
Math 1310 Final Exam Practice Problems

1. (1.3) Consider the function

f(x) =


x+ 1, x < 0

1− x2, x ∈ [0, 1]

x− 1, x > 1

,

and the transformed function g(x) = −2f(−2x+ 3). Find the value of g(5/4) = y.

Solution: g( 5
4 ) = −2f(− 5

2 + 6
2 ) = −2f( 1

2 ) = −2[1− ( 1
2 )2] = −2[ 4

4 −
1
4 ] = − 3

2 .

2. (1.3) Consider the function f(x) depicted in the graph. Draw a graph of the transformed function

− 1
3f(2x− 4).
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Solution: Its useful to express − 1
3f(2x− 4) = − 1

3f(2(x− 2)).
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3. (1.3) Consider a function f(x) with domain (−4, 12] and range [3, 7). What are domain and range of
f(−3x+ 1) + 2?

Solution: Since the domain of f(x) is (−4, 12], the domain of g(x) = f(−3x+ 1) + 2 consists of all
x, such that

−4 < −3x+ 1 ≤ 12 − 5 < −3x ≤ 11
5

3
> x ≥ −11

3

So the domain of g(x) is [− 11
3 ,

5
3 ). The range is [5, 9).

4. (1.3) Consider the given graph of g(x) = 2f(−x+ 1). Draw the graph of f(x).
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Solution:

1

2
g(x) = f(−x+ 1) z = −x+ 1 x = −z + 1 f(x) =

1

2
g(−x+ 1)

So the graph of f(x) is
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5. (1.3) Suppose that f(x) =
√
x and g(x) = ln(x−1). Identify and sketch each of the function compositions

below. What is the domain and range of each function composition?
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(a) f ◦ f

Solution:
(
f ◦ f

)
(x) = x

1
4 . The domain is [0,∞) and the range is [0,∞).
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(b) f ◦ g

Solution:
(
f ◦ g

)
(x) =

(
ln(x− 1)

) 1
2 . The domain is [2,∞). The range is [0,∞).
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(c) g ◦ f

Solution:
(
g ◦ f

)
(x) = ln

(√
x− 1

)
. The domain is (1,∞) and the range is (−∞,∞).
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(d) g ◦ g

Solution:
(
g ◦ g

)
(x) = ln

((
ln(x)− 1

)
− 1
)
. The domain is (e2,∞) and the range is (−∞,∞).
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6. (1.5) Find the domain of each function.

(a)
ax − 4

5x − 25
with a > 0

Solution: ax − 4 and 5x − 25 are defined everywhere, so we only require 5x − 25 6= 0. Hence
x 6= 2.

(b) ln(cos(x) + 5)

Solution: ln(x) is defined when x > 0, so we require cos(x) + 5 > 0 which is always true.
Hence the domain is R.

(c)
e
√

3x−27

√
x3 − 8

Solution: Here we require
√
x to be defined, and hence 3x − 27 > 0 and x3 − 8 > 0. This

implies x > 3. This also implies
√
x3 − 8 > 0, so the domain is x > 3.

7. (1.5) A population of shrimp is known to triple every year. Let p(t) represent the population of shrimp
after t years and suppose p(0) = 100.
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(a) What is the equation for p(t) as an exponential function?

Solution: Since the population triples,

p(1) = 3p(0)

p(2) = 3p(1) = 3 · 3p(0)

p(3) = 3p(2) = 3 · 3 · 3p(0)

. . .

p(t) = 3tp(0) = 100 · 3t

(b) After how many years are there 900 shrimp?

Solution: At t = 2, p(t) = 900, so two years.

8. (1.6) Consider the discrete function f(x) given by

f(1) = −5 f(2) = 0 f(3) = 7 f(4) = 2

(a) Explain, why f(x) has an inverse function. What are domain and range of f−1(x)?

Solution: No y-value is taken more then once, so f(x) is one-to-one and f(x) has an inverse.
The domain of f−1(x) is {−5, 0, 2, 7} and the range {1, 2, 3, 4}.

(b) What is f−1(2)?

Solution:
f−1(2) = 4

(c) What are f(f−1(2)) and f−1(f(2))?

Solution: Both are 2.

9. (1.6) Determine, whether f(x) = (sin(x))3 has an inverse for the given domains. If the inverse function
exists, what is its domain and range?

(a) (0, π)

Solution: f(x) has no inverse on this domain, since f(π4 ) = f( 3π
4 ).

(b) (0, π2 )

Solution: f(x) has an inverse on this domain, since f(x) passes the horizontal line test, it is
an increasing function from 0 to 1. So f−1 has domain (0, 1) and range (0, π2 ).

(c) (−π2 ,
π
2 )

Solution: f(x) has an inverse on this domain, since f(x) passes the horizontal line test, it is
an increasing function from -1 to 1. So f−1 has domain (−1, 1) and range (−π2 ,

π
2 ).
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10. (1.6) Consider the function f(x) = x2 + 2x + 1 on the domain (−∞,−1). Find the inverse function
f−1(x). What is its domain and range?

Solution:
y = x2 + 2x+ 1 = (x+ 1)2 √

y = ±(x+ 1) x = −1±√y

Since the range of f−1(x) is (−∞,−1), choose the negative sign, that is f−1(x) = −1 −
√
x with

domain (0,∞) and range (−∞,−1).

11. (1.6) Consider the function f(x) given by
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Explain, why f(x) has an inverse function. Draw the graph of f−1(x).

Solution: f(x) passes the horizontal line test, that is horizontal line crosses y = f(x) at most once.
The graph of f−1(x) is obtained, by reflecting y = f(x) about y = x.
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12. (1.6) Solve the equation for x:
10 = 23xe−x.
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Solution: We will use the natural log to solve, but any base is fine.

ln(10) = ln(23xe−x) = 3x ln(2)− x

so,

x =
ln(10)

3 ln(2)− 1
.

13. (1.7)

(a) Consider the parametric curve given by

x = 2 sin(2t) + 1, y = t

for 0 ≤ t ≤ π. Which curve in the figure below corresponds to these equations?

Solution: Curve B. This can be found by plotting a few points, but actually you only need to
plot t = π/2 or t = π.
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(b) Is there a function y = f(x) that describes this curve?

Solution: No. Remember, a function takes each x value in its domain and gives a unique y
value, but in the curve above, x values correspond to multiple y values.

14. (2.1) Find an equation of a secant line P on the curve defined by the function f(x) = x3 − x, through
the points x = 1/2 and x = 1.

Solution: The equation for a line is y = mx+ b. It must pass through the points (1/2, - 3/8) and
(1,0) The slope of the secant line is computed to be

m =
f(1)− f(1/2)

1− 1/2
=

0− 1
8 + 1

2
1
2

=
3

4
.

The y-intercept b is found by substituting one of the points. Let’s use (1, 0):

y = 0 =
3

4
(1) + b =⇒ b = −3

4
.
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The secant line is

y =
3

4
x− 3

4
.

15. (2.1) Consider the function f(x) given by the graph and the point P .
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(a) Draw the secant lines y = mx+ b through P and each of the other given points.

Solution:
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(b) What is the slope m of the secant lines?

Solution:

x = −4: m = − 5
3

x = −3: m = − 4
3

x = −1: m = − 2
3

x = 0: m = − 1
3

(c) Estimate the slope of the tangent line at P .

Page 8



Solution: The slope of the tangent line should be between − 4
3 and − 2

3 . So −1 is a good guess.

16. (2.1) The distance of an object from its starting point satisfies the equation d(t) = 3t2 − t3, and is
graphed below.

1 2 3 4

1

2

3

4

t

d

(a) What is the average velocity over the following intervals, t ∈ [1, 2], t ∈ [1, 1.1], t ∈ [1, 1.01], correct
to two decimal places?

Solution: The average velocities are respectively 2, 2.99 and 3.00.

(b) What is the approximate slope of the tangent to the curve at t = 1?

Solution: The gradient is 3, as this is what the average velocities are converging to.

17. (2.2) The graph below depicts a function f(x). Compute the following limits using the graph if the limit
exists. If the limit exists, specify why, and specify if it is infinite where appropriate.
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(a) lim
x→−4−

f(x) =0

(b) lim
x→−4+

f(x) =0

(c) lim
x→−4

f(x) =0

(d) lim
x→0−

f(x) =2

(e) lim
x→0+

f(x) =∞

(f) lim
x→0

f(x) DNE because left and right limits do

not agree

(g) lim
x→3−

f(x) =1.5

(h) lim
x→3+

f(x) =3

(i) lim
x→3

f(x) DNE because left and right limits do

not agree

18. (2.3) Consider functions f(x), g(x) and h(x) with

lim
x→3

f(x) = 4 lim
x→3

g(x) = 12 lim
x→3

h(x) = −2

Calculate the following limit.

lim
x→3

f(x)− g(x)

g(x)h(x)

Solution:

lim
x→3

f(x)− g(x)

g(x)h(x)
=

limx→3 f(x)− limx→3 g(x)

(limx→3 g(x))(limx→3 h(x))
=

4− 12

12 · (−2)
=

1

3
.

19. (2.3) Find the following limit

lim
x→2

x2 −
√
x+ 1

x2 + 1

Solution: 2 lies in the domain of x
2−
√
x+1

x2+1 . So by the direct substitution property, when taking the
limit, it is enough to substitute x by 2, that is

lim
x→2

x2 −
√
x+ 1

x2 + 1
=

22 −
√

2 + 1

22 + 1
=

4−
√

3

5

20. (2.3) Find the following limit

lim
x→6

x2 − 36

x2 − 4x− 12

Solution: The limit of the numerator and denominator as x approaches 6 are both 0. By factoring,
one gets

lim
x→6

x2 − 36

x2 − 4x− 12
= lim
x→6

(x− 6)(x+ 6)

(x− 6)(x+ 2)
= lim
x→6

x+ 6

x+ 2
=

12

8
=

3

2

21. (2.3) Consider the function f(x) = ex + x2 sin
(

1
x

)
.

