Math $2270 \S 4$.	Fourth Midterm Part 1	Name:Solution Treibergs $a t$

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

$$
A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right]
$$

By expanding the second row the characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
2-\lambda & -2 & 2 \\
0 & 2-\lambda & 0 \\
0 & 2 & -\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
2-\lambda & 2 \\
0 & -\lambda
\end{array}\right| \\
& =-\lambda(2-\lambda)^{2}
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=2$ with algebraic multiplicity two and $\lambda_{2}=0$ with algebraic multiplicity one. We may find the eigenvectors by inspection

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{0} & \mathbf{0}
\end{array}\right]=\left(A-\lambda_{1} I\right)\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -2 & 2 \\
0 & 0 & 0 \\
0 & 2 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]} \\
& \quad \mathbf{0}=\left(A-\lambda_{2} I\right) \mathbf{v}_{3}=\left[\begin{array}{ccc}
2 & -2 & 2 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

All eigenvectors are the nonzero vectors in eigenspaces

$$
\mathcal{E}_{1}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}, \quad \mathcal{E}_{2}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

2. Find a matrix P that makes A similar to a real matrix of the form C. Show that your matrix does the job.

$$
A=\left[\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right], \quad C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

First find eigenvalues and eigenvectors. The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
-\lambda & 5 \\
-1 & 2-\lambda
\end{array}\right|=-\lambda(2-\lambda)+5 \\
& =\lambda^{2}-2 \lambda+5=(\lambda-1)^{2}+4
\end{aligned}
$$

Hence the eigenvalues are $\lambda_{1}=1-2 i$ and $\lambda_{2}=1+2 i$. We may find the eigenvector by inspection

$$
\mathbf{0}=\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
-1+2 i & 5 \\
-1 & 1+2 i
\end{array}\right]\left[\begin{array}{c}
1+2 i \\
1
\end{array}\right]
$$

We split the eigenvector into its real and imaginagry parts.

$$
\mathbf{u}+i \mathbf{v}=\left[\begin{array}{c}
1+2 i \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+i\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

The similarity making matrix P is made of of real and imaginary parts of the eigenvector. The scaled rotation matrix of the desired form C is made up of real and imaginary parts of the eigenvalue.

$$
P=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

The easiest way to check is to compute

$$
A P=\left[\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
5 & 0 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]=P C .
$$

3. Let $H=\operatorname{span}(S)$ be a subspace of \mathbf{R}^{4}. Show that \mathbf{b}_{1} is in H. Find additional vectors $\mathbf{b}_{2}, \mathbf{b}_{3}, \ldots$ (as many as needed) so that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots\right\}$ is a basis for H. Explain.

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right]\right\}, \quad \mathbf{b}_{1}=\left[\begin{array}{l}
7 \\
9 \\
6 \\
4
\end{array}\right]
$$

Form the augmented matrix whose columns are S vectors along with \mathbf{b}_{1} and reduce.

$$
\left.\begin{array}{rl}
{\left[A \mid \mathbf{b}_{1}\right]=} & {\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 7 \\
1 & 2 & 5 & 1 & 9 \\
0 & 2 & 2 & 2 & 6 \\
0 & 1 & 1 & 2 & 4
\end{array}\right]}
\end{array} \rightarrow\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 7 \\
0 & 1 & 1 & 0 & 2 \\
0 & 2 & 2 & 2 & 6 \\
0 & 1 & 1 & 2 & 4
\end{array}\right]\right)
$$

The resulting system is consistent, so $\mathbf{b}_{1} \in H$. Setting the free variable $x_{3}=0$ gives the solution $x_{4}=1, x_{2}=2$ and $x_{1}=4$. Thus $\mathbf{b}_{1}=4 \mathbf{v}_{1}+2 \mathbf{v}_{2}+\mathbf{v}_{4}$ Note that there are three pivots so $\operatorname{dim} H=3$ that correspond to the basis for $H,\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. The formula says can replace one of these vectors by \mathbf{b}_{1} and it remains a generating set. Taking $\mathbf{b}_{1}, \mathbf{b}_{2}=\mathbf{v}_{1}$ and $\mathbf{b}_{3}=\mathbf{v}_{2}$, the generating set for H is

$$
\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}=\left\{\left[\begin{array}{l}
7 \\
9 \\
6 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]\right\}
$$

Since the three vectors of \mathcal{B} generate the space H of dimension three, \mathcal{B} is a basis.
4. (a) Let $\mathcal{B}=\left\{1,2 \sin ^{2} t\right\}$ and $\mathcal{C}=\left\{\sin ^{2} t, \cos ^{2} t\right\}$ be two bases of a vector space V. Find the change of coordinates matrix from \mathcal{B} to \mathcal{C}. If $[\mathbf{f}]_{\mathcal{C}}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, find $[\mathbf{f}]_{\mathcal{B}}$.
We see that $\mathbf{b}_{1}=1=\sin ^{2} t+\cos ^{2} t=\mathbf{c}_{1}+\mathbf{c}_{2}$ and $\mathbf{b}_{2}=2 \sin ^{2} t=2 \mathbf{c}_{1}$ so that the change of basis matrix is

