Math 2270 § 4. Third Midterm Part 1 Name: (G)

olutions

Treibergs ar

March 24, 2021

1. Find x2 using Cramer’s Rule. Other methods will receive zero credit.

1 +4xo+ 3= 3
51‘1 +31‘2 =
To + 3x3 = —1

The equation is equivalent to Ax = b where

1 4 1 3
A=|5 3 0|, b=]|09
01 3 -1
Cramer’s rule for x3 is
1 3 1
5 9 0
- det(Ap(b)) [0 -1 3] 27-5-45 23 1
7 det(A) 1 4 1]  9+45-60 —46 2
5 3 0
0 1 3
2. (a) Let
2 1 1 0 2
2 1 0 1 2
S = 4 (7121717 ]10]°[5 ’
4 2 0 2 4
Let H = span(S). Find a basis for H. What is the dimension of H?¢

Put the vectors as columns into a matrix. Then H = Col(A).
identify pivot columns, which will form a basis of H.

Do row reduction to

21 1 0 2 21 1 0 2 2 1 1 0 2
A—21012—>00_110%00_110
14 2 1 0 5 0 0 -1 01 0 0 0 -1 1
4 2 0 2 4 00 -2 2 0 00 0 0 O
Thus columns 1,3 and 4 are pivots. The basis for H is thus
2 1 0
. . 2 0 1
A Dbasis for H is Al 1110 ,
4 0 2
(b) Let
2 1 0 0]
1 2 0 6
B=v 1ol |2 1] (" *7 |7
o] [1] |2 2 |

Let B be a basis for the subspace KK C R*. Show x € K and find

the coordinates [x|g.



Put B and y in as columns of an augmented matrix. Row reduce to see if the system
is consistent.

2 1 0 0 1 2 0 6 1 2 0 6 1 2 0 6
A—1206—>2100—>0_30_12—>0104
10 2 1 7 021 7 o 2 1 7 0 217
01 2 2 01 2 2 0o 1 2 2 01 2 2
1 2 0 6 1 2 0 6
. 01 0 4 . 01 0 4
00 1 -1 0 01 -1
00 2 -2 0 00 O
The system is consistent, so there is a solution to Ac = y. Solving, we find ¢z = —1,
ca =4 and ¢y = 6 — 2¢co = —2. Thus, the coordinates are
-2
x][g=c=| 4
-1

3. Find the determinant A in two ways, using expansion by cofactors and using row operations.

21 0 3
1 3 0 2
1 0 1 3
0 2 3 2
Expanding by cofactors down the third column we find
2 1 3 2 1 3
A=1-/1 3 2|-3-|1 3 2|=(1246—-8-2)—3(184+2—-3—-9)=8—24-—16.
0 2 2 1 0 3
Using row operations we find
21 0 3 1 3 0 2 1 3 0 2 1 3 0 2
Aol 302 2103 0 =50 —1|_ .0 1 0 1
/T o013/ (1013 (0 -31 1] |0 -3 11
0 2 3 2 0 2 3 2 0 2 3 2 0 2 3 2
1 3 0 2 1 3 0 2
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4. Let T : Py — P3 be the mapping given by definite integration Z(p)(t) = fot p(s)ds, where
P3 = {ag + ait + ast® +ast® : ag, a1, as,a3 € R} is the vector space of polynomials of degree
at most three. Show I : Py — Pg is linear. Find the kernel (nullspace) ker(Z). Find the
range R(Z) of T.

To prove Z is linear, we show that it preserves addition and multiplication by a constant.
The fundamental reason is that integration is linear. For any p,q € P; and ¢ € R we have

t

I(p + Q)(t) = / (p+a)(s)ds = / p(s) + q(s) ds
- / p(s)ds + / als) ds = T(p)(t) + T(a)(t)
Te@)(0) = [ (@))ds = [ ep(s)ds = [ p)ds = Z(o)0)

We could have worked out the map Z on the coefficients of the polynomial, which would
have resulted in an argument using linear formulas.

Let us work out the map in terms of coefficients. For p € P,, there are constants ag, a1
and ag such that
p(t) = ap + ait + ast®.

Thus
' 1L o 1 3
Zp)(t)= | p(s)ds=apt+ §a1t + gagt .
0

The kernel of Z is the space of polynomials in P, that are sent to zero.