(a) Find functions g(x) and h(x), such that g(x) ≤ f(x) ≤ h(x). Where does the inequality hold?
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Solution: It is

−1 ≤ sin

(
1

x

)
≤ 1

ex − x2 ≤ f(x) ≤ ex + x2

So choose g(x) = ex − x2 and h(x) = ex + x2. The inequality holds for all real numbers.

(b) Find lim
x→0

f(x)

Solution: It is
lim
x→0

g(x) = 1 lim
x→0

h(x) = 1

So the squeeze theorem implies
lim
x→0

f(x) = 1

22. (2.4) Determine if the function f(x) = x2−4x+3
x2−1 is continuous at the following points:

(a) x = 2

Solution: The function f(x) is a rational function and the input x = 2 is within the domain
of f(x), therefore it is continuous there.

(b) x = 1

Solution: The limit limx→1
x2−4x+3
x2−1 = limx→1

(x−1)(x−3)
(x−1)(x+1) = −1 exists, however the function

value f(1) is not defined, therefore the function is not continuous at x = 1.

23. (2.4) The Heaviside step function H(x) is defined as

H(x) =

{
1, x ≥ 0

0, x < 0
.

Determine if the function f(x) = H(x) +H(−x) is continuous at x = 0.

Solution: The function is defined at x = 0 and is equal to f(0) = H(0) +H(−0) = 1 + 1 = 2.
Because the function is defined piecewise on domains x < 0 and x ≥ 0, we must examine directional
limits to determine if the two-sided limit exists:
Left limit: limx→0−(H(x) +H(−x)) = 0 + 1 = 1.
Right limit: limx→0+(H(x) +H(−x)) = 1 + 0 = 1.
Therefore limx→0(H(x) + H(−x)) = 1 exists. However, f(0) = 2 6= 1, so f(x) is not continuous at
x = 0.

24. (2.4) Consider the function

f(x) =

{
1− x2, x > 0

x+ 1, x ≤ 0
.

Identify all x-values on which f(x) is continuous.
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Solution: The piecewise defined function’s two sub-functions are polynomials, so they are contin-
uous on their entire domains. We need to check the single point x = 0 on the shared boundary of
their two domains:

f(0) = 1

and
lim
x→0−

f(x) = lim
x→0−

(x+ 1) = 1,

lim
x→0+

f(x) = lim
x→0+

(1− x2) = 1.

Therefore the two-sided limit exists: limx→0 f(x) = 1, and it agrees with the function’s value there
f(0) = 1, so the function is continuous for all real values x.

25. (2.4) Find all points of discontinuity for the function

f(x) =
x3 − x

x3 − 2x2 + x
.

Solution: The denominator: x3 − 2x2 + x = x(x− 1)(x− 1), so the points x = 0, 1 are undefined
and so the function cannot be continuous there.

26. (2.4) Suppose a function f(x) is continuous at x = −2, and f(−2) = 4. Determine the limit

lim
x→−2

f(x)

Solution: Continuity of f(x) at x = −2 means that the limiting value of f(x) as x→ −2 is equal
to the function’s value at x = −2. So,

lim
x→−2

f(x) = f(−2) = 4.

27. (2.4) Determine if f(x) = ex sin(x) is continuous on the real line.

Solution: Both exponential functions and trigonometric functions are continuous on their domains;
the domains of ex and sin(x) are the real line. The product of any two continuous functions is
continuous, therefore ex sin(x) is continuous.

28. (2.4) Consider the function f(x) = 2−x− 2−2x on the interval x ∈ [0, 1]. Determine if you can guarantee
a solution to the equation f(x) = 1

10 exists within [0, 1] without solving the equation for x (note, you
can’t solve it explicitly anyway).
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Solution: The function f(x) is a sum of exponential functions and exponential functions are con-
tinuous everywhere so they are continuous on [0, 1]. Note also that f(0) = 0, and

f(1) = 2−1 − 2−2 = 1
2 −

1
22 = 1

4 .

It is true that 0 = f(0) < 1
10 <

1
4 = f(1).

The hypotheses of the intermediate value theorem are satisfied, so it is guaranteed there is an x
within [0, 1] that solves f(x) = 1

10 , even if it cannot be found explicitly.

29. (2.4)

(a) Use the Intermediate Value Theorem to show that f(x) = 2x3 − 5x + 1 has a root between 1 and
2.

Solution: f(1) = −2 and f(2) = 7. Hence by the intermediate value theorem, there exists a
number a ∈ (1, 2) such that f(a) = 0.

(b) For what value of c is the following function continuous at x = 2?

f(x) =

{
x5 + cx2 + 2 if x < 2

x2 − cx if x ≥ 2.

Solution: For it to be continuous, the left hand limit must equal the right hand limit at x = 2.
We thus require that

25 + c× 22 + 2 = 22 − 2c.

Simplifying this equation, we find that −6c = 30, and therefore c = −5.

30. (2.5) Let f(x) = 1
x2−π2 . Calculate the following limits with the appropriate infinite behavior, or specify

that it does not exist. If it does not exist, specify why.

(a) lim
x→π−

f(x)

Solution: lim
x→π−

f(x) = −∞

(b) lim
x→π+

f(x)

Solution: lim
x→π+

f(x) =∞

(c) lim
x→π

f(x)

Solution: lim
x→π

f(x) does not exist because the left- and right-directional limits do not agree.

31. (2.5) Let f(x) = 1
(x2−2)2 . Calculate the following limits with the appropriate infinite behavior, or specify

that it does not exist. If it does not exist, specify why.

(a) lim
x→
√

2
−
f(x)
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Solution: lim
x→
√

2
−
f(x) =∞

(b) lim
x→
√

2
+
f(x)

Solution: lim
x→
√

2
+
f(x) =∞

(c) lim
x→
√

2
f(x)

Solution: lim
x→
√

2
f(x) =∞, because left- and right-limits agree.

32. (2.5) Calculate the limit

lim
x→−∞

3x3 + x2 − 2x

2x3 − x+ 1

by algebraically manipulating the numerator and denominator and using limit laws but without using
L’Hospital’s rule.

Solution: Multiply by the factor
(

1
x3 )

(
1
x3 )

and simplify

lim
x→−∞

3x3 + x2 − 2x

2x3 − x+ 1

( 1
x3 )

( 1
x3 )

= lim
x→−∞

3 + 1
x − 2 1

x2

2− 1
x2 + 1

x3

.

Each limit of each of the terms in the numerator and denominator exist, and the denominator does
not approach zero, so the limit laws can be used

=
limx→−∞ 3 + limx→−∞

1
x − limx→−∞ 2 1

x2

limx→−∞ 2− limx→−∞
1
x2 + limx→−∞

1
x3

=
3 + 0− 0

2− 0 + 0
=

3

2
.

33. (2.5) Calculate the limit

lim
x→−∞

ex

x

Solution: The product of 1
x and ex form the expression, and the limits of each exist:

lim
x→−∞

ex = 0 lim
x→−∞

1

x
= 0.

Use the limit law: the limit of the product is the product of the limits

lim
x→−∞

ex

x
=

(
lim

x→−∞
ex
)(

lim
x→−∞

1

x

)
= 0× 0 = 0.
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34. (2.6) Consider the function f(x) =
√
x+ 1

(a) Compute the derivative of f(x) at a = 3 using the limit-based definition

Solution:

f ′(3) = lim
h→0

f(3 + h)− f(3)

h
= lim
h→0

√
3 + h+ 1−

√
3 + 1

h

= lim
h→0

4 + h− 4

h(
√

4 + h+ 2)
= lim
h→0

1√
4 + h+ 2

=
1

4

(b) Find the tangent line of f(x) at a = 3.

Solution:

y − 2 =
1

4
(x− 3) y =

1

4
x+

5

4

35. (2.6) A particle is moving in a straight line given by the equation x(t) = 1
1+t , where t is measured in

seconds and x is measured in meters. What is the velocity at time t = 1 s?

Solution:

v(1) =x′(1) = lim
h→0

x(1 + h)− x(1)

h
= lim
h→0

1
1+1+h −

1
1+1

h

= lim
h→0

2− (2 + h)

h2(2 + h)
= lim
h→0

−1

2(2 + h)
= −1

4

m

s

36. (2.6) Consider a hot cup of tea. Let T (t) be the temperature in Fahrenheit of a cup of tea at time t in
minutes.

(a) What does T ′(10) represent? Is it positive, negative or zero?

Solution: T ′(10) is the rate of change, that is the rate in which the temperature changes after
10 minutes. It is negative, since the tea is cooling down.

(b) What is the unit of T ′(10)?

Solution: Fahrenheit per minute

37. (2.6) Consider f(x) = |x|. Determine whether f ′(0) exists using the limit definition of the derivative.

Solution: f ′(0) does not exist, since

lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

h

h
= 1

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

−h
h

= −1
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38. (2.7) Compute the derivative of f(x) = x3 − 2x as a function of x using the limit definition.

Solution:

f ′(x) = lim
h→0

(x+ h)3 − 2(x+ h)− x3 + 2x

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − 2x− 2h− x3 + 2x

h

= lim
h→0

(3x2 + 3xh+ h2 − 2) = 3x2 − 2

39. (2.7) Circle all expressions that represent the first derivative of y = f(x).

© d′

√
Dxf(x)

√
f ′(x)

© d2y
dx2

√
y′

© f ′(y)

40. (2.7) Consider the graph of f(x). Find all the x-values, where the derivative of f(x) does not exist.
Explain, why it does not exist. If it exists everywhere, explain why.
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Solution: The derivative does not exist at x = −2, because the function is not defined there. It
does not exist at x = 0, because the function has a jump there and is not even continuous. It does
not exist at x = 2, because the function has a corner and the graph has no tangent line there.

41. (2.8) Consider the function f(x) given by the following graph.
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Sketch the derivative of f(x). Make sure to identify, where f ′(x) is positive and where it is negative.
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42. (2.8) Match the graphs of the four functions ((A)–(D)) given with the graphs of their derivatives ((a)–
(d)). Explain your answer. For example, identify some distinct feature(s) of the graphs.

