1. Find x_2 using Cramer's Rule. Other methods will receive zero credit.

The equation is equivalent to $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 4 & 1 \\ 5 & 3 & 0 \\ 0 & 1 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 3 \\ 9 \\ -1 \end{bmatrix}$$

Cramer's rule for x_3 is

$$x_{2} = \frac{\det(A_{2}(\mathbf{b}))}{\det(A)} = \frac{\begin{vmatrix} 1 & 3 & 1 \\ 5 & 9 & 0 \\ 0 & -1 & 3 \\ \begin{vmatrix} 1 & 4 & 1 \\ 5 & 3 & 0 \\ 0 & 1 & 3 \end{vmatrix}} = \frac{27 - 5 - 45}{9 + 5 - 60} = \frac{-23}{-46} = \frac{1}{2}$$

2. (a) Let

$$\mathcal{S} = \left\{ \begin{array}{c} 2\\2\\4\\4 \end{array} \right\}, \begin{bmatrix} 1\\1\\2\\2 \end{array} \right\}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\5\\4 \end{bmatrix} \right\},$$

Let $\mathcal{H} = \operatorname{span}(\mathcal{S})$. Find a basis for \mathcal{H} . What is the dimension of \mathcal{H} ? Put the vectors as columns into a matrix. Then $\mathcal{H} = \operatorname{Col}(A)$. Do row reduction to identify pivot columns, which will form a basis of \mathcal{H} .

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 4 & 2 & 1 & 0 & 5 \\ 4 & 2 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 0 & 2 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 0 & 2 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus columns 1,3 and 4 are pivots. The basis for \mathcal{H} is thus

A basis for
$$\mathcal{H}$$
 is $\left\{ \begin{bmatrix} 2\\2\\4\\4 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix} \right\}, \right.$

-_ -

.

(b) Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\2 \end{bmatrix} \right\}, \qquad \mathbf{x} = \begin{bmatrix} 0\\6\\7\\2 \end{bmatrix}$$

Let \mathcal{B} be a basis for the subspace $\mathcal{K} \subset \mathbf{R}^4$. Show $\mathbf{x} \in \mathcal{K}$ and find the coordinates $[\mathbf{x}]_{\mathcal{B}}$.

Put \mathcal{B} and \mathbf{y} in as columns of an augmented matrix. Row reduce to see if the system is consistent.

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 6 \\ 0 & 2 & 1 & 7 \\ 0 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 6 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 7 \\ 0 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & -3 & 0 & -12 \\ 0 & 2 & 1 & 7 \\ 0 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 1 & 0 & 4 \\ 0 & 1 & 2 & 2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The system is consistent, so there is a solution to $A\mathbf{c} = \mathbf{y}$. Solving, we find $c_3 = -1$, $c_2 = 4$ and $c_1 = 6 - 2c_2 = -2$. Thus, the coordinates are

$$[\mathbf{x}]_{\mathcal{B}} = \mathbf{c} = \begin{bmatrix} -2\\4\\-1 \end{bmatrix}$$

3. Find the determinant Δ in two ways, using expansion by cofactors and using row operations.

$$\begin{vmatrix} 2 & 1 & 0 & 3 \\ 1 & 3 & 0 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 2 & 3 & 2 \end{vmatrix}$$

Expanding by cofactors down the third column we find

$$\Delta = 1 \cdot \begin{vmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \\ 0 & 2 & 2 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 0 & 3 \end{vmatrix} = (12 + 6 - 8 - 2) - 3(18 + 2 - 3 - 9) = 8 - 24 \cdot -16.$$

Using row operations we find

$$\Delta = \begin{vmatrix} 2 & 1 & 0 & 3 \\ 1 & 3 & 0 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 2 & 3 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & 0 & 2 \\ 2 & 1 & 0 & 3 \\ 1 & 0 & 1 & 3 \\ 0 & 2 & 3 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & 0 & 2 \\ 0 & -5 & 0 & -1 \\ 0 & -3 & 1 & 1 \\ 0 & 2 & 3 & 2 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 0 & \frac{1}{5} \\ 0 & 2 & 3 & 2 \end{vmatrix}$$
$$= 5 \begin{vmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 0 & \frac{1}{5} \\ 0 & 0 & 1 & \frac{8}{5} \\ 0 & 0 & 3 & \frac{8}{5} \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 0 & \frac{1}{5} \\ 0 & 0 & 1 & \frac{8}{5} \\ 0 & 0 & 0 & \frac{8-24}{5} \end{vmatrix} = 5 \cdot \left(-\frac{16}{5} \right) = -16.$$

4. Let $\mathcal{I} : \mathbb{P}_2 \to \mathbb{P}_3$ be the mapping given by definite integration $\mathcal{I}(\mathbf{p})(t) = \int_0^t \mathbf{p}(s) \, ds$, where $\mathbb{P}_3 = \{a_0 + a_1 t + a_2 t^2 + a_3 t^3 : a_0, a_1, a_2, a_3 \in \mathbf{R}\}$ is the vector space of polynomials of degree at most three. Show $\mathcal{I} : \mathbb{P}_2 \to \mathbb{P}_3$ is linear. Find the kernel (nullspace) ker(\mathcal{I}). Find the range $\mathbb{R}(\mathcal{I})$ of \mathcal{I} .

