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5. Mapping Regions on the Surface of the Earth.

The Differential Geometry of Curves and Surfaces is no longer offered as
a regular undergraduate course. I hope to give a sampling from this
intriguing and important subject.

Let’s assume that the surface of the earth is a unit sphere

S2 = {X ∈ R3 : |X |2 = 1}

We imagine trying to draw a map of a region D ⊂ S2. The map is a
smooth function

F : D → E 2

to the Euclidean plane that preserves as much information about the
geometry of D as is possible.

We shall see that it is impossible to make a map that preserves all
distances, b an isometric mapping that preserves lengths of all curves.
However, we may construct a mapping that preserves angles, be a
conformal mapping or preserves areas, be an equiareal mapping.



6. Maps of Surfaces.

Figure 1: Mapping X : D → E2 of a Region

We seek a mapping
of the region with as
little distortion as
possible.



7. Curvilinear Coordinates for Sphere.

The sphere can locally be given curvilinear coordinates, also called a
parameterization. Let Ω ⊂ R2 be open. Let

X : Ω → S2

be a smooth function. Then we want D = X (Ω) to be a piece of the
sphere. At each point P ∈ D we can identify tangent vectors to the
surface. If P = X (a) some a ∈ Ω, then

Xi (a) =
∂X

∂ui
(a)

for i = 1, 2 are vectors in R3 tangent to the coordinate curves. To avoid
singularities at P, we shall assume that all X1(P)and X2(P) are linearly
independent vectors. Then the tangent plane to the surface at P is

TPM = span{X1(P),X2(P)}.



8. Curvilinear Coordinates.

Figure 2: Coordinate chart X : Ω → D on sphere.

The sphere may be
calculated in lots of
different coordinate
charts. The
geometric quantities
such as length, angle
and curvature should
not depend on the
choice of chart.



9. Example of Local Coordinates: Spherical Coordinates.

Spherical coordinates give one example of local coordinates.
(u1, u2) ∈ Ω = (−π

2 , π
2 )× (−π, π) give the latitude and longitude in

radians
X (u1, u2) = (cos u1 cos u2, cos u1 sin u2, sin u1).

where D = {(x , y , z) ∈ S2 : y 6= 0 if x ≤ 0}.
The tangent vectors are thus

X1(u
1, u2) =

(
− sin u1 cos u2, − sin u1 sin u2, cos u1

)
,

X2(u
1, u2) =

(
− cos u1 sin u2, cos u1 cos u2, 0

) (1)

which are linearly independent for every (u1, u2) ∈ Ω.



10. Mapping the Earth.

A mapping of a region D ⊂ S2 is a function f : D → E2 to the Euclidean
plane.

If D is a coordinate chart given by X : Ω → D, then each point is the
image X (u1, u2) ∈ D of some point (u1, u2) ∈ Ω ⊂ R2. Thus the
mapping is given by

f (X (u)) = f (X (u1, u2)) = (v1(u1, v1), v2(u1, v1)) = v(u)

where v : Ω → E2 is a function. Usually we assume v is a
diffeomeorphism.



11. Orthographic Projection.

Figure 3: Orthographic Projection.

Orthographic projection is the view
of the earth from infinity
f : (x , y , z) → (x , z) from the y > 0
hemisphere. In terms of spherical
coordinates X (u1, u2) =

(cos u1 cos u2, cos u1 sin u2, sin u1),

On 0 < u2 < π the map is

v(u) = (cos u1 cos u2, sin u1).



12. Lengths of Curves.

The Euclidean structure of R3, the usual dot product, gives a way to
measure lengths and angles of vectors. If V = (v1, v2, v3) then its length

|V | =
√

v2
1 + v2

2 + v2
3 =

√
V • V

If W = (w1,w2,w3) then the angle α = ∠(V ,W ) is given by

cos α =
V •W

|V | |W |
.

If γ : [a, b] → M ⊂ R3 is a continuously differentiable curve, its length is

L(γ) =

∫ b

a
|γ̇(t)| dt.



13. Induced Riemannian Metric.

If the curve is confined to a coordinate patch γ([a, b]) ⊂ X (Ω) ⊂ S2,
then we may factor through the coordinate chart. There are continuously
differentiable u(t) = (u1(t), u2(t)) ∈ Ω so that

γ(t) = X (u1(t), u2(t)) for all t ∈ [a, b].

