
Math 2270 § 4.
Treibergs −−σιι

Third Midterm Part 1 Name: Solutions
March 24, 2021

1. Find x2 using Cramer’s Rule. Other methods will receive zero credit.

x1 + 4x2 + x3 = 3

5x1 + 3x2 = 9

x2 + 3x3 = −1

The equation is equivalent to Ax = b where

A =

 1 4 1
5 3 0
0 1 3

 , b =

 3
9
−1


Cramer’s rule for x3 is

x2 =
det(A2(b))

det(A)
=

∣∣∣∣∣∣
1 3 1
5 9 0
0 −1 3

∣∣∣∣∣∣∣∣∣∣∣∣
1 4 1
5 3 0
0 1 3

∣∣∣∣∣∣
=

27− 5− 45

9 + 5− 60
=
−23

−46
=

1

2
.

2. (a) Let

S =




2
2
4
4

 ,


1
1
2
2

 ,


1
0
1
0

 ,


0
1
0
2

 ,


2
2
5
4


 ,

Let H = span(S). Find a basis for H. What is the dimension of H?

Put the vectors as columns into a matrix. Then H = Col(A). Do row reduction to
identify pivot columns, which will form a basis of H.

A =


2 1 1 0 2
2 1 0 1 2
4 2 1 0 5
4 2 0 2 4

→


2 1 1 0 2
0 0 −1 1 0
0 0 −1 0 1
0 0 −2 2 0

→


2 1 1 0 2
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 0


Thus columns 1,3 and 4 are pivots. The basis for H is thus

A basis for H is




2
2
4
4

 ,


1
0
1
0

 ,


0
1
0
2


 ,

(b) Let

B =




2
1
0
0

 ,


1
2
2
1

 ,


0
0
1
2


 , x =


0
6
7
2

 .
Let B be a basis for the subspace K ⊂ R4. Show x ∈ K and find the coordinates [x]B.
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Put B and y in as columns of an augmented matrix. Row reduce to see if the system
is consistent.

A =


2 1 0 0
1 2 0 6
0 2 1 7
0 1 2 2

→


1 2 0 6
2 1 0 0
0 2 1 7
0 1 2 2

→


1 2 0 6
0 −3 0 −12
0 2 1 7
0 1 2 2

→


1 2 0 6
0 1 0 4
0 2 1 7
0 1 2 2



→


1 2 0 6
0 1 0 4
0 0 1 −1
0 0 2 −2

→


1 2 0 6
0 1 0 4
0 0 1 −1
0 0 0 0


The system is consistent, so there is a solution to Ac = y. Solving, we find c3 = −1,
c2 = 4 and c1 = 6− 2c2 = −2. Thus, the coordinates are

[x]B = c =

 −2
4
−1


3. Find the determinant ∆ in two ways, using expansion by cofactors and using row operations.∣∣∣∣∣∣∣∣

2 1 0 3
1 3 0 2
1 0 1 3
0 2 3 2

∣∣∣∣∣∣∣∣
Expanding by cofactors down the third column we find

∆ = 1 ·

∣∣∣∣∣∣
2 1 3
1 3 2
0 2 2

∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣
2 1 3
1 3 2
1 0 3

∣∣∣∣∣∣ = (12 + 6− 8− 2)− 3(18 + 2− 3− 9) = 8− 24 · −16.

Using row operations we find

∆ =

∣∣∣∣∣∣∣∣
2 1 0 3
1 3 0 2
1 0 1 3
0 2 3 2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 3 0 2
2 1 0 3
1 0 1 3
0 2 3 2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 3 0 2
0 −5 0 −1
0 −3 1 1
0 2 3 2

∣∣∣∣∣∣∣∣ = 5

∣∣∣∣∣∣∣∣
1 3 0 2
0 1 0 1

5
0 −3 1 1
0 2 3 2

∣∣∣∣∣∣∣∣

= 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 0 2

0 1 0 1
5

0 0 1 8
5

0 0 3 8
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 0 2

0 1 0 1
5

0 0 1 8
5

0 0 0 8−24
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 5 ·

(
−16

5

)
= −16.
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4. Let I : P2 → P3 be the mapping given by definite integration I(p)(t) =
∫ t

0
p(s) ds, where

P3 = {a0 + a1t+ a2t
2 + a3t

3 : a0, a1, a2, a3 ∈ R} is the vector space of polynomials of degree
at most three. Show I : P2 → P3 is linear. Find the kernel (nullspace) ker(I). Find the
range R(I) of I.

To prove I is linear, we show that it preserves addition and multiplication by a constant.
The fundamental reason is that integration is linear. For any p,q ∈ P2 and c ∈ R we have

I(p + q)(t) =

∫ t

0

(p + q)(s) ds =

∫ t

0

p(s) + q(s) ds

=

∫ t

0

p(s) ds+

∫ t

0

q(s) ds = I(p)(t) + I(q)(t)

I(cp)(t) =

∫ t

0

(cp)(s) ds =

∫ t

0

cp(s) ds = c

∫ t

0

p(s) ds = cI(p)(t)

We could have worked out the map I on the coefficients of the polynomial, which would
have resulted in an argument using linear formulas.

Let us work out the map in terms of coefficients. For p ∈ P2, there are constants a0, a1
and a2 such that

p(t) = a0 + a1t+ a2t
2.

Thus

I(p)(t) =

∫ t

0

p(s) ds = a0t+
1

2
a1t

2 +
1

3
a2t

3.