To prove \mathcal{I} is linear, we show that it preserves addition and multiplication by a constant. The fundamental reason is that integration is linear. For any $\mathbf{p}, \mathbf{q} \in \mathbb{P}_2$ and $c \in \mathbf{R}$ we have

$$\begin{aligned} \mathcal{I}(\mathbf{p} + \mathbf{q})(t) &= \int_0^t (\mathbf{p} + \mathbf{q})(s) \, ds = \int_0^t \mathbf{p}(s) + \mathbf{q}(s) \, ds \\ &= \int_0^t \mathbf{p}(s) \, ds + \int_0^t \mathbf{q}(s) \, ds = \mathcal{I}(\mathbf{p})(t) + \mathcal{I}(\mathbf{q})(t) \\ \mathcal{I}(c\mathbf{p})(t) &= \int_0^t (c\mathbf{p})(s) \, ds = \int_0^t c\mathbf{p}(s) \, ds = c \int_0^t \mathbf{p}(s) \, ds = c \mathcal{I}(\mathbf{p})(t) \end{aligned}$$

We could have worked out the map \mathcal{I} on the coefficients of the polynomial, which would have resulted in an argument using linear formulas.

Let us work out the map in terms of coefficients. For $\mathbf{p} \in \mathbb{P}_2$, there are constants a_0, a_1 and a_2 such that

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$$

Thus

$$\mathcal{I}(\mathbf{p})(t) = \int_0^t \mathbf{p}(s) \, ds = a_0 t + \frac{1}{2}a_1 t^2 + \frac{1}{3}a_2 t^3.$$

The kernel of \mathcal{I} is the space of polynomials in \mathbb{P}_2 that are sent to zero.

$$\ker(\mathbf{I}) = \{\mathbf{p} \in \mathbb{P}_2 : \mathcal{I}(\mathbf{p}) = \mathbf{0}\} = \left\{a_0 + a_1 t + a_2 t^2 : a_0 t + \frac{1}{2}a_1 t^2 + \frac{1}{3}a_2 t^3 = 0\right\}$$
$$= \left\{a_0 + a_1 t + a_2 t^2 : a_0 = a_1 = a_2 = 0\right\} = \{\mathbf{0}\}$$

Thus the kernel is trivial.

The range of \mathcal{I} is the space of polynomials in \mathbb{P}_3 that are the images of vectors in \mathbb{P}_2 .

$$R(\mathbf{I}) = \{\mathcal{I}(\mathbf{p}) : \mathbf{p} \in \mathbb{P}_2\} = \left\{a_0 t + \frac{1}{2}a_1 t^2 + \frac{1}{3}a_2 t^3 : a_0 + a_1 t + a_2 t^2 \in \mathbb{P}_2\right\}$$
$$= \left\{b_0 t + b_1 t^2 + b_2 t^3 : b_0, b_1, b_2 \in \mathbf{R}\right\} = \left\{a_0 + a_1 t + a_2 t^2 + a_3 t^3 : a_0 = 0\right\}$$

Thus the range is the three dimensional space $\{\mathbf{p} \in \mathbb{P}_3 : \mathbf{p}(0) = \mathbf{0}\}$. To see that every polynomial with zero constant coefficient is in $\mathbf{R}(T)$, choose any $\mathbf{q}(t) = b_0 t + b_1 t^2 + b_2 t^3$. Let

$$\mathbf{p}(t) = b_0 + 2b_1t + 3b_2t^2 \in \mathbb{P}_2.$$

Then $\mathcal{I}(\mathbf{p}) = \mathbf{q}$.

5. (a) Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ be an $n \times n$ matrix whose columns are \mathbf{a}_i . Let

$$T(\mathbf{x}) = \det([\mathbf{a}_1 \cdots \mathbf{a}_{n-1} \mathbf{x}])$$

be the function of the vector $\mathbf{x} \in \mathbf{R}^n$ that evaluates the determinant of A with \mathbf{x} replacing the last column. Show that $T(\mathbf{x})$ is a linear transformation.