Then the tangent vector may be written

γ̇(t) = X1(u1(t), u2(t)) u̇1(t) + X2(u1(t), u2(t)) u̇2(t)

so its length is

|γ̇|2 = X1 • X1 u̇2
1 + 2X1 • X2 u̇1u̇2 + X2 • X2 u̇2

2

For i , j = 1, 2 the Riemannian Metric is is given by the matrix function

gij(u) = Xi (u) • Xj(u)

Evidently, gij(u) is a smoothly varying, symmetric and positive definite.



14. Induced Riemannian Metric. -

Thus |γ̇(t)|2 =
2∑

i=1

2∑
j=1

gij(u(t)) u̇i (t) u̇j(t).

The length of the curve on the surface is determined by its velocity in the
coordinate patch u̇(t) and the metric gij(u).
A vector field on the surface is also determined by functions in U using
the basis. Thus if V and W are tangent vector fields, they may be
written

V (u) = v1(u)X1(u)+v2(u)X2(u), W (u) = w1(u)X1(u)+w2(u)X2(u)

The R3 dot product can also be expressed by the metric. Thus

V •W = 〈V ,W 〉 =
2∑

i ,j=1

gij v i w j .

where 〈·, ·〉 is an inner product on TpM that varies smoothly on M. This
Riemannian metric is also called the First Fundamental Form.



15. Angle and Area via the Riemannian Metric.

If V and W are nonvanishing vector fields on M then their angle
α = ∠(V ,W ) satisfies

cos α =
〈V ,W 〉
|V | |V |

which depends on coordinates of the vector fields and the metric.
If ω ⊂ Ω is a piecewise smooth subdomain in the patch, the area if
X (ω) ⊂ S2 is also determined by the metric

A(X (ω)) =

∫
ω
|X1 × X2| du1 du2 =

∫
ω

√
det(gij(u)) du1 du2

since if β = ∠(X1,X2) then

|X1 × X2|2 = sin2 β |X1|2 |X2|2 = (1− cos2 β) |X1|2 |X2|2

= |X1|2 |X2|2 − (X1 • X2)
2 = g11g22 − g2

12.



16. Example: Spherical Coordinates.

Tangent vectors are

X1(u
1, u2) =

(
− sin u1 cos u2, − sin u1 sin u2, cos u1

)
,

X2(u
1, u2) =

(
− cos u1 sin u2, cos u1 cos u2, 0

)
Thus the metric components are gij = Xi • Xj so,(

g11 g12

g21 g22

)
=

(
1 0
0 cos2 u1

)
so

det(gij) = cos2 u1

which gives the usual formula for area

A(X (ω)) =

∫
ω

cos u1 du1 du2.



17. Abstract Riemannian Surfaces.

We can consider the geometry on the surface and forget that the surface
sits in three space. This is called the intrinsic geometry. Measurements
like lengths and angles, computed form the Riemannian metric, are
intrinsic quantities. If we endow an abstract two dimensional space M2

with a Riemannian Metric, a smoothly varying inner product on each
tangent space that is consistently defined on overlapping coordinate
patches, the resulting object is an Abstract Riemannian Surface, or two
dimensional Riemannian Manifold.

Mapping Question: Can the spherical surface be locally mapped to the
Euclidean plane in such a way as to preserve the lengths of curves? What
about an abstract Riemannian surface? What are the obstructions to
doing this?



18. Euclidean Space.

Let’s view the Euclidean plane E2 as an abstract Riemannian surface.
The space is R2 and the metric is

gij(v) = δij =

{
1, if i = j ;

0, if i 6= j .

The coordinate chart is Y (v1, u2) = (v1, u2) and the tangent space is
spanned by Yi = (1, 0) and Y2 = (0, 1). The inner product of two vector
fields

A(v) = a1(v)Y1(v) + a2(v)Y2(v),

B(v) = b1(v)Y1(v) + b2(v)Y2(v)

is

A • B = 〈A,B〉 =
2∑

i ,j=1

δij ai bj = a1b1 + a2b2,

the usual Euclidean inner product of the plane.