(A)

−6 −4 −2 2 4 6
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−2
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y

(B)

−6 −4 −2 2 4 6

−4
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4

x

y
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(C)

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(D)
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−4
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4
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y

(a)

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(b)

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(c)

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(d)

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

Solution: (D) has a constant slope, so it corresponds to (d)
(A) is constant for x < −5 and x > 5, so it corresponds to (c)
(B) has a point symmetry, so the derivative will have a symmetry about the y-axis and it corresponds
to (b)
(C) decreases until x ≈ 3 and then it increases, so it corresponds to (a)

43. (2.8) Consider the graphs of f ′(x) and f ′′(x)
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−2 −1 1 2

−4

−3

−2

−1

1

2

3

4

x

y

f ′(x)

f ′′(x)

(a) Where is f(x) increasing? Where is it decreasing?

Solution: f is increasing for −1.5 < x < 0 and 0 < x < 1.5. f is decreasing for x < −1.5 and
for x > 1.5.

(b) Where is f(x) concave up? Where is it concave down?

Solution: f is concave up for x < −1 and 0 < x < 1. f is concave down for −1 < x < 0 and
x > 1.

(c) Sketch a possible graph of f(x).

−2 −1 1 2
x

y

44. (2.8) Consider the function f(x) = x3 − 3x − 1. The first two derivatives are f ′(x) = 3x2 − 3 and
f ′′(x) = 6x.

(a) Find all the zeros of f ′ and f ′′.

Solution:
f ′(x) = 3(x2 − 1) = 3(x− 1)(x+ 1)

So the zeros of f ′ are 1, -1 and the zero of f ′′ is 0.

(b) Where are the maxima and minima of f?
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Solution: f has a maximum at -1, since f comes from −∞ from the left and a minimum at 1.

(c) Where are the inflection points of f?

Solution: f has an inflection point at 0.

45. (3.1) Suppose f and g are differentiable and f ′(2) = 4 and g′(2) = −3. Compute the derivative of
h(x) = 2f(x)− 4g(x) at x = 2.

Solution:
h′(x) = 2f ′(2)− 4g′(x) = 2(4)− 4(−3) = 8 + 12 = 20

46. (3.1) Compute limh→0
eh−1
h

Solution: By definition

lim
h→0

eh−1
h ex = ex

So,

lim
h→0

eh−1
h = 1

47. (3.1) Compute the derivatives of the following functions

(a) x11

Solution: 11x10

(b) x2 + 2x+ 1

Solution: 2x+ 2

(c) x2 + ex

Solution: 2x+ ex

48. (3.2) Compute D [−xex] and find a point x where the derivative is zero.

Solution: Use the product rule:
D [−xex] = −ex − xex

To find the zero derivative:

0 = −ex − xex = −(1 + x)ex =⇒ x = −1
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49. (3.2) Compute D [xe−x] without using the chain rule, and find a point x where the derivative is zero.

Solution: Use the quotient rule by noting that e−x = 1
ex .

D
[
xe−x

]
= D

[ x
ex

]
=
ex − xex

e2x
= e−x − xe−x

To find the zero derivative:

0 = e−x − xe−x = (1− x)e−x =⇒ x = 1

50. (3.2) Compute d
dx

[
xex

x2+1

]
.

Solution: Use the quotient rule to start the derivative computation

d

dx

[
xex

x2 + 1

]
=

d
dx [xex] (x2 + 1)− 2x(xex)

(x2 + 1)2

We must then take the derivative of d
dx [xex] in the above numerator using the product rule

d

dx
[xex] = ex + xex = (1 + x)ex

Substituting this into the quotient rule calculation finishes the derivative:

d

dx

[
xex

x2 + 1

]
=

(1 + x)ex(x2 + 1)− 2x2ex

(x2 + 1)2

51. (3.3) Using the essential trigonometric limits, and the angle sum identity, compute the derivative of
sin(x) using the limit definition. The angle sum identity:

sin(x+ h) = sin(x) cos(h) + sin(h) cos(x).

Solution: The limit definition of the derivative of sin(x) is

d

dx
sin(x) = lim

h→0

sin(x+ h)− sin(x)

h
= lim
h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)

h
.

Simplifying, we get

= lim
h→0

sin(x)
cos(h)− 1

h
+ lim
h→0

cos(x)
sin(h)

h
= sin(x) · 0 + cos(x) · 1 = cos(x).

So, the derivative of sine is cosine.

52. (3.3) Compute the derivative of f(x) = x sin(x)
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Solution: Using the product rule,

f ′(x) = sin(x) + x cos(x).

53. (3.4) Compute the derivative of f(x) =
(
3x2 + 2x+ 100

)12
.

Solution: Using the chain rule,

f ′(x) = 12
(
3x2 + 2x+ 100

)11
(6x+ 2) = 24 (3x+ 1)

(
3x2 + 2x+ 100

)11
.

54. (3.4) If y = ex
2 sin(x), compute dy

dx .

Solution: By the chain rule,
dy

dx
= ex

2 sin(x) d

dx

(
x2 sin(x)

)
.

Using the product rule on the second term, we find that

dy

dx
= ex

2 sin(x)
(
x2 cos(x) + 2x sin(x)

)
= xex

2 sin(x) (x cos(x) + 2 sin(x)) .

55. (3.4) If y = sin
(
ecos(x)

)
, what is dy

dx?

Solution: By the chain rule,

dy

dx
= cos

(
ecos(x)

) d

dx

[
ecos(x)

]
.

Using the chain rule again,

dy

dx
= cos

(
ecos(x)

)
ecos(x) (− sin(x)) = − sin(x) cos

(
ecos(x)

)
ecos(x).

56. (3.4) Compute d
dxπ

x?

Solution:
πx =

(
elnπ

)x
= ex lnπ.

Hence, by the chain rule,
d

dx
πx = ln(π)ex lnπ = ln(π)πx.

57. (3.4) Compute d
dxe

cos(x)−x2

?
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Solution: By the chain rule,

d

dx
ecos(x)−x2

=ecos(x)−x2 d

dx

[
cos(x)− x2

]
=ecos(x)−x2

(− sin(x)− 2x)

=− ecos(x)−x2

(sin(x) + 2x) .

58. (3.5) Consider the curve defined by the equation x2

4 + y2

9 = 8.

(a) Find an expression for dy
dx?

Solution: We determine the derivative through implicit differentiation

2x

4
+

2y

9

dy

dx
= 0.

Rearranging, we find that
dy

dx
= −2x

2y

9

4
= −9x

4y
.

(b) Demonstrate that the point (4,−6) lies on this curve.

Solution: We substitute x = 4, y = −6 into the equation, and find that

x2

4
+
y2

9
=

42

4
+

(−6)2

9
= 4 + 4 = 8.

Since (4,−6) satisfies the curve equation, it must lie on the curve.

(c) Find the equation of the tangent line at the point (4,−6)?

Solution: The gradient of the tangent line is equal to the derivative dy
dx at this point. That is,

the gradient is

m = −9

4

4

−6
=

3

2
.

Using the point-slope formula for a line, the tangent has equation

y + 6 =
3

2
(x− 4) .

Rearranging this equation, we find that the tangent has equation

y =
3

2
x− 12

59. (3.5) Find dy
dx when x2 cos(y) = ey + ln(x).
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Solution: We differentiate implicitly, using the product rule on the left hand side, so

2x cos(y)− x2 sin(y)
dy

dx
= ey

dy

dx
+

1

x
.

This means that
dy

dx

(
−ey − x2 sin(y)

)
=

1

x
− 2x cos(y),

and therefore
dy

dx
= −x

−1 − 2x cos(y)

ey + x2 sin(y)
.

60. (3.5) Compute dy
dx by implicit differentiation, when x2y + ex+y = −230.

Solution: We differentiate implicitly, finding that

d

dx

[
x2y
]

+
d

dx

[
ex+y

]
= 0.

We use the product rule on the first term, and the chain rule on the second term, and find that

2xy + x2 dy

dx
+ ex+y

(
1 +

dy

dx

)
= 0.

This means that
dy

dx

(
x2 + ex+y

)
= −2xy − ex+y,

and therefore
dy

dx
= −2xy + ex+y

x2 + ex+y
.

61. (3.6) Let g(z) = cos(z), over the domain [−π, 0].

(a) Briefly explain why g on this domain is invertible.

Solution: This is because cos is one-to-one over the domain [−π, 0]. You can see this through
sketching the graph of cos(x) over this domain: any horizontal line intersects at most once.

(b) Let h(x) = g−1(x) be the inverse function. What is the range of h?

Solution: The range of h is the domain of g. This is [−π, 0].

(c) Demonstrate using implicit differentiation that h′(x) = − 1
sin(h(x)) .

Solution: Write y = h(x). Taking cos of both sides, we find that cos(y) = cos(h(x)). Since
h is an inverse of g, and g is equal to cos over its domain, it must be that cos(h(x)) = x. We
thus find that cos(y) = x. By implicit differentiation,

− sin(y)
dy

dx
= 1,
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and therefore dy
dx = − 1

sin(y) . Since y = h(x), we find that

h′(x) =
dy

dx
= − 1

sin (h(x))
.

(d) Using a trigonometric identity, show that h′(x) = − 1√
1−x2

.

Solution: Using Pythagoras’ Theorem, sin (h(x)) =

√
1− cos (h(x))

2
. Now cos (h(x)) = x,

since h is the inverse of g, and g is equal to cos over its domain. This means that

h′(x) =
dy

dx
= − 1√

1− x2
.

62. (3.6) Compute d
dx tan−1

(
x3
)
?

Solution: By the chain rule,

d

dx
tan−1

(
x3
)

=
1

1 + (x3)2
· d

dx

(
x3
)
.

We thus find that
d

dx
tan−1

(
x3
)

=
3x2

1 + x6
.

63. (3.6) Compute d
dx

[
sin−1(x)

1+x2

]
?

