April 14 2021

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

A =

 2 −2 2
0 2 0
0 2 0


By expanding the second row the characteristic polynomial is

det(A− λI) =

∣∣∣∣∣∣
2− λ −2 2

0 2− λ 0
0 2 −λ

∣∣∣∣∣∣ = (2− λ)

∣∣∣∣ 2− λ 2
0 −λ

∣∣∣∣
= −λ(2− λ)2.

Thus the eigenvalues are λ1 = 2 with algebraic multiplicity two and λ2 = 0 with algebraic
multiplicity one. We may find the eigenvectors by inspection

[0 0] = (A− λ1I)[v1 v2] =

 0 −2 2
0 0 0
0 2 −2

 1 0
0 1
0 1


0 = (A− λ2I)v3 =

 2 −2 2
0 2 0
0 2 0

 −1
0
1


All eigenvectors are the nonzero vectors in eigenspaces

E1 = span


 1

0
0

 ,
 0

1
1

 , E2 = span


 −1

0
1

 .

2. Find a matrix P that makes A similar to a real matrix of the form C. Show that your
matrix does the job.

A =

[
0 5
−1 2

]
, C =

[
a −b
b a

]
.

First find eigenvalues and eigenvectors. The characteristic polynomial is

det(A− λI) =

∣∣∣∣ −λ 5
−1 2− λ

∣∣∣∣ = −λ(2− λ) + 5

= λ2 − 2λ+ 5 = (λ− 1)2 + 4

Hence the eigenvalues are λ1 = 1 − 2i and λ2 = 1 + 2i. We may find the eigenvector by
inspection

0 = (A− λ1I)v1 =

[
−1 + 2i 5
−1 1 + 2i

] [
1 + 2i

1

]
.

We split the eigenvector into its real and imaginagry parts.

u + iv =

[
1 + 2i

1

]
=

[
1
1

]
+ i

[
2
0

]

1



The similarity making matrix P is made of of real and imaginary parts of the eigenvector.
The scaled rotation matrix of the desired form C is made up of real and imaginary parts of
the eigenvalue.

P =

[
1 2
1 0

]
, C =

[
1 −2
2 1

]
.

The easiest way to check is to compute

AP =

[
0 5
−1 2

] [
1 2
1 0

]
=

[
5 0
1 −2

]
=

[
1 2
1 0

] [
1 −2
2 1

]
= PC.

3. Let H = span(S) be a subspace of R4. Show that b1 is in H. Find additional vectors
b2,b3, . . . (as many as needed) so that B = {b1,b2, . . .} is a basis for H. Explain.

S =




1
1
0
0

 ,


1
2
2
1

 ,


4
5
2
1

 ,


1
1
2
2


 , b1 =


7
9
6
4


Form the augmented matrix whose columns are S vectors along with b1 and reduce.

[A |b1] =


1 1 4 1 7
1 2 5 1 9
0 2 2 2 6
0 1 1 2 4

→


1 1 4 1 7
0 1 1 0 2
0 2 2 2 6
0 1 1 2 4



→


1 1 4 1 7
0 1 1 0 2
0 0 0 2 2
0 0 0 2 2

→


1 1 4 1 7
0 1 1 0 2
0 0 0 2 2
0 0 0 0 0


The resulting system is consistent, so b1 ∈ H. Setting the free variable x3 = 0 gives the
solution x4 = 1, x2 = 2 and x1 = 4. Thus b1 = 4v1 + 2v2 + v4 Note that there are three
pivots so dimH = 3 that correspond to the basis for H, {v1,v2,v4}. The formula says can
replace one of these vectors by b1 and it remains a generating set. Taking b1, b2 = v1 and
b3 = v2, the generating set for H is

B = {b1,b2,b3} =




7
9
6
4

 ,


1
1
0
0

 ,


1
2
2
1


 .

Since the three vectors of B generate the space H of dimension three, B is a basis.

4. (a) Let B = {1, 2 sin2 t} and C = {sin2 t, cos2 t} be two bases of a vector space V . Find the
change of coordinates matrix from B to C. If [f ]C =

[
3
4

]
, find [f ]B.

