1. Find x_{2} using Cramer's Rule. Other methods will receive zero credit.

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =3 \\
5 x_{1}+3 x_{2} & =9 \\
x_{2}+3 x_{3} & =-1
\end{aligned}
$$

The equation is equivalent to $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{ccc}
1 & 4 & 1 \\
5 & 3 & 0 \\
0 & 1 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
3 \\
9 \\
-1
\end{array}\right]
$$

Cramer's rule for x_{3} is

$$
x_{2}=\frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
1 & 3 & 1 \\
5 & 9 & 0 \\
0 & -1 & 3
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 4 & 1 \\
5 & 3 & 0 \\
0 & 1 & 3
\end{array}\right|}=\frac{27-5-45}{9+5-60}=\frac{-23}{-46}=\frac{1}{2}
$$

2. (a) Let

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
2 \\
2 \\
4 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
5 \\
4
\end{array}\right]\right\}
$$

Let $\mathcal{H}=\operatorname{span}(\mathcal{S})$. Find a basis for \mathcal{H}. What is the dimension of \mathcal{H} ?
Put the vectors as columns into a matrix. Then $\mathcal{H}=\operatorname{Col}(A)$. Do row reduction to identify pivot columns, which will form a basis of \mathcal{H}.

$$
A=\left[\begin{array}{lllll}
2 & 1 & 1 & 0 & 2 \\
2 & 1 & 0 & 1 & 2 \\
4 & 2 & 1 & 0 & 5 \\
4 & 2 & 0 & 2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & 1 & 0 & 2 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & -2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & 1 & 0 & 2 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus columns 1,3 and 4 are pivots. The basis for \mathcal{H} is thus

$$
\text { A basis for } \mathcal{H} \text { is }\left\{\left[\begin{array}{l}
2 \\
2 \\
4 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right]\right\}
$$

(b) Let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}, \quad \mathbf{x}=\left[\begin{array}{l}
0 \\
6 \\
7 \\
2
\end{array}\right]
$$

Let \mathcal{B} be a basis for the subspace $\mathcal{K} \subset \mathbf{R}^{4}$. Show $\mathbf{x} \in \mathcal{K}$ and find the coordinates $[\mathbf{x}]_{\mathcal{B}}$.

Put \mathcal{B} and \mathbf{y} in as columns of an augmented matrix. Row reduce to see if the system is consistent.

$$
\begin{aligned}
A= & {\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 6 \\
0 & 2 & 1 & 7 \\
0 & 1 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 0 & 6 \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 7 \\
0 & 1 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & 6 \\
0 & -3 & 0 & -12 \\
0 & 2 & 1 & 7 \\
0 & 1 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 0 & 6 \\
0 & 1 & 0 & 4 \\
0 & 2 & 1 & 7 \\
0 & 1 & 2 & 2
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & 6 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & 6 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The system is consistent, so there is a solution to $A \mathbf{c}=\mathbf{y}$. Solving, we find $c_{3}=-1$, $c_{2}=4$ and $c_{1}=6-2 c_{2}=-2$. Thus, the coordinates are

$$
[\mathbf{x}]_{\mathcal{B}}=\mathbf{c}=\left[\begin{array}{c}
-2 \\
4 \\
-1
\end{array}\right]
$$

3. Find the determinant Δ in two ways, using expansion by cofactors and using row operations.

$$
\left|\begin{array}{llll}
2 & 1 & 0 & 3 \\
1 & 3 & 0 & 2 \\
1 & 0 & 1 & 3 \\
0 & 2 & 3 & 2
\end{array}\right|
$$

Expanding by cofactors down the third column we find

$$
\Delta=1 \cdot\left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
0 & 2 & 2
\end{array}\right|-3 \cdot\left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
1 & 0 & 3
\end{array}\right|=(12+6-8-2)-3(18+2-3-9)=8-24 \cdot-16 .
$$