Solution: Using the quotient rule,

d

dx

[
sin−1(x)

1 + x2

]
=

(1 + x2) d
dx sin−1(x)− 2x sin−1(x)

(1 + x2)2

=
(
1 + x2

)−1 1√
1− x2

− 2x sin−1(x)

(1 + x2)2

=
1

(1 + x2)
√

1− x2
− 2x sin−1(x)

(1 + x2)2
.

64. (3.7) Derive the natural logarithm derivative identity (ln(x))′ = 1
x , by performing implicit differentiation

of ln−1(y) = ey = x.

Solution: The natural log is defined as the inverse of the exponential: ln(x) = y ⇐⇒ ey = x. We
implicitly differentiate y with the latter expression:

d

dx
ey(x) =

d

dx
x
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yielding
eyy′ = 1.

Solving for y′ and using the fact that ey = x:

y′ =
1

ey
=

1

x
.

65. (3.7) Compute the derivatives of the following functions involving logarithms

(a) f(x) = ln(x2 + 1)

Solution: f is a composition of ln and x2 + 1, so the chain rule is required:

d

dx
ln(x2 + 1) =

1

x2 + 1

d

dx

[
x2 + 1

]
=

2x

x2 + 1
.

(b) f(x) = x log10(x)

Solution: f is a product of log10 and x, so the product rule is required:

d

dx
[x log10(x)] = log10(x) + x

1

ln(10)x
= log10(x) +

1

ln(10)
.

(c) f(x) = ln(ln(x)), x > 1

Solution: f is a composition of two log functions so the chain rule must be used:

d

dx
ln(ln(x)) =

1

ln(x)

d

dx
ln(x) =

1

x ln(x)
.

(d) f(x) = tan−1(ln(x))

Solution: f is a composition of inverse tan and log so the chain rule must be used:

d

dx
tan−1(ln(x)) =

1

1 + (ln(x))2

d

dx
ln(x) =

1

x (1 + (ln(x))2)
.

66. (3.9) Find the linear approximation function to the following functions at the specified points x = a.

(a) f(x) = tan−1(x), x = 0.

Solution: f(0) = 0, f ′(x) = 1
1+x2 , f ′(0) = 1.

f(x) ≈ 0 + 1(x− 0) = x.

(b) f(x) = 1
1+x2 , x = −1.
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Solution: f(−1) = 1/2, f ′(x) = −2x
(1+x2)2 , f ′(−1) = 2

4 = 1
2 .

f(x) ≈ 1

2
+

1

2
(x+ 1) =

x

2
+ 1.

67. (3.9) Consider the equation for an ellipse: 1 = x2 + 1
4y

2.

(a) Verify that the parametric functions x(θ) = cos(θ) and y(θ) = 2 sin(θ) satisfy the ellipse equation
for all angles θ.

Solution: ”Verifying” means substituting x(θ) and y(θ) into the ellipse equation and simpli-
fying until you can state facts from trigonometry that are true for any θ value you choose:
Note,

x(θ)2 +
1

4
y(θ)2 = cos2(θ) +

1

4
(2 sin(θ))2 = cos2(θ) + sin2(θ).

The well-known pythagorean identity states that cos2(θ) + sin2(θ) = 1 for any θ-value, so the
ellipse equation is satisfied by the given parametric equations.

(b) Find a linear approximation in the x-y plane to the elliptic curve at the x-y point defined by θ = π/4.

Solution: At θ = π/4, x =
√

2/2 and y =
√

2. One can solve the equation for y to find a
function of x, then take the derivative to find the slope of the linear approximation, or one can
use implicit differentiation to find the slope. Either approach will work, but here we will use
implicit differentiation:

0 =
d

dx
1 =

d

dx

[
x2 + 1

4y
2
]

= 2x+
1

2
yy′.

Solving for y′, we get

y′ =
−2x

1
2y

= −4x

y
.

Evaluating the expression at x =
√

2/2 and y =
√

2, results in

y′ = −4
√

2/2√
2

= −2.

So, the linear approximation is

y(x) =
√

2− 2(x−
√

2/2).

68. (3.9) Suppose you know the following facts about the function f(x):

(i) f is differentiable everywhere,

(ii) f(2) = 2,

(iii) f ′(2) = −3.

Give your best estimate of the value of f(x) at x = 2.2.
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Solution: The best estimate given the known facts is given by the linear approximation:

f(x) ≈ f(2) + f ′(2)(x− 2) = 2− 3(x− 2),

so
f(2.2) ≈ 2− 3(.2) = 1.4

69. (3.9) Use the linear approximation of f(x) =
√
x to estimate the value of

√
99.

Solution: We know that f(100) =
√

100 = 10 is a known point nearby x = 99. Also,

f ′(x) =
1

2
√
x
,

so,

f(99) ≈ 10 +
1

20
(99− 100) = 10− 1

20
= 10− 0.05 = 9.95 ≈

√
99.

Note, the ten-decimal-point value is
√

99 = 9.949874371066199. The linear approximation is accu-
rate to the first two digits.

70. (3.9) Use the small-angle approximations of sine and cosine to estimate the value of tan(0.1).

Solution:

tan(0.1) =
sin(0.1)

cos(0.1)
≈ 0.1

1
= 0.1.

71. (4.1) An electrical circuit contains two variable-resistance resistors in series, with resistances R1 and R2

given in Ω. It is known that the total resistance R may be expressed as

1

R
=

1

R1
+

1

R2
.

The first resistance R1 is equal to 4
3 Ω, and is decreasing at a rate of 4 Ω

h . The second resistance R2 is

equal to 4 Ω and is increasing at a rate of 8 Ω
h .

(a) What is the total resistance R?

Solution: We first evaluate R.

1

R
=

3

4

1

Ω
+

1

4

1

Ω
= 1

1

Ω
.

This means that R = 1 Ω.

(b) What is the rate of change of R in Ω
h ?

Solution: By the Chain Rule,

− 1

R2

dR

dt
= − 1

R2
1

dR1

dt
− 1

R2
2

dR2

dt
.
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Substituting in the values for R, R1 and R2,

dR

dt
=

9

16

dR1

dt
+

1

16

dR2

dt
= −9 · 4

16
+

8

16
= −7

4
.

This means that the total resistance is decreasing at a rate of 7
4

Ω
h .

72. (4.2) Let f(x) = x
1
3 (x− 1)2. Identify the critical numbers of f .

Solution: The critical numbers are where f ′ = 0, or the derivative doesn’t exist. Differentiating,

f ′(x) =
1

3x
2
3

(x− 1)2 + 2(x− 1)x
1
3 = x

1
3 (x− 1)

(
x− 1

3x
+ 2

)
.

Since |f ′(x)| → ∞ as x→ 0, the derivative does not exist at x = 0, so x = 0 is a critical number.
The derivative is zero when either x− 1 = 0, in which case x = 1, or

x− 1

3x
+ 2 = 0,

in which case x = 1
7 .

In summary, the critical numbers 0, 1 and 1
7 .

73. (4.2) Let f(x) = cos(x) + 1 − x. Find the absolute maximum and absolute minimum values of f over
the interval [−π, 2π].

Solution: We first identify the local maxima and minima through differentiating. We find that

f ′(x) = − sin(x)− 1.

Over the interval, f ′(x) = 0 when x = −π2 and x = 3π
2 .

Evaluating the function at these points, we find that f
(
− π

2

)
= 1 + π

2 and f
(

3π
2

)
= 1− 3π

2 .
At the ends of the interval, f(−π) = π, and f(2π) = 2− 2π.
Of these four values, the biggest is π, so the absolute maximum is π.
The smallest is 2− 2π, so the absolute minimum is 2− 2π.

74. (4.3) Let f(x) = 2
3x

3 − 3
2x

2 − 2x+ 10.

(a) Find the extreme points of f . Identify which of these are local maxima and which are local minima,
and explain your answer.

Solution: Differentiating,

f ′(x) = 2x2 − 3x− 2 = (x− 2)(2x+ 1).

Since f is differentiable everywhere, its extreme values are only where its derivative is zero.
These points are 2 and − 1

2 .
There are two ways you can determine whether these extreme values are maxima or minima.
The first method is to check the second derivative. The second derivative is

f ′′(x) = 4x− 3.
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Since f ′′ > 0 at x = 2, this is a local minimum. Since f ′′ < 0 at x = − 1
2 , this is a local

maximum.
The other method is to look at the signs of f ′ either side of the extreme value. It can be checked
that f ′ > 0 for x > 2, and f ′(0) = −2 < 0. This means that x = 2 is a local minimum. Also
f ′(−1) = 3, and since f ′(0) < 0, this means that x = − 1

2 is a local maximum.

(b) Find the intervals over which f is increasing, and the intervals where f is decreasing.

Solution: f is increasing over the interval (2,∞), because x = 2 is a local minimum. f is
decreasing over the interval (−1/2, 2), because this interval has a local maximum on the left
and a local minimum on the right. f is increasing over the interval (−∞,−1/2), since this
interval has a local maximum on the right.

(c) Find any inflection points, and intervals where f is concave upwards, and intervals where f is
concave downwards.

Solution: Inflection points can only occur when f ′′ = 0. The only point where f ′′ = 0 is
x = 3

4 . This is an inflection point because f ′′ < 0 for x < 3
4 , and f ′′ > 0 for x > 3

4 .
The function is concave upwards on the interval ( 3

4 ,∞), and it is concave downwards over the
interval (−∞, 3

4 ).

(d) Sketch the curve.