1 1
ker(I)={p € Py : Z(p) =0} = {ao +ait + ast? : apt + §a1t2 + §a2t3 = O}
= {a0+a1t—|—a2t2 fap = a1 = as :0} = {0}
Thus the kernel is trivial.
The range of 7 is the space of polynomials in P3 that are the images of vectors in Ps.
L o 1 2
R(I) = {I(p) pE ]PQ} = qagt + Ealt + gagt tag + a1t + ast® € Py
= {bot + bltz + b2t3 : bo, bl, b2 S R} = {CLO + alt + CL2t2 + CL3t3 Lapg = 0}

Thus the range is the three dimensional space {p € P35 : p(0) = 0}. To see that every
polynomial with zero constant coefficient is in R(T'), choose any q(t) = bot + bit? + bat3.
Let

p(t) = by + 2byt + 3byt? € Py.

Then Z(p) = q.



5.

(a)

(c)

Let A=la; ag --- a,] be an n X n matriz whose columns are a;. Let
T(x) =det([a; ---a,—1 x])

be the function of the vector x € R™ that evaluates the determinant of A with x
replacing the last column. Show that T(x) is a linear transformation.

We have T : R™ — R. The column expansion is linear in x. To see this, expanding
the determinant on the last column,

T(x)= Z brxy, where by = (—1)F" det(Ay.),
k=1

where A;; is the (n — 1) X (n — 1) matrix gotten by crossing out the ith row and jth
column of A. This way we see that T' is a matrix transformation where M is the 1 xn
matrix

T(x) = Mx, where M =1[by,ba, ..., by
Hence T is linear. To verify, we may continue to check the two conditions for linearity.
For any u,v € R" and any ¢ € R we have
Tu+v)=Mu+v)=Muau+ Mv=T(u)+T(v),
T(cu) = M(cu) = cMu = T'(u).
Find a linear transformation that takes the unit circle C = {(x1,x2) : 23 + 22 = 1} to
the ellipse £ that passes through the points (2,2), (—=1,1), (=2,—2) and (1,—1). Use

T to find the area inside &.

Let T be the transformation that takes the vectors e; and ey from the circle to the
vectors [2,2] and [—1, 1], resp. Thus

ro=r([2]) -2 ) [z

and T'(C) = €. Using the change of area formula

Area(€) = | det(M)| Area(C) = ‘det (2 _1> ’ Area(C) = 4r.

2 1

Construct a 4 x 4 matriz A with rank(A) = 2. Justify your construction.

1 0 0 0
01 00
A_OOOO
0 0 0O

A has two pivots and rank is the number of pivots.

6. Determine whether the following statements are true or false. If true, give a short explana-

(a)

tion. If false, find a counterexample for which the statement fails.

STATEMENT. Let M = {(‘c1 db) s a,b,c,d € R} be the vector space of 2 X 2 matrices.
Then {((1) 8), (8 é), (? 8), (8 [1))} is the only basis for M.

FALSE. There are many bases. Another one is {(} ), (0 ¢). (0 9). (09}



(b)

STATEMENT. For vectors u,v in a vector space V, if the equation u+ x = v has a
solution x € V then it is unique.

TRUE. We assume there are two solutions x and y in V and show that they must
be equal. A casual answer invoking the axioms would receive full credit. Here is a
strict proof that x = y. Start from a known equation and replace by justifiably equal
equations until you reach the conclusion.

u+x=v, u+y=v Both x and y satisfy the equation.
ut+x=u+y Both equal v.
(—u)+ (u+x)=(—u)+ (ut+y) V5. There is —u. Pre-add to both sides.
(—ru)+u)+x=((—u)+u)+y V3. Associativity of addition.
(u+(—u)+x=(u+(—u)+y V2. Commutativity of addition.

O0+x=0+x V5. Additive inverse.
x+0=y+0 V1. Commutativity of addition.
X=y V4. Additive Identity.

Another line of argument is since we are given that a solution exists we deduce that it
must equal x = (—u) + v, which is the same for every solution.

STATEMENT.  Let C[0,1] = {f : [0,1] — R : f is continuous} be the vector space
of continuous functions on [0,1]. Then the subset H = {g € C[0,1] : g(1) = 0} is a
subspace of C[0,1].

We check the tree conditions to be a subspace.

(a) Zero is in H: the zero in C[0, 1] is the zero function z(¢) = 0 for all ¢. 2(0) = 0 so
z€eH.

(b) H is closed under addition. Choose any f,g € H so f(1) = g(1) = 0. But then the
sum (f+¢)(1) = f(1)+¢g(1)=04+0=0s0 f+g € H.

(¢) H is closed under multiplication by a scalar. Choose any f € H and ¢ € R so
f(1) = 0. But then the multiple (¢f)(1) =cf(1) =c-0=0so cf € H.