19. Tensorial Nature of the Metric.

What is obvious when we think of the spherical surface S2 ⊂ R3 is that
regardless of what coordinate system we use in the neighborhood of
P ∈ S2, the inner product between two vectors, or the area of a domain
or the length of the curve is the same because they are expressions of the
spherical values. e.g., if we compute vectors and metrics in the Ω or the
Ω̃ coordinate systems near P, the inner product of the vector fields

2∑
i ,j=1

gij(u) ai (u) bj(u) = 〈A,B〉 =
2∑

i ,j=1

g̃ij(ũ) ãi (ũ) b̃j(ũ).

is the same where points ũ = ũ(u) correspond on S2.

This also holds true in an abstract Riemanniam manifold. That is
because the vector fields and the first fundamental form are tensors.
Their transformations under change of coordinates exactly compensate to
keep geometric quantities invariant under change of coordinate.



20. Change of Coordinates.

Figure 4: Change of coordinate ũ(u) = X̃−1(X (u)).

The geometric
quantities in one
chart may be
computed in terms of
the quantities in
another.



21. Tensorial Nature of the Metric.-

Suppose both X : Ω → S2 and X̃ : Ω̃ → S2 are two local coordinates and
P ∈ D = X (Ω) ∩ X̃ (Ω̃). Then the change of variables is called a
transition function. For u ∈ X−1(D) we have

X (u) = X̃ (ũ)

so ũ(u) = (X̃ )−1(X (u)) whence by the chain rule

∂X

∂up
=

2∑
i=1

∂X̃

∂ũi

∂ũi

∂up

The formula for the tilde coordinates of a vector follow

A =
2∑

p=1

ap ∂X

∂up
=

2∑
p=1

2∑
i=1

ap ∂X̃

∂ũi

∂ũi

∂up
=

2∑
i=1

 2∑
p=1

ap ∂ũi

∂up

 ∂X̃

∂ũi

yielding

ãi =
2∑

p=1

ap ∂ũi

∂up
.



22. Tensorial Nature of the Metric.- -

Similarly,

g̃ij(ũ) =
2∑

k,`=1

gk`(u(ũ))
∂uk

∂ũi

∂u`

∂ũj

The Jacobian matrices satisfy
2∑

j=1

∂ũi

∂uj

∂uj

∂ũk
= δi

k since they are inverses,

we can check that we get the same inner product in any coordinate
system

〈A,B〉 =
2∑

i ,j=1

g̃ij(ũ(u)) ãi (ũ(u)) b̃j(ũ(u))

=
2∑

i ,j ,k,`,p,q=1

gk`
∂uk

∂ũi

∂u`

∂ũj
ap ∂ũi

∂up
bq ∂ũj

∂uq

=
2∑

p,q=1

gpq(u) ap(u) bq(u).



23. Intrinsic Geometry.

Geometric quantities determined by the metric are called intrinsic. A
map of the earth is a local diffeomorphism from the sphere to the
Euclidean plane which is a local isometry that preserves lengths of
curves, hence all intrinsic quantities. Equivalently, the Riemannian
metrics are preserved. Thus if

f : (S2, g) → (E2, δ)

is an isometry, then f is a local diffeomorphism and f ∗g̃ = δ which means
that for every vector fields A,B on S2 and at every point P = X (u) ∈ S2,

〈A(u),B(u))〉S2 = 〈dfu(A(u)), dfu(B(u))〉E2

where dfu : TX (u)S2 → Tf (X (u))E2 is the differential.

WARNING: funtional analysts and geometric group theorists define
“isometry” in a slightly different way.