Solution:

−2 2

−10

−5

5

10

x

y

75. (4.5) Identify the indeterminate form and compute the limit.

lim
x→3

x− 3

ln(4− x)

Solution: The indeterminate form is ” 0
0” and it is

lim
x→3

x− 3

ln(4− x)

l′H
= lim

x→3

1

− 1
4−x

= lim
x→3
−(4− x) = −1
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76. (4.5) Identify the indeterminate form and compute the limit.

lim
x→∞

ex

ln(x)

Solution: The indeterminate form is ”∞∞” and it is

lim
x→∞

ex

ln(x)

l′H
= lim

x→∞

ex

1
x

= lim
x→∞

xex =∞

77. (4.5) Identify the indeterminate form and compute the limit.

lim
x→π

2
−

(x− π

2
) tan(x)

Solution: The indeterminate form is ”0 · ∞” and it is

lim
x→π

2
−

(x− π

2
) tan(x) = lim

x→π
2
−

(x− π
2 ) sin(x)

cos(x)

l′H
= lim

x→π
2
−

sin(x) + (x− π
2 ) cos(x)

− sin(x)
= −1

78. (4.5) Identify the indeterminate form and compute the limit.

lim
x→−2

(
1 +

2

x

)x+2

Solution: The indeterminate form is ”00” and applying ln to the limit gives

lim
x→−2

ln

((
1 +

2

x

)x+2
)

= lim
x→−2

(x+ 2) ln

(
1 +

2

x

)
= lim
x→−2

ln
(
1 + 2

x

)
1

x+2

l′H
= lim

x→−2

1
1+ 2

x

(
− 2
x2

)
− 1

(x+2)2

= lim
x→−2

(x+ 2)22(
1 + 2

x

)
x2

= lim
x→−2

2(x+ 2)2

x(x+ 2)
= lim
x→−2

2(x+ 2)

x
= 0

Reversing the ln gives

lim
x→−2

(
1 +

2

x

)x+2

= e0 = 1

79. (4.5) Identify the indeterminate form and compute the limit.

lim
x→0+

(1 + sin(2x))
1
x
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Solution: The indeterminate form is ”1∞” and applying ln to the limit gives

lim
x→0+

ln
(

(1 + sin(2x))
1
x

)
= lim
x→0+

1

x
ln (1 + sin(2x)) = lim

x→0+

ln (1 + sin(2x))

x

l′H
= lim

x→0+

1
1+sin(2x)2 cos(2x)

1
= lim
x→0+

2 cos(2x)

1 + sin(2x)
= 2

Reversing the ln gives

lim
x→0+

(1 + sin(2x))
1
x = e2

80. (4.5) Identify the indeterminate form and compute the limit.

lim
x→∞

(
x2 + 4

x

) 1
ln(x)

Solution: The indeterminate form is ”∞0” and applying ln to the limit gives

lim
x→∞

ln

((
x2 + 4

x

) 1
ln(x)

)
= lim
x→∞

ln
(
x2+4
x

)
ln(x)

l′H
= lim

x→∞

x
x2+4

2x2−(x2+4)
x2

1
x

= lim
x→∞

x2 − 4

x2 + 4
= lim
x→∞

1− 4
x2

1 + 4
x2

= 1

Reversing the ln gives

lim
x→∞

(
x2 + 4

x

) 1
ln(x)

= e1 = e

81. (4.5) Identify the indeterminate form and compute the limit.

lim
x→0+

(
1

x2
− 1

tan(x)

)

Solution: The indeterminate form is ”∞−∞” and it is

lim
x→0+

(
1

x2
− 1

tan(x)

)
= lim
x→0+

sin(x)− x2 cos(x)

x2 sin(x)

l′H
= lim

x→0+

cos(x)− 2x cos(x) + x2 sin(x)

2x sin(x) + x2 cos(x)
=∞

82. (4.5) Identify the indeterminate form and compute the limit.

lim
x→∞

(ln(x+ 1)− ln(ln(x)))
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Solution: The indeterminate form is ”∞−∞” and it is

lim
x→∞

(ln(x+ 1)− ln(ln(x))) = lim
x→∞

ln

(
x+ 1

ln(x)

)
= ln

(
lim
x→∞

x+ 1

ln(x)

)
l′H
= ln

(
lim
x→∞

1
1
x

)
= ln

(
lim
x→∞

x
)

=∞

83. (4.5) Identify the indeterminate form and compute the limit.

lim
x→0

sin(x)2

x ln(1− x)

Solution: The indeterminate form is ” 0
0” and it is

lim
x→0

sin(x)2

x ln(1− x)

l′H
= lim

x→0

2 sin(x) cos(x)

− x
1−x + ln(1− x)

= lim
x→0

2 sin(x) cos(x)(1− x)

−x+ (1− x) ln(1− x)

The indeterminate form is ” 0
0” and it is

lim
x→0

2 sin(x) cos(x)(1− x)

−x+ (1− x) ln(1− x)

l′H
= lim

x→0

2
(
cos(x)2(1− x)− sin(x)2(1− x)− sin(x) cos(x)

)
−1− ln(1− x)− 1

=− 1

84. (4.6) A canned soup firm wants to redesign their 1 l size cans, so that they minimize the materials used.
They want to give it the shape of a cylinder. Find the dimensions of the new can.

(a) Assign symbols to the relative quantities. Which quantity is to be optimized? Which quantities are
variables?

Solution: Let r be the radius and h the height of the can. Let S be the surface and V = 1 l
the volume. S is to be minimized and r and h are variables.

h

r

(b) Find the objective function, that is a function for the to be optimized quantity.

Solution: S = 2πr2 + 2πrh

(c) Find a constraint equation, that is an equation relating all the variable quantities, such that the
objective function only depends on one variable quantity.
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Solution: The volume is constant and

V = πr2h h =
V

πr2
S = 2πr2 +

2V

r
0 < r

(d) Optimize the objective function.

Solution:

S′(r) = 4πr − 2V

r2
=

4π

r2

(
r3 − V

2π

)
So r = 3

√
V
2π is the critical point. It is the minimum, since S(r)→∞ for r →∞ or r → 0.

(e) Relate your solution to the original question.

Solution: The surface of the can is minimized for r = 3

√
V
2π ≈ 0.276 dm and h = 3

√
4V
π ≈

2.205 dm.

85. (4.6) Find two numbers a, b such that a2 + b2 = 25 and the sum is maximal.

Solution: The sum S = a+ b is to be maximized. The constraint function a2 + b2 = 25 gives

b =
√

25− a2 S(a) = a+
√

25− a2 − 5 ≤ a ≤ 5

Now maximizing S(a):

S′(a) = 1 +
−2a

2
√

25− a2
=

√
25− a2 − a√

25− a2
a2 = 25− a2 a =

5√
2

Thus a = 5√
2

is the critical point. It is a maximum, since

S(−5) = −5 S(5) = 5 S(
5√
2

) =
10√

2
> 5

Thus a = 5√
2

= b maximize the sum.

86. (4.7) Find an algorithm to approximate 4
√

12.

(a) Find a polynomial function with integer coefficients, for which 4
√

12 is a root.

Solution: 4
√

12 is a root of f(x) = x4 − 12.

(b) Give the iteration formula and an initial approximation.

Solution:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x4
n − 12

4x3
n

=
3x4

n + 12

4x3
n

Initial guesses could be x1 = 1 or x1 = 2. Not possible are negative numbers, since they
converge to − 4

√
12 and 0, since the tangent line at x = 0 is horizontal.
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87. (4.7) Explain, why Newton’s method does not work for finding a root of f(x) = 2x3 − 3x2 − 12x + 18,
if the initial approximation is x1 = 2.

Solution:
f ′(x) = 6x2 − 6x− 12 = 6(x2 − x− 2) = 6(x− 2)(x+ 1)

So f ′(x1) = 0. Thus the linear approximation at x = 2 does not intersect the x-axis and Newton’s
method does not work.

88. (4.7) Use Newton’s method to approximate the positive root of f(x) = x2 − 7.

(a) Give the iteration formula.

Solution:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − 7

2xn
=
x2
n + 7

2xn

(b) Perform two iterations using the initial approximation x1 = 1.

Solution:

x1 = 1 x2 =
1 + 7

2
= 4 x3 =

16 + 7

8
=

23

8
= 2.875

89. (4.8) Verify, that (x2 − 2x+ 2)ex is an antiderivative of x2ex.

Solution:
d

dx
(x2 − 2x+ 2)ex = (2x− 2)ex + (x2 − 2x+ 2)ex = x2ex

Thus (x2 − 2x+ 2)ex is an antiderivative of x2ex.

90. (4.8) Find an antiderivative of the following functions.

(a) f(x) = 3x4 + 7

Solution:

F (x) =
3

5
x5 + 7x

(b) f(x) = sin(x)

Solution:
F (x) = − cos(x)

(c) f(x) =
1

x
+ ex

Solution:
F (x) = ln |x|+ ex
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91. (4.8) Find the most general antiderivative of the following functions.

(a) f(x) = 3x2 − ex

Solution:
F (x) = x3 − ex + C

(b) f(x) = cos(x)− 1

x2

Solution:

F (x) = sin(x) +
1

x

92. (4.8) Consider the function f(x) = 2 sin(x) cos(x).

(a) Verify, that F1(x) = − cos(x)2 is an antiderivative of f(x).

Solution:
F ′1(x) = −2 cos(x)(− sin(x)) = 2 cos(x) sin(x) = f(x)

(b) Verify, that F2(x) = sin(x)2 is an antiderivative of f(x).

Solution:
F ′2(x) = 2 sin(x) cos(x) = f(x)

(c) How is it possible, that F1(x) and F2(x) are both antiderivatives of f(x).

Solution: It is
F1(x) = − cos(x)2 = sin(x)2 − 1 = F2(x)− 1

and thus they differ by a constant. The antiderivative is only unique up to a constant.

93. (5.1) Using summation ”sigma” notation, write down the sum S of sequential integers 3 through 12 in
the following ways:

(a) Using an index that starts at n = 3 and ends at n = 12. Specify exactly your indexed set A.

Solution: S =
∑12
n=3 n, A = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} = {n}12

n=3.

(b) Using an index that starts at n = 0 and ends at n = 9.Specify exactly your indexed set A.

Solution: S =
∑9
n=0(3 + n), A = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} = {(n+ 3)}9n=0.

94. (5.1) Using summation “sigma” notation, write down the sum S of sequential multiples of 5 starting at
25 through 50. Write out the index set A = {an} and the explicit sum “

∑
” indicating starting and

ending indices n. There are many correct ways to index and sum.
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Solution:
A = {25, 30, 35, 40, 45, 50} = {5n+ 20}6n=1

S =

6∑
n=1

(5n+ 20)

95. (5.1) With three rectangles, approximate the area under f(x) = sin(x)2 between x = 0 and x = 3π
2 using

right endpoints.