Using row operations we find

$$
\begin{aligned}
\Delta=\left|\begin{array}{llll}
2 & 1 & 0 & 3 \\
1 & 3 & 0 & 2 \\
1 & 0 & 1 & 3 \\
0 & 2 & 3 & 2
\end{array}\right| & =-\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
2 & 1 & 0 & 3 \\
1 & 0 & 1 & 3 \\
0 & 2 & 3 & 2
\end{array}\right|=-\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
0 & -5 & 0 & -1 \\
0 & -3 & 1 & 1 \\
0 & 2 & 3 & 2
\end{array}\right|=5\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & \frac{1}{5} \\
0 & -3 & 1 & 1 \\
0 & 2 & 3 & 2
\end{array}\right| \\
& =5\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & \frac{1}{5} \\
0 & 0 & 1 & \frac{8}{5} \\
0 & 1 & 0 & \frac{1}{5} \\
0 & 0 & 3 & \frac{8}{5}
\end{array}\right|=5\left|\begin{array}{cccc}
\\
0 & 0 & 1 & \frac{8}{5} \\
0 & 0 & 0 & \frac{8-24}{5}
\end{array}\right|=5 \cdot\left(-\frac{16}{5}\right)=-16 .
\end{aligned}
$$

4. Let $\mathcal{I}: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the mapping given by definite integration $\mathcal{I}(\mathbf{p})(t)=\int_{0}^{t} \mathbf{p}(s) d s$, where $\mathbb{P}_{3}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{R}\right\}$ is the vector space of polynomials of degree at most three. Show $\mathcal{I}: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ is linear. Find the kernel (nullspace) $\operatorname{ker}(\mathcal{I})$. Find the range $\mathrm{R}(\mathcal{I})$ of \mathcal{I}.
To prove \mathcal{I} is linear, we show that it preserves addition and multiplication by a constant. The fundamental reason is that integration is linear. For any $\mathbf{p}, \mathbf{q} \in \mathbb{P}_{2}$ and $c \in \mathbf{R}$ we have

$$
\begin{aligned}
\mathcal{I}(\mathbf{p}+\mathbf{q})(t) & =\int_{0}^{t}(\mathbf{p}+\mathbf{q})(s) d s=\int_{0}^{t} \mathbf{p}(s)+\mathbf{q}(s) d s \\
& =\int_{0}^{t} \mathbf{p}(s) d s+\int_{0}^{t} \mathbf{q}(s) d s=\mathcal{I}(\mathbf{p})(t)+\mathcal{I}(\mathbf{q})(t) \\
\mathcal{I}(c \mathbf{p})(t) & =\int_{0}^{t}(c \mathbf{p})(s) d s=\int_{0}^{t} c \mathbf{p}(s) d s=c \int_{0}^{t} \mathbf{p}(s) d s=c \mathcal{I}(\mathbf{p})(t)
\end{aligned}
$$

We could have worked out the map \mathcal{I} on the coefficients of the polynomial, which would have resulted in an argument using linear formulas.
Let us work out the map in terms of coefficients. For $\mathbf{p} \in \mathbb{P}_{2}$, there are constants a_{0}, a_{1} and a_{2} such that

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

Thus

$$
\mathcal{I}(\mathbf{p})(t)=\int_{0}^{t} \mathbf{p}(s) d s=a_{0} t+\frac{1}{2} a_{1} t^{2}+\frac{1}{3} a_{2} t^{3}
$$

The kernel of \mathcal{I} is the space of polynomials in \mathbb{P}_{2} that are sent to zero.

$$
\begin{aligned}
\operatorname{ker}(\mathbf{I}) & =\left\{\mathbf{p} \in \mathbb{P}_{2}: \mathcal{I}(\mathbf{p})=\mathbf{0}\right\}=\left\{a_{0}+a_{1} t+a_{2} t^{2}: a_{0} t+\frac{1}{2} a_{1} t^{2}+\frac{1}{3} a_{2} t^{3}=0\right\} \\
& =\left\{a_{0}+a_{1} t+a_{2} t^{2}: a_{0}=a_{1}=a_{2}=0\right\}=\{\mathbf{0}\}
\end{aligned}
$$