We see that b1 = 1 = sin2 t + cos2 t = c1 + c2 and b2 = 2 sin2 t = 2c1 so that the
change of basis matrix is

P
C←B

=

[
[b1]C [b2]C

]
=

[
1 2
1 0

]
The relation is

[f ]C = P
C←B

[f ]B

so

[f ]B =
(

P
C←B

)−1
[f ]C =

[
1 2
1 0

]−1 [
3
4

]
=

1

−2

[
0 −2
−1 1

] [
3
4

]
=

[
4
− 1

2

]
.

2



(b) Find the row space of A, the null space of A and verify that Row(A) ⊥ Nul(A).

A =


1 2 2
2 4 2
3 6 4
4 8 6


Row reducing, 

1 2 2
2 4 2
3 6 4
4 8 6

→


1 2 2
0 0 −2
0 0 −2
0 0 −2

→


1 2 2
0 0 −2
0 0 0
0 0 0


The solution of Ax = 0 is x3 = 0 and x1 = −2x2 where x2 is free and takes any value.
Thus Row(A) = span{u1,u2} and Nul(A) = span{v1} where

u1 =

 1
2
2

 , u2 =

 0
0
−2

 , v1 =

 −2
1
0

 .
The spaces are orthogonal if all pairs of basic vevtors are orthogonal. We see that
u1 • v1 = 0 and u2 • v1 = 0 so Row(A) ⊥ Nul(A).

5. Consider two bases B and C of R3. Find [w]B and [w]C. Find the change of basis matrix
P
C←B . Check that your P

C←B changes [w]B to [w]C.

B =

{[
2
3

]
,

[
1
4

]}
, C =

{[
1
2

]
,

[
2
5

]}
, w =

[
1
3

]
Let

PB =

[
2 1
3 4

]
, PC =

[
1 2
2 5

]
.

We have PB[w]B = w so

[w]B = (PB)
−1

w =
1

2 · 4− 1 · 3

[
4 −1
−3 2

] [
1
3

]
=

[
1/5
3/5

]
,

[w]C = (PC)
−1

w =
1

1 · 5− 2 · 2

[
5 −2
−2 1

] [
1
3

]
=

[
−1
1

]
Since P

C←B = (PC)
−1PB we reduce the augmented matrix

[PC |PB] =

[
1 2 2 1
2 5 3 4

]
→
[

1 2 2 1
0 1 −1 2

]
to

[
1 0 4 −3
0 1 −1 2

]
=
[
I | P

C←B

]
.

We find that the P
C←B does change [w]B to [w]C , namely,

P
C←B

[w]B =

[
4 −3
−1 2

] [
1/5
3/5

]
=

[
−1
1

]
= [w]C .
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6. Determine whether the following statements are true or false. If true, give a short explana-
tion. If false, find matrices for which the statement fails.

(a) Statement. If A is a 2 × 2 matrix with eigenvalue λ of multiplicity two then A is

similar to

[
λ 0
0 λ

]
.

False. There may not be two independent eigenvectors corresponding to λ. An
example of a matrix A with double eigenvalue λ = 0 which is not similar to D is

A =

[
0 1
0 0

]
, D =

[
0 0
0 0

]
.

If similar we would have A = PDP−1 for some invertible P . But this never holds
because PDP−1 = 0 for all P .

(b) Statement. C[0, 1], the vector space of continuous real valued functions on the unit
interval is finite dimensional.

False. The vector space of functions C[0, 1] contains the space of all polynomials
P. Any finite set S ⊂ C[0, 1] with n elements cannot span C[0, 1] because if it could,
P ⊂ span(S). But the subspace H = span{1, t, t2, . . . , tn} ⊂ P of dimension n + 1
cannot satisfy H ⊂ P ⊂ span(S) because it does not satisfy the dimension inequality
dimH ≤ dim span(S) ≤ n which would have to be true for finite dimensional subspaces
since H ⊂ span(S).

(c) Statement. If A is a 2× 2 real matrix and b ∈ R2 is a vector such that b ⊥ w for
all w such that ATw = 0 then Ax = b is consistent.

True. The condition says that b ∈
(
Nul(AT )

)⊥
= Col(A), so Ax = b is soluble.
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