24. Differential of a Map

If we denote X : Ω → S2 as a local coordinate of the sphere, D = X (Ω)
and v = (v1, v2) ∈ E2 the standard Eclidean coordinate, then a map

f : D → E2

may be written v = f (X (u)) = (v1(u1, u2), v2(u1, u2)). If u(t) ∈ Ω is a
curve whose velocity vector in S2 is

A =
2∑

i=1

dui

dt
Xi

then df (A) is the velocity vector of f (X (u(t)), or

df (A) =
2∑

i ,j=1

dui

dt

∂v j

∂ui
Yj



25. Equation for an Isometry.

〈A(u),B(u))〉S2 = 〈dfu(A(u)), dfu(B(u))〉E2

becomes for all tangent vectors A =
∑2

i=1 aiXi and B =
∑2

j=1 aiXi ,

2∑
i ,j=1

gij(u) ai bj =
2∑

p,q=1

δpq

(
2∑

i=1

ai ∂vp

∂ui

) 2∑
j=1

bj ∂vq

∂uj


As ai and bj were arbitrary, this reduces to the system for all i , j ,

gij(u) =
2∑

p=1

∂vp

∂uj

∂vp

∂uj
= Vi • Vj

for the unknown map V = (v1(u1, u2), v2(u1, u2)).



26. Necessary Conditins for the Mapping of the Earth.

gij = Vi • Vj (2)

The assumption that a system of PDE’s is soluble leads to conditions on
the data, known as compatibility conditions. Differentiating

∂gij

∂uk
= Vik • Vj + Vi • Vjk

where Vij =
∂2V

∂ui ∂uj
. Cyclically permuting the indices and adding leaves

∂gik

∂uj
+

∂gkj

∂ui
−

∂gij

∂uk
= Vij • Vk + Vi • Vkj + Vki • Vj

+ Vk • Vji − Vik • Vj − Vi • Vjk

= 2Vij • Vk

since Vij = Vji .



27. Compatibility Conditions.

gij = Vi • Vj implies that the map V (u) has

0 6= det(gij) = g11g22 − g2
12

= [V1 • V1] [V2 • V2]− [V1 • V2]
2

=

[(
∂v1

∂u1

)2

+

(
∂v2

∂u1

)2
][(

∂v1

∂u2

)2

+

(
∂v2

∂u2

)2
]

−
[
∂v1

∂u1

∂v1

∂u2
+

∂v2

∂u1

∂v2

∂u2

]2

=

(
∂v1

∂u1

∂v2

∂u2
− ∂v2

∂u1

∂v1

∂u2

)2

=

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣2
nonvanishing Jacobian which means that the vectors Vi are linearly
independent.



28. Compatibility Conditions.

Thus the second derivative vectors may be written in terms of the basis

Vij =
2∑

`=1

Γ`
ij V`

where Γk
ij(u) are coefficients depending on the second derivatives, called

the Christoffel Symbols. We have shown that

∂gik

∂uj
+

∂gkj

∂ui
−

∂gij

∂uk
= 2Vij • Vk = 2

2∑
`=1

Γ`
ij V` • Vk = 2

2∑
`=1

Γ`
ij g`k

Denoting the inverse matrix by gkm = gkm, we have multiplying both
sides and summing

1

2

2∑
k=1

gmk

{
∂gik

∂uj
+

∂gkj

∂ui
−

∂gij

∂uk

}
= Γm

ij (3)

Thus the Christoffel symbols are determined by the metric and its first
derivatives.



29. Compatibility Condition.

Using the fact that third derivatives commute, we obtain finally

0 = Vijk − Vikj =
2∑

`=1

{
∂

∂uk

(
Γ`

ijV`

)
− ∂

∂uj

(
Γ`

ikV`

)}

=
2∑

m=1

{
∂Γm

ij

∂uk
−

∂Γm
ik

∂uj
+

2∑
`=1

(
Γ`

ijΓ
m
`k − Γ`

ikΓm
`j

)}
Vm

=
2∑

m=1

R i
m

jkVm

The functions R i
m

jk are called the components of the Riemannian
Curvature Tensor. Obviously R i

m
jk = −R i

m
kj .

This computation says that if there is an isometric mapping of the sphere
to the plane, then the Riemannian Curvature of the metric must vanish.



30. Riemannian Curvature is a Tensor.

Riemannian curvature is a tensor. This means that in any other
curvilinear coordinate system, there is a transformation formula for the
curvature tensor involving only multiplication by Jacobian matrices. It
turns out that in a new coordinate system ũ(u), the curvature is

R̃ i
m

jk =
2∑

p,q,r ,s=1

Rp
q
rs

∂up

∂ũi

∂ũm

∂uq

∂ur

∂ũj

∂us

∂ũk

Thus the curvature is nonvanishing in any one coordinate system if and
only if it is nonvanishing in any other coordinate system.