Thus the kernel is trivial.
The range of \mathcal{I} is the space of polynomials in \mathbb{P}_{3} that are the images of vectors in \mathbb{P}_{2}.

$$
\begin{aligned}
\mathrm{R}(\mathbf{I}) & =\left\{\mathcal{I}(\mathbf{p}): \mathbf{p} \in \mathbb{P}_{2}\right\}=\left\{a_{0} t+\frac{1}{2} a_{1} t^{2}+\frac{1}{3} a_{2} t^{3}: a_{0}+a_{1} t+a_{2} t^{2} \in \mathbb{P}_{2}\right\} \\
& =\left\{b_{0} t+b_{1} t^{2}+b_{2} t^{3}: b_{0}, b_{1}, b_{2} \in \mathbf{R}\right\}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{0}=0\right\}
\end{aligned}
$$

Thus the range is the three dimensional space $\left\{\mathbf{p} \in \mathbb{P}_{3}: \mathbf{p}(0)=\mathbf{0}\right\}$. To see that every polynomial with zero constant coefficient is in $\mathrm{R}(T)$, choose any $\mathbf{q}(t)=b_{0} t+b_{1} t^{2}+b_{2} t^{3}$. Let

$$
\mathbf{p}(t)=b_{0}+2 b_{1} t+3 b_{2} t^{2} \in \mathbb{P}_{2}
$$

Then $\mathcal{I}(\mathbf{p})=\mathbf{q}$.
5. (a) Let $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ be an $n \times n$ matrix whose columns are \mathbf{a}_{i}. Let

$$
T(\mathbf{x})=\operatorname{det}\left(\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n-1} \\
\mathbf{x}
\end{array}\right]\right)
$$

be the function of the vector $\mathbf{x} \in \mathbf{R}^{n}$ that evaluates the determinant of A with \mathbf{x} replacing the last column. Show that $T(\mathbf{x})$ is a linear transformation.
We have $T: \mathbf{R}^{n} \rightarrow \mathbf{R}$. The column expansion is linear in \mathbf{x}. To see this, expanding the determinant on the last column,

$$
T(\mathbf{x})=\sum_{k=1}^{n} b_{k} x_{k}, \quad \text { where } b_{k}=(-1)^{k+n} \operatorname{det}\left(A_{k, n}\right)
$$

where $A_{i j}$ is the $(n-1) \times(n-1)$ matrix gotten by crossing out the i th row and j th column of A. This way we see that T is a matrix transformation where M is the $1 \times n$ matrix

$$
T(\mathbf{x})=M \mathbf{x}, \quad \text { where } \quad M=\left[b_{1}, b_{2}, \ldots, b_{n}\right]
$$

Hence T is linear. To verify, we may continue to check the two conditions for linearity. For any $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ and any $c \in \mathbf{R}$ we have

$$
\begin{gathered}
T(\mathbf{u}+\mathbf{v})=M(\mathbf{u}+\mathbf{v})=M \mathbf{u}+M \mathbf{v}=T(\mathbf{u})+T(\mathbf{v}) \\
T(c \mathbf{u})=M(c \mathbf{u})=c M \mathbf{u}=c T(\mathbf{u})
\end{gathered}
$$

(b) Find a linear transformation that takes the unit circle $C=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}=1\right\}$ to the ellipse \mathcal{E} that passes through the points $(2,2),(-1,1),(-2,-2)$ and $(1,-1)$. Use T to find the area inside \mathcal{E}.
Let T be the transformation that takes the vectors \mathbf{e}_{1} and \mathbf{e}_{2} from the circle to the vectors $[2,2]$ and $[-1,1]$, resp. Thus

$$
T(\mathbf{x})=T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=M \mathbf{x}
$$

and $T(\mathcal{C})=\mathcal{E}$. Using the change of area formula

$$
\operatorname{Area}(\mathcal{E})=|\operatorname{det}(M)| \operatorname{Area}(\mathcal{C})=\left|\operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right)\right| \operatorname{Area}(\mathcal{C})=4 \pi
$$

(c) Construct a 4×4 matrix A with $\operatorname{rank}(A)=2$. Justify your construction.