We have $T : \mathbf{R}^n \to \mathbf{R}$. The column expansion is linear in \mathbf{x} . To see this, expanding the determinant on the last column,

$$T(\mathbf{x}) = \sum_{k=1}^{n} b_k x_k, \quad \text{where } b_k = (-1)^{k+n} \det(A_{k,n}),$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix gotten by crossing out the *i*th row and *j*th column of A. This way we see that T is a matrix transformation where M is the $1 \times n$ matrix

$$T(\mathbf{x}) = M\mathbf{x},$$
 where $M = [b_1, b_2, \dots, b_n].$

Hence T is linear. To verify, we may continue to check the two conditions for linearity. For any $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ and any $c \in \mathbf{R}$ we have

$$T(\mathbf{u} + \mathbf{v}) = M(\mathbf{u} + \mathbf{v}) = M\mathbf{u} + M\mathbf{v} = T(\mathbf{u}) + T(\mathbf{v}),$$

$$T(c\mathbf{u}) = M(c\mathbf{u}) = cM\mathbf{u} = cT(\mathbf{u}).$$

(b) Find a linear transformation that takes the unit circle C = {(x₁, x₂) : x₁² + x₂² = 1} to the ellipse E that passes through the points (2, 2), (−1, 1), (−2, −2) and (1, −1). Use T to find the area inside E.

Let T be the transformation that takes the vectors \mathbf{e}_1 and \mathbf{e}_2 from the circle to the vectors [2, 2] and [-1, 1], resp. Thus

$$T(\mathbf{x}) = T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = M\mathbf{x}.$$

and $T(\mathcal{C}) = \mathcal{E}$. Using the change of area formula

Area
$$(\mathcal{E}) = |\det(M)|$$
 Area $(\mathcal{C}) = \left|\det\begin{pmatrix}2 & -1\\2 & 1\end{pmatrix}\right|$ Area $(\mathcal{C}) = 4\pi$.

(c) Construct a 4×4 matrix A with rank(A) = 2. Justify your construction.

A has two pivots and rank is the number of pivots.

- 6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find a counterexample for which the statement fails.
 - (a) STATEMENT. Let $\mathcal{M} = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{R} \}$ be the vector space of 2×2 matrices. Then $\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$ is the only basis for \mathcal{M} . FALSE. There are many bases. Another one is $\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$

(b) STATEMENT. For vectors \mathbf{u}, \mathbf{v} in a vector space \mathbb{V} , if the equation $\mathbf{u} + \mathbf{x} = \mathbf{v}$ has a solution $\mathbf{x} \in \mathbb{V}$ then it is unique.

TRUE. We assume there are two solutions \mathbf{x} and \mathbf{y} in \mathbb{V} and show that they must be equal. A casual answer invoking the axioms would receive full credit. Here is a strict proof that $\mathbf{x} = \mathbf{y}$. Start from a known equation and replace by justifiably equal equations until you reach the conclusion.

$\mathbf{u} + \mathbf{x} = \mathbf{v}, \mathbf{u} + \mathbf{y} = \mathbf{v}$	Both \mathbf{x} and \mathbf{y} satisfy the equation.
$\mathbf{u} + \mathbf{x} = \mathbf{u} + \mathbf{y}$	Both equal \mathbf{v} .
$(-\mathbf{u}) + (\mathbf{u} + \mathbf{x}) = (-\mathbf{u}) + (\mathbf{u} + \mathbf{y})$	V5. There is $-\mathbf{u}$. Pre-add to both sides.
$((-\mathbf{u}) + \mathbf{u}) + \mathbf{x} = ((-\mathbf{u}) + \mathbf{u}) + \mathbf{y}$	V3. Associativity of addition.
$(\mathbf{u} + (-\mathbf{u})) + \mathbf{x} = (\mathbf{u} + (-\mathbf{u}) + \mathbf{y})$	V2. Commutativity of addition.
$0 + \mathbf{x} = 0 + \mathbf{x}$	V5. Additive inverse.
$\mathbf{x} + 0 = \mathbf{y} + 0$	V1. Commutativity of addition.
$\mathbf{x} = \mathbf{y}$	V4. Additive Identity.

Another line of argument is since we are given that a solution exists we deduce that it must equal $\mathbf{x} = (-\mathbf{u}) + \mathbf{v}$, which is the same for every solution.

(c) STATEMENT. Let $C[0,1] = \{f : [0,1] \to \mathbf{R} : f \text{ is continuous}\}$ be the vector space of continuous functions on [0,1]. Then the subset $\mathcal{H} = \{g \in C[0,1] : g(1) = 0\}$ is a subspace of C[0,1].

We check the tree conditions to be a subspace.

(a) Zero is in \mathcal{H} : the zero in $\mathcal{C}[0,1]$ is the zero function z(t) = 0 for all t. z(0) = 0 so $z \in \mathcal{H}$.

(b) \mathcal{H} is closed under addition. Choose any $f, g \in \mathcal{H}$ so f(1) = g(1) = 0. But then the sum (f+g)(1) = f(1) + g(1) = 0 + 0 = 0 so $f + g \in \mathcal{H}$.

(c) \mathcal{H} is closed under multiplication by a scalar. Choose any $f \in \mathcal{H}$ and $c \in \mathbf{R}$ so f(1) = 0. But then the multiple $(cf)(1) = cf(1) = c \cdot 0 = 0$ so $cf \in \mathcal{H}$.