Solution: With three rectangles

∆x =
3π
2 − 0

3
=
π

2
xi =

π

2
+ i

π

2

Therefore

A ≈ R3 = ∆xf(x1) + ∆xf(x2) + ∆xf(x3) =
π

2

(
sin(π/2)2 + sin(π)2 + sin(3π/2)2

)
=
π

2

(
12 + 0 + (−1)2

)
= π

96. (5.1) Consider the given function f(x) and the rectangles approximating its area on [−3, 3]. Give an
expression for the area of the rectangles in the figure below. Use

∑
notation to express it.

−3.5−3−2.5−2−1.5−1−0.5 0.5 1 1.5 2 2.5 3 3.5

2

4

x

y

Solution:

Area =
1

2
f(−2.5) +

1

2
f(−2) + · · ·+ 1

2
f(3) =

12∑
i=1

1

2
f(−3 +

i

2
)

97. (5.1) Consider the given function f(x) = −(x− 2)2 + 4 on [1, 4]. Find an estimate of the area under the
graph of f on [1, 4] by using four rectangles. Use the left endpoints as sample points.
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(a) Draw the rectangles.

1 2 3 4

2

4

x

y

(b) Find the area of the rectangles.

Solution:

∆x =
4− 1

4
=

3

4
= 0.75

Area =
3

4
f(1) +

3

4
f(1.75) +

3

4
f(2.5) +

3

4
f(3.25)

=
3

4

(
(−1 + 4) +

(
− 1

16
+ 4

)
+

(
−1

4
+ 4

)
+

(
−25

16
+ 4

))
=

3

4

(
15− 15

8

)
=

3 · 15 · 7
4 · 8

=
315

32
= 9.84375

98. (5.1) The table below gives velocity of a particle at 4 time points. Using this data, approximate the
distance travelled by the particle using the left endpoints.

time (s) 0 1 2 3

velocity ( ft
s ) 1 1 3 4

Solution: Using left endpoints:

d = (t1 − t0)v0 + (t2 − t1)v1 + (t3 − t2)v2 = 1 · 1 + 1 · 1 + 1 · 3 = 5 ft

99. (5.2) Consider

∫ 3

1

2− x
4

dx

(a) Express this integral as the limit of a sum. You can pick your favourite sample points, e.g. right
endpoints.
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Solution: If we use the right endpoints and ∆x = 2
n , then xi = 1 + i 2

n and∫ 3

1

2− x
4

dx = lim
n→∞

n∑
i=1

2−
(
1 + i 2

n

)
4

2

n

= lim
n→∞

1

2n

n∑
i=1

(
1− i 2

n

)

(b) Evaluate the integral using a geometric argument. (Hint: What does the function look like?)

Solution: The function is a line that passes through zero at 2. Since x = 2 is the midpoint

between domain of integration,
∫ 3

1
2−x

4 dx = 0.

100. (5.2) For each of the following Riemann Sums, identify the definite integral it converges to (but don’t
evaluate the integral). In addition, identify whether the left-endpoint, right-endpoint or midpoint Rie-
mann Sum has been used.

(a) lim
n→∞

12

n

n−1∑
j=0

e2xj
(
xj − x2

j

)
, where xj = −4 + 12j

n .

Solution: This converges to ∫ 8

−4

e2x(x− x2)dx.

The integral starts at −4 because x0 = −4, and the intervals are spaced 12
n apart (since

xj+1 − xj = 12
n ), which means that the end point of the integration must be −4 + 12 = 8. The

left endpoint rule has been used because the first evaluation is at x0 = −4 (i.e. the left of the
first interval), and the last evaluation is at xn−1 = 8− 12

n , which is the left of the last interval.

(b) lim
n→∞

9

n

n∑
j=1

(
3xj − x4

j

)
cos(xj), where xj = −3 + 9j

n .

Solution: This converges to ∫ 6

−3

(3x− x4) cos(x)dx.

The integral starts at −3 because x1 = −3 + 9
n → −3 as n→∞, and the intervals are spaced

9
n apart (since xj+1 − xj = 9

n ), which means that the end point of the integration must be
−3+9 = 6. The right endpoint rule has been used because the first evaluation is at x1 = −3+ 9

n
(i.e. the right of the first interval), and the last evaluation is at xn = 6, which is the right of
the last interval.

(c) lim
n→∞

10

n

n−1∑
j=0

(
3xj − x4

j

)
log(xj), where xj = 3 + 10j+5

n .

Solution: This converges to ∫ 13

3

(3x− x4) log(x)dx.
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The integral starts at 3 because x0 → 3 as n→∞, and the intervals are spaced 10
n apart (since

xj+1 − xj = 10
n ), which means that the end point of the integration must be 3 + 10 = 13. The

midpoint rule has been used because for example the first evaluation is halfway between 3 and
3 + 10

n , i.e 3 + 5
n .

101. (5.2) Write down the Riemann sum for the integral
∫ 4

2
x2dx using a right-endpoint-rule with equally-

spaced partitions ∆xn.

Solution: Let N be the number of partitions. The interval [2, 4] is broken up by the index set
{xn = 2 + 2

N n}
N
n=1. Each interval has width ∆xn = 2

N . The approximate sum is

N∑
n=1

f(xn)∆xn =

N∑
n=1

(2 + 2
N n)2 2

N .

The Riemann sum is then

lim
N→∞

N∑
n=1

(2 + 2
N n)2 2

N =

∫ 4

2

x2dx.

102. (5.3) Compute the following definite integrals:

(a)

∫ 4

2

(x2 − x) dx

Solution:

∫ 4

2

(x2 − x) dx =
1

3
x3 − 1

2
x2
∣∣4
2

=
64

3
− 8−

(
8

3
− 2

)
=

56

3
− 6 =

38

3

(b)

∫ 1

−1

(ex − 3) dx

Solution:

∫ 1

−1

(ex − 3) dx = e− 1

e
− 6

(c)

∫ e

1

1

x
dx

Solution:

∫ e

1

1

x
dx = ln(e)− ln(1) = 1

103. (5.3) Consider the function

f(x) =

{
x, x ≤ 1

x2, x > 1
.

(a) Verify the function is continuous everywhere, particularly at x = 1.

Solution: Polynomials are continuous everywhere, and note x and x2 share the same value at
x = 1, so f is continuous everywhere.
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(b) Find an antiderivative F−(x) of f(x) at points x ≤ 1.

Solution: F−(x) = 1
2x

2

(c) Find an antiderivative F+(x) of f(x) at points x > 1.

Solution: F+(x) = 1
3x

3

(d) Compute

∫ 1

0

f(x)dx.

Solution:
∫ 1

0
f(x)dx =

[
1
2x

2
]1
0

= 1
2

(e) Compute

∫ 2

1

f(x)dx.

Solution:
∫ 2

1
f(x)dx =

[
1
3x

3
]2
1

= 1
3 (8− 1) = 7

3

(f) Explain why

∫ 2

0

f(x)dx exists, but is not equal to F+(2)− F−(0).

Solution: F+(2)− F−(0) = (1
3x

3)
∣∣
2
− ( 1

2x
2)
∣∣
0

= 8
3 ; however, the antiderivative of f over the

interval [0, 2] is not equal to either of the antiderivatives on the subintervals [0, 1], or [1, 2]. The
area under the curve is∫ 2

0

f(x)dx =

∫ 1

0

f(x)dx+

∫ 2

1

f(x)dx =
1

2
+

7

3
=

17

6
.

104. (5.3) Consider the function

f(x) =


0 x < 1

2 1 ≤ x ≤ 3

1/2 3 < x ≤ 7

5 7 ≤ x

Compute the following integrals.

(a)

∫ 3

−1

f(x)dx

Solution:

∫ 3

−1

f(x)dx = 2 · (3− 1) = 4

(b)

∫ 9

0

f(x)dx

Solution:

∫ 9

0

f(x)dx = (1− 0) · 0 + (3− 1) · 2 + (7− 3) · 1

2
+ (9− 7) · 5 = 16
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(c)

∫ 3/2

1/2

f(x)dx

Solution:

∫ 3/2

1/2

f(x)dx =

(
3

2
− 1

)
· 2 = 1

105. Consider the function f(x) defined on [−1, 3]

f(x) =

{
−1, x ≤ 1

x− 2, 1 < x ≤ 3
.

Use the FTC part 1 to find an antiderivative F (x) of f(x) defined on all of [−1, 3].

Solution: The function f(x) is piecewise defined, so its antiderivative will be piecewise defined as
well. Given −1 ≤ x ≤ 1, then

F (x) =

∫ x

−1

f(t)dt =

∫ x

−1

(−1)dt = [−t]x−1 = −x− 1.

for x > 1, then

F (x) =

∫ x

−1

f(t)dt =

∫ 1

−1

(−1)dt+

∫ x

1

(t−2)dt = −2+[ 1
2 t

2−2t]x1 = −2+ 1
2x

2−2x−( 1
2−2) = 1

2x
2−2x− 1

2 .

An antiderivative defined for all of [−1, 3] is then

F (x) =

{
−x− 1, x ≤ 1
1
2x

2 − 2x− 1
2 , 1 < x ≤ 3

.

106. Compute the derivative of

g(x) =

∫ x

3

(2t2 − 3t+ 1)dt.

Solution: By the FTC pt. 1: g′(x) = (2x2 − 3x+ 1).

107. (5.5) Evaluate the following integrals using substitution.

(a)

∫
(12− 4x)

51
dx

Solution:

u = 12− 4x
du

dx
= −4 − 1

4
du = dx∫

(12− 4x)
51

dx =

∫
u51

(
−1

4

)
du = −1

4
· 1

52
u52 + C = − 1

208
(12− 4x)

52
+ C
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(b)

∫
x2e2x3

dx

Solution:

u = 2x3 du

dx
= 6x2 1

6
du = x2dx∫

x2e2x3

dx =

∫
eu

1

6
du =

1

6
eu + C =

1

6
e2x3

+ C

(c)

∫
sin(x) cos(x)4dx

Solution:

u = cos(x)
du

dx
= − sin(x) − du = sin(x)dx∫

sin(x) cos(x)4dx =

∫
u4(−1)du = −1

5
u5 + C = −1

5
cos(x)5 + C

108. (5.5) Decide for the following integrals whether the given substituion is successful. If yes, then solve
the integral using this substituion.