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
$$

The relation is

$$
[\mathbf{f}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{f}]_{\mathcal{B}}
$$

so

$$
[\mathbf{f}]_{\mathcal{B}}=\binom{P}{\mathcal{C} \leftarrow \mathcal{B}}^{-1}[\mathbf{f}]_{\mathcal{C}}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}
0 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 \\
-\frac{1}{2}
\end{array}\right]
$$

(b) Find the row space of A, the null space of A and verify that $\operatorname{Row}(A) \perp \operatorname{Nul}(A)$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 2 \\
3 & 6 & 4 \\
4 & 8 & 6
\end{array}\right]
$$

Row reducing,

$$
\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 2 \\
3 & 6 & 4 \\
4 & 8 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 0 & -2 \\
0 & 0 & -2 \\
0 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solution of $A \mathbf{x}=\mathbf{0}$ is $x_{3}=0$ and $x_{1}=-2 x_{2}$ where x_{2} is free and takes any value. Thus $\operatorname{Row}(A)=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\operatorname{Nul}(A)=\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ where

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

The spaces are orthogonal if all pairs of basic vevtors are orthogonal. We see that $\mathbf{u}_{1} \bullet \mathbf{v}_{1}=0$ and $\mathbf{u}_{2} \bullet \mathbf{v}_{1}=0$ so $\operatorname{Row}(A) \perp \operatorname{Nul}(A)$.
5. Consider two bases \mathcal{B} and \mathcal{C} of \mathbf{R}^{3}. Find $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{w}]_{\mathcal{C}}$. Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$. Check that your $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ changes $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right\}, \quad C=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
5
\end{array}\right]\right\}, \quad \mathbf{w}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Let

$$
P_{\mathcal{B}}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right], \quad P_{\mathcal{C}}=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

We have $P_{\mathcal{B}}[\mathbf{w}]_{\mathcal{B}}=\mathbf{w}$ so

$$
\begin{aligned}
& {[\mathbf{w}]_{\mathcal{B}}=\left(P_{\mathcal{B}}\right)^{-1} \mathbf{w}=\frac{1}{2 \cdot 4-1 \cdot 3}\left[\begin{array}{cc}
4 & -1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 / 5 \\
3 / 5
\end{array}\right]} \\
& {[\mathbf{w}]_{\mathcal{C}}=\left(P_{\mathcal{C}}\right)^{-1} \mathbf{w}=\frac{1}{1 \cdot 5-2 \cdot 2}\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{aligned}
$$

Since $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left(P_{\mathcal{C}}\right)^{-1} P_{\mathcal{B}}$ we reduce the augmented matrix

$$
\left[P_{\mathcal{C}} \mid P_{\mathcal{B}}\right]=\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
2 & 5 & 3 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 1 & -1 & 2
\end{array}\right] \text { to }\left[\begin{array}{cccc}
1 & 0 & 4 & -3 \\
0 & 1 & -1 & 2
\end{array}\right]=\left[\begin{array}{lll}
I & P \\
\mathcal{C} \leftarrow \mathcal{B}
\end{array}\right]
$$

We find that the $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ does change $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$, namely,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{cc}
4 & -3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
1 / 5 \\
3 / 5
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=[\mathbf{w}]_{\mathcal{C}} .
$$

6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. If A is a 2×2 matrix with eigenvalue λ of multiplicity two then A is similar to $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$.
False. There may not be two independent eigenvectors corresponding to λ. An example of a matrix A with double eigenvalue $\lambda=0$ which is not similar to D is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

If similar we would have $A=P D P^{-1}$ for some invertible P. But this never holds because $P D P^{-1}=0$ for all P.
(b) Statement. $\mathcal{C}[0,1]$, the vector space of continuous real valued functions on the unit interval is finite dimensional.
FALSE. The vector space of functions $\mathcal{C}[0,1]$ contains the space of all polynomials \mathbb{P}. Any finite set $S \subset \mathcal{C}[0,1]$ with n elements cannot span $\mathcal{C}[0,1]$ because if it could, $\mathbb{P} \subset \operatorname{span}(S)$. But the subspace $H=\operatorname{span}\left\{1, t, t^{2}, \ldots, t^{n}\right\} \subset \mathbb{P}$ of dimension $n+1$ cannot satisfy $H \subset \mathbb{P} \subset \operatorname{span}(S)$ because it does not satisfy the dimension inequality $\operatorname{dim} H \leq \operatorname{dim} \operatorname{span}(S) \leq n$ which would have to be true for finite dimensional subspaces since $H \subset \operatorname{span}(S)$.
(c) Statement. If A is a 2×2 real matrix and $\mathbf{b} \in \mathbf{R}^{2}$ is a vector such that $\mathbf{b} \perp \mathbf{w}$ for all \mathbf{w} such that $A^{T} \mathbf{w}=\mathbf{0}$ then $A \mathbf{x}=\mathbf{b}$ is consistent.
True. The condition says that $\mathbf{b} \in\left(\operatorname{Nul}\left(A^{T}\right)\right)^{\perp}=\operatorname{Col}(A)$, so $A \mathbf{x}=\mathbf{b}$ is soluble.

