Math 2270 § 4.	Fourth Midterm Part 1	Name: Solution
Treibergs σt		April 14 2021

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

$$A = \begin{bmatrix} 2 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

By expanding the second row the characteristic polynomial is

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -2 & 2\\ 0 & 2 - \lambda & 0\\ 0 & 2 & -\lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 2 - \lambda & 2\\ 0 & -\lambda \end{vmatrix}$$
$$= -\lambda(2 - \lambda)^2.$$

Thus the eigenvalues are $\lambda_1 = 2$ with algebraic multiplicity two and $\lambda_2 = 0$ with algebraic multiplicity one. We may find the eigenvectors by inspection

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} = (A - \lambda_1 I) \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 2 \\ 0 & 0 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{0} = (A - \lambda_2 I) \mathbf{v}_3 = \begin{bmatrix} 2 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

All eigenvectors are the nonzero vectors in eigenspaces

$$\mathcal{E}_1 = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, \qquad \mathcal{E}_2 = \operatorname{span}\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

2. Find a matrix P that makes A similar to a real matrix of the form C. Show that your matrix does the job.

$$A = \left[\begin{array}{cc} 0 & 5 \\ -1 & 2 \end{array} \right], \qquad C = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right].$$

First find eigenvalues and eigenvectors. The characteristic polynomial is

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 5\\ -1 & 2 - \lambda \end{vmatrix} = -\lambda(2 - \lambda) + 5$$
$$= \lambda^2 - 2\lambda + 5 = (\lambda - 1)^2 + 4$$

Hence the eigenvalues are $\lambda_1 = 1 - 2i$ and $\lambda_2 = 1 + 2i$. We may find the eigenvector by inspection

$$\mathbf{0} = (A - \lambda_1 I)\mathbf{v}_1 = \begin{bmatrix} -1 + 2i & 5\\ -1 & 1 + 2i \end{bmatrix} \begin{bmatrix} 1 + 2i\\ 1 \end{bmatrix}.$$

We split the eigenvector into its real and imaginagry parts.

$$\mathbf{u} + i\mathbf{v} = \begin{bmatrix} 1+2i\\1 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} + i\begin{bmatrix} 2\\0 \end{bmatrix}$$

The similarity making matrix P is made of of real and imaginary parts of the eigenvector. The scaled rotation matrix of the desired form C is made up of real and imaginary parts of the eigenvalue.

$$P = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$

The easiest way to check is to compute

$$AP = \begin{bmatrix} 0 & 5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = PC.$$

3. Let $H = \operatorname{span}(S)$ be a subspace of \mathbb{R}^4 . Show that \mathbf{b}_1 is in H. Find additional vectors $\mathbf{b}_2, \mathbf{b}_3, \ldots$ (as many as needed) so that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \ldots\}$ is a basis for H. Explain.

$$S = \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 4\\5\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \right\}, \qquad \mathbf{b}_1 = \begin{bmatrix} 7\\9\\6\\4 \end{bmatrix}$$

Form the augmented matrix whose columns are S vectors along with \mathbf{b}_1 and reduce.

$$\begin{bmatrix} A \mid \mathbf{b}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 & 7 \\ 1 & 2 & 5 & 1 & 9 \\ 0 & 2 & 2 & 2 & 6 \\ 0 & 1 & 1 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 7 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 & 4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 7 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 7 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The resulting system is consistent, so $\mathbf{b}_1 \in H$. Setting the free variable $x_3 = 0$ gives the solution $x_4 = 1$, $x_2 = 2$ and $x_1 = 4$. Thus $\mathbf{b}_1 = 4\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4$ Note that there are three pivots so dim H = 3 that correspond to the basis for H, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$. The formula says can replace one of these vectors by \mathbf{b}_1 and it remains a generating set. Taking \mathbf{b}_1 , $\mathbf{b}_2 = \mathbf{v}_1$ and $\mathbf{b}_3 = \mathbf{v}_2$, the generating set for H is

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} = \left\{ \begin{bmatrix} 7\\9\\6\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix} \right\}$$

Since the three vectors of \mathcal{B} generate the space H of dimension three, \mathcal{B} is a basis.

4. (a) Let $\mathcal{B} = \{1, 2\sin^2 t\}$ and $\mathcal{C} = \{\sin^2 t, \cos^2 t\}$ be two bases of a vector space V. Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} . If $[\mathbf{f}]_{\mathcal{C}} = \begin{bmatrix}3\\4\end{bmatrix}$, find $[\mathbf{f}]_{\mathcal{B}}$.

We see that $\mathbf{b}_1 = 1 = \sin^2 t + \cos^2 t = \mathbf{c}_1 + \mathbf{c}_2$ and $\mathbf{b}_2 = 2\sin^2 t = 2\mathbf{c}_1$ so that the change of basis matrix is

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \left[\begin{array}{cc} [\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \end{array} \right] = \left[\begin{array}{cc} 1 & 2\\ 1 & 0 \end{array} \right]$$

The relation is

$$[\mathbf{f}]_{\mathcal{C}} = \Pr_{\mathcal{C} \leftarrow \mathcal{B}} \ [\mathbf{f}]_{\mathcal{B}}$$

 \mathbf{SO}

$$[\mathbf{f}]_{\mathcal{B}} = \begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} [\mathbf{f}]_{\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} 0 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ -\frac{1}{2} \end{bmatrix}.$$

(b) Find the row space of A, the null space of A and verify that $\operatorname{Row}(A) \perp \operatorname{Nul}(A)$.