(a)

∫ (
ecos(x) + sin(x)

)
dx with u = cos(x)

Solution: The substitution is not successful, since the du
dx = − sin(x) is not a factor of the

integrand.

(b)

∫
1 + ln(x)

x
dx with u = ln(x)

Solution: The substitution is successfully

u = ln(x)
du

dx
=

1

x
du =

1

x
dx∫

1 + ln(x)

x
dx =

∫
(1 + u) du = u+

1

2
u2 + C = ln(x) +

1

2
ln(x)2 + c

(c)

∫
sin(x)

cos(x)
dx with u = sin(x)

Solution: The substitution is not successful, since du
dx = cos(x) is not a factor of the integrand

(it is in the denominator, but it would need to be in the numerator).

109. (5.5) Given ∫ 4

0

f(x)dx = 15

Find the following integrals.

(a)

∫ 2

0

xf(x2)dx
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Solution: Choose u = x2, then du
dx = 2x and 1

2du = xdx. So it is∫ 2

0

xf(x2)dx =

∫ u(2)

u(0)

f(u)
1

2
du =

1

2

∫ 4

0

f(u)du =
15

2

(b)

∫ 0

−4

f(−x)dx

Solution: Choose u = −x, then du
dx = −1 and −du = dx. So it is∫ 0

−4

f(−x)dx =

∫ 0

4

f(u)(−1)du =

∫ 4

0

f(u)du = 15

(c)

∫ 2

−2

f(x+ 2)dx

Solution: Choose u = x+ 2, then du
dx = 1 and du = dx. So it is∫ 2

−2

f(x+ 2)dx =

∫ 4

0

f(u)du = 15

110. (5.5) Evaluate the following integrals using substitution.

(a)

∫ π2

0

sin(
√
x)√
x

dx

Solution:

u =
√
x

du

dx
=

1

2
√
x

2du =
1√
x

dx

∫ π2

0

sin(
√
x)√
x

dx =

∫ π

0

sin(u)2du = −2 cos(u)|π0 = 4

(b)

∫ 1

−1

ex

1 + ex
dx

Solution:

u = 1 + ex
du

dx
= ex du = exdx∫ 1

−1

ex

1 + ex
dx =

∫ 1+e

1+ 1
e

1

u
du = ln |u||1+e

1+ 1
e

= ln |1 + e| − ln

∣∣∣∣1 +
1

e

∣∣∣∣
111. (5.5) Decide for the following integrals whether the given substitution is helpful for solving the integral.

(a)

∫
xexdx with u = x
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Solution: This substitution is not helpful, since du = dx and the integral does not change.

(b)

∫
ex

x
dx with x = ln(u)

Solution: The substitution is not helpful, since dx = 1
udu and so∫

ex

x
dx =

∫
u

ln(u)

1

u
du =

∫
1

ln(u)
du

This integral is not easier than the original one.

112. (5.6) Evaluate the following integrals using integration by parts.

(a)

∫
xexdx

Solution:
f(x) = x f ′(x) = 1 g′(x) = ex g(x) = ex∫

xexdx = xex −
∫

1exdx = xex − ex + C

(b)

∫
x ln(x)dx

Solution:

f(x) = ln(x) f ′(x) =
1

x
g′(x) = x g(x) =

1

2
x2∫

x ln(x)dx =
1

2
x2 ln(x)−

∫
1

2
x2 1

x
dx =

1

2
x2 ln(x)− 1

4
x2 + C

113. (5.6) Evaluate the following integrals using integration by parts multiple times.

(a)

∫
x2 sin(x)dx

Solution:
f(x) = x2 f ′(x) = 2x g′(x) = sin(x) g(x) = − cos(x)∫

x2 sin(x)dx = −x2 cos(x)−
∫

2x(− cos(x))dx = −x2 cos(x) + 2

∫
x cos(x)dx

f(x) = x f ′(x) = 1 g′(x) = cos(x) g(x) = sin(x)∫
x2 sin(x)dx = −x2 cos(x)+2x sin(x)−2

∫
1 sin(x)dx = −x2 cos(x)+2x sin(x)+2 cos(x)+C

(b)

∫
1 · ln(x)2dx

Solution:

f(x) = ln(x)2 f ′(x) = 2 ln(x)
1

x
g′(x) = 1 g(x) = x
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∫
1 · ln(x)2dx = x ln(x)2 −

∫
x2 ln(x)

1

x
dx = x ln(x)2 − 2

∫
ln(x)dx

f(x) = ln(x) f ′(x) =
1

x
g′(x) = 1 g(x) = x∫

1 · ln(x)2dx = x ln(x)2 − 2x ln(x) + 2

∫
x

1

x
dx = x ln(x)2 − 2x ln(x) + 2x+ C

114. (5.6) Decide for the following integrals whether the given setup for integration by parts works and helps
to solve the integral.

(a)

∫
x ln(x)dx with f(x) = x and g′(x) = ln(x)

Solution: Integration by parts does not work, since finding g(x) is too hard.

(b)

∫
x cos(x)dx with f(x) = cos(x) and g′(x) = x

Solution: Integration by parts works, but it gives∫
x cos(x)dx =

1

2
x2 cos(x)−

∫
1

2
x2(− sin(x))dx

and the resulting integral is more complicated than the integral at the beginning.

115. (5.7) Use algebraic transformations to evaluate the following integrals.

(a)

∫
1

x2 + 16
dx

Solution: ∫
1

x2 + 16
dx =

∫
1

16
(
x2

16 + 1
)dx =

1

16

∫
1(

x
4

)2
+ 1

dx

Use substitution

u =
x

4

du

dx
=

1

4
4du = dx

1

16

∫
1(

x
4

)2
+ 1

dx =
1

16

∫
1

u2 + 1
4du =

1

4
arctan(u) + C =

1

4
arctan

(x
4

)
+ C

(b)

∫
1

x2 − 4x+ 8
dx

Solution: x2 − 4x+ 8 does not have any real solutions, since the quadratic formula gives

x = 2±
√

4− 8 = 2±
√
−4

So complete the square

x2 − 4x+ 8 = x2 − 4x+ 4 + 4 = (x− 2)2 + 4

This gives ∫
1

x2 − 4x+ 8
dx =

∫
1

(x− 2)2 + 4
dx
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Using substitution
u = x− 2 du = dx∫

1

(x− 2)2 + 4
dx =

∫
1

u2 + 4
du =

∫
1

4
(
u2

4 + 1
)du =

1

4

∫
1(

u
2

)2
+ 1

du

Using substitution

v =
u

2

dv

du
=

1

2
2dv = du

1

4

∫
1(

u
2

)2
+ 1

du =
1

4

∫
1

v2 + 1
2dv =

1

2
arctan(v) + C =

1

2
arctan

(u
2

)
+ C

=
1

2
arctan

(
x− 2

2

)
+ C

(c)

∫
4x+ 3

2x− 1
dx

Solution:∫
4x+ 3

2x− 1
dx =

∫
4x− 2 + 5

2x− 1
dx =

∫ (
4x− 2

2x− 1
+

5

2x− 1

)
dx =

∫ (
2 +

5

2x− 1

)
dx

Use substitution on the second summand

u = 2x− 1
du

dx
= 2

1

2
du = dx

∫ (
2 +

5

2x− 1

)
dx =

∫
2dx+

∫
5

u

1

2
du = 2x+

5

2
ln |u|+ C = 2x+

5

2
ln |2x− 1|+ C

116. (5.7) Evaluate the following integrals using partial fractions.

(a)

∫
x+ 10

(x+ 3)(x− 4)
dx

Solution:

x+ 10

(x+ 3)(x− 4)
=

A

x+ 3
+

B

x− 4
x+ 10 = A(x− 4) +B(x+ 3) = Ax− 4A+Bx+ 3B

1 = A+B 10 = −4A+ 3B 14 = 7B B = 2 A = −1∫
x+ 10

(x+ 3)(x− 4)
dx =

∫ (
− 1

x+ 3
+

2

x− 4

)
dx = − ln |x+ 3|+ 2 ln |x− 4|+ C

(b)

∫
5x2 + 21x+ 1

(x+ 2)2(x− 1)
dx

Solution:
5x2 + 21x+ 1

(x+ 2)2(x− 1)
=

A

x+ 2
+

B

(x+ 2)2
+

C

x− 1

5x2+21x+1 = A(x+2)(x−1)+B(x−1)+C(x+2)2 = Ax2+Ax−2A+Bx−B+Cx2+4Cx+4C
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1 = −2A−B + 4C 21 = A+B + 4C 5 = A+ C

A = 5−C 1 = −10+2C−B+4C 11 = −B+6C 21 = 5−C+B+4C 16 = B+3C

27 = 9C C = 3 A = 2 B = 16− 3C = 7∫
5x2 + 21x+ 1

(x+ 2)2(x− 1)
dx =

∫ (
2

x+ 2
+

7

(x+ 2)2
+

3

x− 1

)
dx = 2 ln |x+2|− 7

x+ 2
+3 ln |x−1|+C

(c)

∫
6x2 − 12x− 4

(x2 + 4)(x− 1)
dx

Solution:
6x2 − 12x− 4

(x2 + 4)(x− 1)
=
Ax+B

x2 + 4
+

C

x− 1

6x2 − 12x− 4 = (Ax+B)(x− 1) + C(x2 + 4) = Ax2 −Ax+Bx−B + Cx2 + 4C

−4 = −B + 4C − 12 = −A+B 6 = A+ C

B = 4 + 4C − 12 = −A+ 4 + 4C − 16 = −A+ 4C

−10 = 5C C = −2 B = −4 A = 6− C = 8∫
6x2 − 12x− 4

(x2 + 4)(x− 1)
dx =

∫ (
8x

x2 + 4
− 4

x2 + 4
− 2

x− 1

)
dx

For the first summand use substitution

u = x2 + 4
du

dx
= 2x du = 2xdx∫

8x

x2 + 4
dx =

∫
4

u
du = 4 ln |u|+ C = 4 ln |x2 + 4|+ C

For the second summand
4

x2 + 4
=

4

4
(
x2

4 + 1
) =

1(
x
2

)2
+ 1

Use substitution

v =
x

2

dv

dx
=

1

2
2dv = dx∫

4

x2 + 4
dx =

∫
1

v2 + 1
2dv = 2 arctan(v) + C = 2 arctan

(x
2

)
+ C

So it is∫ (
8x

x2 + 4
− 4

x2 + 4
− 2

x− 1

)
dx = 4 ln |x2 + 4| − 2 arctan

(x
2

)
− 2 ln |x− 1|+ C

117. (5.7) Evaluate the following integrals using trigonometric identities.