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

A has two pivots and rank is the number of pivots.
6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find a counterexample for which the statement fails.
(a) Statement. Let $\mathcal{M}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbf{R}\right\}$ be the vector space of 2×2 matrices. Then $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is the only basis for \mathcal{M}.
False. There are many bases. Another one is $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$
(b) Statement. For vectors \mathbf{u}, \mathbf{v} in a vector space \mathbb{V}, if the equation $\mathbf{u}+\mathbf{x}=\mathbf{v}$ has a solution $\mathbf{x} \in \mathbb{V}$ then it is unique.
True. We assume there are two solutions \mathbf{x} and \mathbf{y} in \mathbb{V} and show that they must be equal. A casual answer invoking the axioms would receive full credit. Here is a strict proof that $\mathbf{x}=\mathbf{y}$. Start from a known equation and replace by justifiably equal equations until you reach the conclusion.

$$
\begin{array}{rlrl}
\mathbf{u}+\mathbf{x}=\mathbf{v}, \quad \mathbf{u}+\mathbf{y}=\mathbf{v} & & \text { Both } \mathbf{x} \text { and } \mathbf{y} \text { satisfy the equation. } \\
\mathbf{u}+\mathbf{x} & =\mathbf{u}+\mathbf{y} & & \text { Both equal } \mathbf{v} . \\
(-\mathbf{u})+(\mathbf{u}+\mathbf{x}) & =(-\mathbf{u})+(\mathbf{u}+\mathbf{y}) & & \text { V5. There is }-\mathbf{u} . \text { Pre-add to both sides. } \\
((-\mathbf{u})+\mathbf{u})+\mathbf{x} & =((-\mathbf{u})+\mathbf{u})+\mathbf{y} & & \text { V3. Associativity of addition. } \\
(\mathbf{u}+(-\mathbf{u}))+\mathbf{x} & =(\mathbf{u}+(-\mathbf{u})+\mathbf{y} & & \text { V2. Commutativity of addition. } \\
\mathbf{0}+\mathbf{x} & =\mathbf{0}+\mathbf{x} & & \text { V5. Additive inverse. } \\
\mathbf{x}+\mathbf{0} & =\mathbf{y}+\mathbf{0} & & \text { V1. Commutativity of addition. } \\
\mathbf{x} & =\mathbf{y} & & \text { V4. Additive Identity. }
\end{array}
$$

Another line of argument is since we are given that a solution exists we deduce that it must equal $\mathbf{x}=(-\mathbf{u})+\mathbf{v}$, which is the same for every solution.
(c) Statement. Let $\mathcal{C}[0,1]=\{f:[0,1] \rightarrow \mathbf{R}: f$ is continuous $\}$ be the vector space of continuous functions on $[0,1]$. Then the subset $\mathcal{H}=\{g \in \mathcal{C}[0,1]: g(1)=0\}$ is a subspace of $\mathcal{C}[0,1]$.
We check the tree conditions to be a subspace.
(a) Zero is in \mathcal{H} : the zero in $\mathcal{C}[0,1]$ is the zero function $z(t)=0$ for all t. $z(0)=0$ so $z \in \mathcal{H}$.
(b) \mathcal{H} is closed under addition. Choose any $f, g \in \mathcal{H}$ so $f(1)=g(1)=0$. But then the $\operatorname{sum}(f+g)(1)=f(1)+g(1)=0+0=0$ so $f+g \in \mathcal{H}$.
(c) \mathcal{H} is closed under multiplication by a scalar. Choose any $f \in \mathcal{H}$ and $c \in \mathbf{R}$ so $f(1)=0$. But then the multiple $(c f)(1)=c f(1)=c \cdot 0=0$ so $c f \in \mathcal{H}$.