If we put R i`jk =
∑2

m=1 gm`R i
m

jk then some coefficients are equal

det(gpq)K = R1212 = R2121 = −R1221 = −R2112

and all the rest are zero. The scalar K is called the Gaussian Curvature
of the surface. Thus curvature is called positive if K > 0.



31. Computation of Spherical Coordinates.

The position and tangent vectors are

X =

cos u1 cos u2

cos u1 sin u2

sin u1

X1 =

− sin u1 cos u2

− sin u1 sin u2

cos u1

X2 =

− cos u1 sin u2

cos u1 cos u2

0


The metric components gij and its inverse are(

g11 g12

g21 g22

)
=

(
1 0
0 cos2 u1

) (
g11 g12

g21 g22

)
=

(
1 0
0 sec2 u1

)
Hence

∂g22

∂u1
= −2 cos u1 sin u1 and

∂gij

∂uk
= 0 for all other i , j , k.



32. Christoffel Symbols of Spherical coordinates.

Christoffel symbols are Γm
ij = 1

2

∑2
k=1 gmk

{
∂gik

∂uj +
∂gkj

∂ui −
∂gij

∂uk

}
Γ1

11 =
1

2
g11

{
∂g11

∂u1
+

∂g11

∂u1
− ∂g11

∂u1

}
= 0

Γ1
12 = Γ1

21 =
1

2
g11

{
∂g11

∂u2
+

∂g12

∂u1
− ∂g12

∂u1

}
= 0

Γ1
22 =

1

2
g11

{
∂g21

∂u1
+

∂g12

∂u1
− ∂g22

∂u1

}
= cos u1 sin u1

Γ2
11 =

1

2
g22

{
∂g12

∂u1
+

∂g21

∂u1
− ∂g11

∂u2

}
= 0

Γ2
12 = Γ2

21 =
1

2
g22

{
∂g12

∂u2
+

∂g22

∂u1
− ∂g12

∂u2

}
= − tan u1

Γ2
22 =

1

2
g22

{
∂g22

∂u2
+

∂g22

∂u2
− ∂g22

∂u2

}
= 0



33. Curvature of Spherical Coordinates.

R i
m

jk =
∂Γm

ij

∂uk
−

∂Γm
ik

∂uj
+

2∑
`=1

(
Γ`

ijΓ
m
`k − Γ`

ikΓm
`j

)
R1

2
12 =

∂Γ2
11

∂u2
− ∂Γ2

12

∂u1
+

2∑
`=1

(
Γ`

11Γ
2
`2 − Γ`

12Γ
2
`1

)
= 0− ∂(− tan u1)

∂u1
+ 0− (− tan u1)2

= sec2 u1 − tan2 u1 = 1.

K det(gij) = K cos2 u1 = R1212 =
2∑

m=1

g2mR1
m

12 = cos2 u1 · 1

thus K = 1. The Gaussian Curvature of the sphere is identically one.

Since the curvature of the sphere does not vanish, it CANNOT BE
LOCALLY ISOMETRICALLY MAPPED TO THE EUCLIDEAN PLANE.



34. Flat Metrics can be Developed.

It turns out that the vanishing of curvature is sufficient for the existence
of a local isometric mapping of the surface to the Euclidean plane. Such
surfaces are called flat and a local isometric mapping is called a
development to the plane.

We are given a smooth metric gij , hence its Christoffel symbols Γk
ij , such

that the curvatures vanish identically R i
m

jk = 0. We seek an unknown
local nondegenerate mapping Z : Ω → E2 that preserves the metric. As
in higher order ODE’s, we introduce new unknown variables Yi that
correspond to the derivatives of Z , and extend the system of differential
equations. The resulting PDE is called a differential system.

∂
∂ui Z = Yi , (4)

∂
∂uj Yi =

2∑
k=1

Γijk Yk , (5)

Yi • Yj = gij (6)



35. Flat Metrics can be Developed. -

Z has 2 and Yi has 4 unknown functions. There 4 equations in (4), 8 in
(5) and 3 in (6). All together there are 6 unknown functions satisfying 15
equations. The system is overdetermined.