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \\ 3 & 6 & 4 \\ 4 & 8 & 6 \end{bmatrix}$$

Row reducing,

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 2 \\ 3 & 6 & 4 \\ 4 & 8 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & -2 \\ 0 & 0 & -2 \\ 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution of $A\mathbf{x} = \mathbf{0}$ is $x_3 = 0$ and $x_1 = -2x_2$ where x_2 is free and takes any value. Thus $\operatorname{Row}(A) = \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\operatorname{Nul}(A) = \operatorname{span}\{\mathbf{v}_1\}$ where

$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \qquad \mathbf{u}_2 = \begin{bmatrix} 0\\0\\-2 \end{bmatrix}, \qquad \mathbf{v}_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$

The spaces are orthogonal if all pairs of basic vectors are orthogonal. We see that $\mathbf{u}_1 \bullet \mathbf{v}_1 = 0$ and $\mathbf{u}_2 \bullet \mathbf{v}_1 = 0$ so $\operatorname{Row}(A) \perp \operatorname{Nul}(A)$.

5. Consider two bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 . Find $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{w}]_{\mathcal{C}}$. Find the change of basis matrix $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$. Check that your $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ changes $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$.

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 1\\4 \end{bmatrix} \right\}, \qquad C = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right\}, \qquad \mathbf{w} = \begin{bmatrix} 1\\3 \end{bmatrix}$$

Let

$$P_{\mathcal{B}} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, \qquad P_{\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}.$$

We have $P_{\mathcal{B}}[\mathbf{w}]_{\mathcal{B}} = \mathbf{w}$ so

$$[\mathbf{w}]_{\mathcal{B}} = (P_{\mathcal{B}})^{-1} \mathbf{w} = \frac{1}{2 \cdot 4 - 1 \cdot 3} \begin{bmatrix} 4 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1/5 \\ 3/5 \end{bmatrix},$$
$$[\mathbf{w}]_{\mathcal{C}} = (P_{\mathcal{C}})^{-1} \mathbf{w} = \frac{1}{1 \cdot 5 - 2 \cdot 2} \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Since $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = (P_{\mathcal{C}})^{-1} P_{\mathcal{B}}$ we reduce the augmented matrix

$$[P_{\mathcal{C}}|P_{\mathcal{B}}] = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 5 & 3 & 4 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} to \begin{bmatrix} 1 & 0 & 4 & -3 \\ 0 & 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} I & | & P \\ \mathcal{C} \leftarrow \mathcal{B} \end{bmatrix}.$$

We find that the $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ does change $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$, namely,

$$\Pr_{\mathcal{C}\leftarrow\mathcal{B}} [\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 4 & -3\\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1/5\\ 3/5 \end{bmatrix} = \begin{bmatrix} -1\\ 1 \end{bmatrix} = [\mathbf{w}]_{\mathcal{C}}.$$

- 6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
 - (a) STATEMENT. If A is a 2 × 2 matrix with eigenvalue λ of multiplicity two then A is similar to $\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$.

FALSE. There may not be two independent eigenvectors corresponding to λ . An example of a matrix A with double eigenvalue $\lambda = 0$ which is not similar to D is

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

If similar we would have $A = PDP^{-1}$ for some invertible P. But this never holds because $PDP^{-1} = 0$ for all P.

(b) STATEMENT. C[0,1], the vector space of continuous real valued functions on the unit interval is finite dimensional.

FALSE. The vector space of functions C[0,1] contains the space of all polynomials \mathbb{P} . Any finite set $S \subset C[0,1]$ with n elements cannot span C[0,1] because if it could, $\mathbb{P} \subset \operatorname{span}(S)$. But the subspace $H = \operatorname{span}\{1, t, t^2, \ldots, t^n\} \subset \mathbb{P}$ of dimension n+1 cannot satisfy $H \subset \mathbb{P} \subset \operatorname{span}(S)$ because it does not satisfy the dimension inequality $\dim H \leq \dim \operatorname{span}(S) \leq n$ which would have to be true for finite dimensional subspaces since $H \subset \operatorname{span}(S)$.

(c) STATEMENT. If A is a 2×2 real matrix and $\mathbf{b} \in \mathbf{R}^2$ is a vector such that $\mathbf{b} \perp \mathbf{w}$ for all \mathbf{w} such that $A^T \mathbf{w} = \mathbf{0}$ then $A\mathbf{x} = \mathbf{b}$ is consistent. TRUE. The condition says that $\mathbf{b} \in (\operatorname{Nul}(A^T))^{\perp} = \operatorname{Col}(A)$, so $A\mathbf{x} = \mathbf{b}$ is soluble.