(a)

∫
cos(x)3dx

Solution: ∫
cos(x)3dx =

∫
cos(x)

(
1− sin(x)2

)
dx
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Use substitution

u = sin(x)
du

dx
= cos(x) du = cos(x)dx∫

cos(x)
(
1− sin(x)2

)
dx =

∫ (
1− u2

)
du = u− 1

3
u3 + C = sin(x)− 1

3
sin(x)3 + C

(b)

∫
cos(x)4dx

Solution:∫
cos(x)4dx =

∫ (
1

2
(1 + cos(2x))

)2

dx =
1

4

∫ (
1 + 2 cos(2x) + cos(2x)2

)
dx

=
1

4

∫ (
1 + 2 cos(2x) +

1

2
(1 + cos(4x))

)
dx

=
1

4

(
x+ sin(2x) +

1

2
x+

1

8
sin(4x)

)
+ C

(c)

∫
sin(x)4 cos(x)3dx

Solution: ∫
sin(x)4 cos(x)3dx =

∫
sin(x)4

(
1− sin(x)2

)
cos(x)dx

Use substitution

u = sin(x)
du

dx
= cos(x) du = cos(x)dx∫

sin(x)4
(
1− sin(x)2

)
cos(x)dx =

∫
u4
(
1− u2

)
du =

1

5
u5−1

7
u7+C =

1

5
sin(x)5−1

7
sin(x)7+C

118. (5.7) Evaluate the following integrals using trigonometric substitution.

(a)

∫ √
16− x2dx

Solution: Use substitution

x = 4 sin(u)
dx

du
= 4 cos(u) dx = 4 cos(u)du∫ √

16− x2dx =

∫ √
16− 16 sin(u)24 cos(u)du = 16

∫
cos(u)2du

Using a trigonometric identity

16

∫
cos(u)2du = 16

∫
1

2
(1 + cos(2u)) du = 8

(
u+

1

2
sin(2u)

)
+ C

Now to resubstitute

u = arcsin
(x

4

)
sin(2u) = 2 sin(u) cos(u) = 2

x

4

√
1−

(x
4

)2
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8

(
u+

1

2
sin(2u)

)
+ C =

1

8

(
arcsin

(x
4

)
+
x

4

√
1−

(x
4

)2
)

+ C

(b)

∫
1√

1− x2
dx

Solution: Use substitution

x = sin(u)
dx

du
= cos(u) dx = cos(u)du∫

1√
1− x2

dx =

∫
1

cos(u)
cos(u)du =

∫
1du = u+ C = arcsin(x) + C

119. Compute the following improper integral, if it exists, by computing as a limit of proper integral∫ ∞
0

1

1 + x2
dx.

Solution: First set the integral up as a limit of proper integral:∫ ∞
0

1

1 + x2
dx = lim

t→∞

∫ t

0

1

1 + x2
dx.

Compute the proper integral and then take the limit:

lim
t→∞

∫ t

0

1

1 + x2
dx = lim

t→∞

[
tan−1(x)

]t
0

= lim
t→∞

(
tan−1(t)− tan−1(0)

)
= lim
t→∞

tan−1(t) = π
2 .

120. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ ∞
0

1

1 + x
dx.

Solution: First set the integral up as a limit of proper integrals:∫ ∞
0

1

1 + x
dx = lim

t→∞

∫ t

0

1

1 + x
dx.

Compute the proper integral and then take the limit:

lim
t→∞

∫ t

0

1

1 + x
dx = lim

t→∞

[
ln(x+ 1)

]t
0

= lim
t→∞

(
ln(t+ 1)− ln(1)

)
= lim
t→∞

ln(t+ 1) =∞.

The limit diverges to infinity, so the value of the improper integral does not exist.
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121. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ 9

1

1
3
√
x− 1

dx.

Solution: The integral is improper because the integrand is not defined at x = 1, therefore, we set
it up as a limit of proper integrals where it is defined:∫ 9

1

1
3
√
x− 1

dx = lim
t→1+

∫ 9

t

1
3
√
x− 1

dx.

Compute the proper integral and then take the limit:

lim
t→1+

∫ 9

t

(x− 1)−
1
3 dx = lim

t→1+

[
3
2 (x− 1)

2
3
]9
t

= 3
2 (8)

2
3 − lim

t→1+

3
2 (t− 1)

2
3

= 12
2 = 6.

122. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ ∞
−∞

2xdx.

Solution: Set it up as a limit of proper integrals:

= lim
w→−∞

∫ 0

w

2xdx+ lim
t→∞

∫ t

0

2xdx,

where
= lim
w→−∞

[x2]0w + lim
t→∞

[x2]t0,

evaluating
= lim
w→−∞

−w2 + lim
t→∞

t2 = −∞+∞ = DNE.

Neither of the above two integral limits exist (are finite) so the full improper integral does not exist
either. Note, ∞ − ∞ is not defined, nor is this situation analogous to a L’Hospital’s-type limit
because each of the limits must be computed (and exist) independently of the other, which is why
it’s important to use distinct limit variables t and w to emphasize that the two limits cannot be
yoked together in a way that makes them appear to cancel each other.

123. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ ∞
−∞

x

1 + x2
dx.
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Solution: Set it up as a limit of proper integrals:

= lim
w→−∞

∫ 0

w

x

1 + x2
dx+ lim

t→∞

∫ t

0

x

1 + x2
dx

The indefinite integral has a solution via u-subtitution

u = 1 + x2,
du

2x
= dx,∫

x

1 + x2
dx =

1

2

∫
1

u
du

=
1

2
ln(1 + x2) + C.

Using the above result the proper integrals become∫ ∞
−∞

x

1 + x2
dx = lim

w→−∞
[ 1
2 ln(1 + x2)]0w + lim

t→∞
[ 1
2 ln(1 + x2)]t0

= lim
t→∞

( 1
2 ln(1 + t2))− lim

w→−∞
( 1

2 ln(1 + w2)) =∞−∞ = DNE!

Neither of the two integral limits exist (are finite) so the full improper integral does not exist either.
Note,∞−∞ is not defined, nor is this situation analogous to a L’Hospital’s-type limit because each
of the limits must be computed (and exist) independently of the other, which is why it’s important
to use distinct limit variables t and w to emphasize that the two limits cannot be yoked together in
a way that makes them appear to cancel each other.

124. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ ∞
−∞

xe−x
2

dx.

Solution: Set it up as a limit of proper integrals:

= lim
w→−∞

∫ 0

w

xe−x
2

dx+ lim
t→∞

∫ t

0

xe−x
2

dx

The integral
∫
xe−x

2

dx can be solved with u-substitution:

u = −x2, −du
2x

= dx

=⇒
∫
xe−x

2

dx = −1

2

∫
eudu = −1

2
e−x

2

+ C.

So, ∫ ∞
−∞

xe−x
2

dx = lim
w→−∞

[−1

2
e−x

2

]0w + lim
t→∞

[−1

2
e−x

2

]t0

and

= −1

2
+

1

2
+ lim
w→−∞

1

2
e−w

2

− lim
t→∞

1

2
e−t

2

= 0 + 0− 0 = 0.

Each limit exists independently so the improper integral exists.
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125. Compute the following improper integral, if it exists, by computing as a limit of proper integrals∫ ∞
−∞

e−|x| sin(x)dx.

Solution: Set it up as a limit of proper integrals:

= lim
w→−∞

∫ 0

w

e−|x| sin(x)dx+ lim
t→∞

∫ t

0

e−|x| sin(x)dx

On the x < 0 domain, the integral can be re-expressed by substituting u = −x, −du = dx:

lim
w→−∞

∫ 0

w

e−|x| sin(x)dx = − lim
w→−∞

∫ 0

−w
e−u sin(u)du = − lim

w→∞

∫ w

0

e−u sin(u)du.

So, the improper integral can be expressed as∫ ∞
−∞

e−|x| sin(x)dx = lim
t→∞

∫ t

0

e−x sin(x)dx− lim
w→∞

∫ w

0

e−u sin(u)du.

The above two integral terms appear to be equal but opposite sign and it’s tempting to conclude
that the improper integral is zero, but remember that the two integral limits must exist in order for
the two terms to cancel. So, we must verify that the limit

lim
t→∞

∫ t

0

e−x sin(x)dx

exists first, before we conclude the improper integral is zero. Computing the antiderivative involves
two iterations of integration by parts∫

e−x sin(x)dx = −e−x sin(x) +

∫
e−x cos(x)dx

= −e−x sin(x)− e−x cos(x)−
∫
e−x sin(x)dx

=⇒ 2

∫
e−x sin(x)dx = −e−x sin(x)− e−x cos(x)

=⇒
∫
e−x sin(x)dx = −1

2
e−x(sin(x) + cos(x)).

So,

lim
t→∞

∫ t

0

e−x sin(x)dx =
1

2
+ lim
t→∞

−1

2
e−t(sin(t) + cos(t))

=
1

2
− 0 =

1

2
.

The limit exists, so ∫ ∞
−∞

e−|x| sin(x)dx =
1

2
− 1

2
= 0.
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