The kernel of I is the space of polynomials in P2 that are sent to zero.

ker(I) = {p ∈ P2 : I(p) = 0} =

{
a0 + a1t+ a2t

2 : a0t+
1

2
a1t

2 +
1

3
a2t

3 = 0

}
=
{
a0 + a1t+ a2t

2 : a0 = a1 = a2 = 0
}

= {0}

Thus the kernel is trivial.

The range of I is the space of polynomials in P3 that are the images of vectors in P2.

R(I) = {I(p) : p ∈ P2} =

{
a0t+

1

2
a1t

2 +
1

3
a2t

3 : a0 + a1t+ a2t
2 ∈ P2

}
=
{
b0t+ b1t

2 + b2t
3 : b0, b1, b2 ∈ R

}
= {a0 + a1t+ a2t

2 + a3t
3 : a0 = 0}

Thus the range is the three dimensional space {p ∈ P3 : p(0) = 0}. To see that every
polynomial with zero constant coefficient is in R(T ), choose any q(t) = b0t + b1t

2 + b2t
3.

Let
p(t) = b0 + 2b1t+ 3b2t

2 ∈ P2.

Then I(p) = q.
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5. (a) Let A = [a1 a2 · · · an] be an n× n matrix whose columns are ai. Let

T (x) = det([a1 · · ·an−1 x])

be the function of the vector x ∈ Rn that evaluates the determinant of A with x
replacing the last column. Show that T (x) is a linear transformation.

We have T : Rn → R. The column expansion is linear in x. To see this, expanding
the determinant on the last column,

T (x) =

n∑
k=1

bkxk, where bk = (−1)k+n det(Ak,n),

where Aij is the (n − 1) × (n − 1) matrix gotten by crossing out the ith row and jth
column of A. This way we see that T is a matrix transformation where M is the 1×n
matrix

T (x) = Mx, where M = [b1, b2, . . . , bn].

Hence T is linear. To verify, we may continue to check the two conditions for linearity.
For any u,v ∈ Rn and any c ∈ R we have

T (u + v) = M(u + v) = Mu +Mv = T (u) + T (v),

T (cu) = M(cu) = cMu = cT (u).

(b) Find a linear transformation that takes the unit circle C = {(x1, x2) : x21 + x22 = 1} to
the ellipse E that passes through the points (2, 2), (−1, 1), (−2,−2) and (1,−1). Use
T to find the area inside E.

Let T be the transformation that takes the vectors e1 and e2 from the circle to the
vectors [2, 2] and [−1, 1], resp. Thus

T (x) = T

([
x1
x2

])
=

(
2 −1
2 1

)[
x1
x2

]
= Mx.

and T (C) = E . Using the change of area formula

Area(E) = |det(M)| Area(C) =

∣∣∣∣ det

(
2 −1
2 1

) ∣∣∣∣ Area(C) = 4π.

(c) Construct a 4× 4 matrix A with rank(A) = 2. Justify your construction.

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


A has two pivots and rank is the number of pivots.

6. Determine whether the following statements are true or false. If true, give a short explana-
tion. If false, find a counterexample for which the statement fails.

(a) Statement. Let M = {
(
a b
c d

)
: a, b, c, d ∈ R} be the vector space of 2 × 2 matrices.

Then
{(

1 0
0 0

)
,
(
0 1
0 0

)
,
(
0 0
1 0

)
,
(
0 0
0 1

)}
is the only basis for M.

False. There are many bases. Another one is
{(

1 1
0 0

)
,
(
0 1
0 0

)
,
(
0 0
1 0

)
,
(
0 0
0 1

)}
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(b) Statement. For vectors u,v in a vector space V, if the equation u + x = v has a
solution x ∈ V then it is unique.

True. We assume there are two solutions x and y in V and show that they must
be equal. A casual answer invoking the axioms would receive full credit. Here is a
strict proof that x = y. Start from a known equation and replace by justifiably equal
equations until you reach the conclusion.

u + x = v, u + y = v Both x and y satisfy the equation.

u + x = u + y Both equal v.

(−u) + (u + x) = (−u) + (u + y) V5. There is −u. Pre-add to both sides.

((−u) + u) + x = ((−u) + u) + y V3. Associativity of addition.

(u + (−u)) + x = (u + (−u) + y V2. Commutativity of addition.

0 + x = 0 + x V5. Additive inverse.

x + 0 = y + 0 V1. Commutativity of addition.

x = y V4. Additive Identity.

Another line of argument is since we are given that a solution exists we deduce that it
must equal x = (−u) + v, which is the same for every solution.

(c) Statement. Let C[0, 1] = {f : [0, 1] → R : f is continuous} be the vector space
of continuous functions on [0, 1]. Then the subset H = {g ∈ C[0, 1] : g(1) = 0} is a
subspace of C[0, 1].

We check the tree conditions to be a subspace.

(a) Zero is in H: the zero in C[0, 1] is the zero function z(t) = 0 for all t. z(0) = 0 so
z ∈ H.

(b) H is closed under addition. Choose any f, g ∈ H so f(1) = g(1) = 0. But then the
sum (f + g)(1) = f(1) + g(1) = 0 + 0 = 0 so f + g ∈ H.

(c) H is closed under multiplication by a scalar. Choose any f ∈ H and c ∈ R so
f(1) = 0. But then the multiple (cf)(1) = cf(1) = c · 0 = 0 so cf ∈ H.
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