An overdetermined system may be solved locally if there are no
incompatibilities in the system. In this case, it amounts to checking
whether the cross partial derivatives are consistent in equations (4) and
(5) and the differentiated algebraic equations (6) are satisfied.
Checking cross partials of (4) we have

∂2 Z

∂uj∂ui
− ∂2 Z

∂ui∂uj
=

∂

∂uj
Yi −

∂

∂ui
Yj =

2∑
k=1

(
Γk

ij − Γk
ji

)
Yk = 0

because Γijk = Γjik .



36. Flat Metrics can be Developed. - -

Checking cross partials of (5) we have
∂2 Yi

∂uk∂uj
− ∂2 Yi

∂uj∂uk

=
∂

∂uk

(
2∑

`=1

Γ`
ijY`

)
− ∂

∂uj

(
2∑

`=1

Γ`
ikY`

)

=
2∑

m=1

(
∂

∂uk
Γm

ij −
∂

∂uj
Γm

ik

)
Ym +

2∑
`=1

(
Γ`

ij

∂Y`

∂uk
− Γ`

ik

∂Y`

∂uj

)

=
2∑

m=1

{
∂

∂uk
Γm

ij −
∂

∂uj
Γm

ik +
2∑

k=1

(
Γk

ijΓ
m
`k − Γk

jiΓ
m
kj

)}
Ym

=
2∑

m=1

R i
m

jkYm

using (5) and the assumption that R i
m

jk vanishes.



37. Flat Metrics can be Developed. - - -

Checking derivatives of (6), we find

∂

∂uk
(Yi • Yj) =

∂Yi

∂uk
• Yj + Yi •

∂Yj

∂uk

=

(
2∑

`=1

Γ`
ikY`

)
• Yj + Yi •

(
2∑

`=1

Γ`
jkY`

)

=
2∑

`=1

(
Γ`

ikg`j + Γ`
jkgi`

)
=

1

2

{
∂gij

∂uk
+

∂gjk

∂ui
− ∂gik

∂uj
+

∂gji

∂uk
+

∂gik

∂uj
−

∂gjk

∂ui

}
=

∂gij

∂uk

as desired. We used (3) and the definition of Christoffel symbols (5).

Thus all compatibility conditions for the differential system hold: it can
be solved locally to give a local isometry to Euclidean space.



38. Equiareal Maps.

Since the earth can’t be mapped isometrically, we try to find maps that
preserve some geometric feature. A map that preserves areas of regions is
called equiareal.

There are many equiareal mappings such as those found by Albers,
Collingnon and Gravé. Let us describe the projection of Lambert, which
preserves the longitude lines. We seek a mapping of the form

v1 = g(u1) v2 = u2.

where, say, we have taken (u1, u2) ∈ (−π
2 , π

2 )× (−π, π) to be the usual
spherical coordinates latitude and longitude in radians. Thus
g11 = 1,g12 = g21 = 0 and g22 = cos2 u1. Then the area forms must be
equal

det(gij)du1 du2 = cos2(u1)du1 du2 = dv1 dv2

=

∣∣∣∣∂(v1, v2)

∂(u1, u2)

∣∣∣∣ du1 du2 =
(
g ′(u1)

)2
du1 du2



39. Lambert Projection.

Figure 5: Lambert’s Equiareal Projection

The differential equation for the Lambert projection is

g ′(u1) = cos u1

which for g(0) = 0 has the solution

v1 = sin u1 v2 = u2.



40. Geometric Interpretation of Lambert Projection.

Figure 6: Projection from z-axis to Cylinder

Let
C = {(cos v2, sin v2, v1)}
be the circumscribed
cylinder, a wrapped up
Euclidean plane. For
each X (u1, u2) ∈ S2, let
the horizontal half line
passing through X and
the z-axis meets the
cylinder at V (u1, u2).
(u1, u2) 7→
(v1(u1, u2), v2(u1, u2)) is
the equiareal Lambert
Projection.



41. Sanson Projection.

Figure 7: Sanson’s Equiareal Projection

Sanson’s (1650) projection is given by

v1 = u1 v2 = u2 cos u1.

Then the pulled back area form equals the spherical area form

dv1 dv2 = du1 (−u2 sin u1 du1 + cos u1 du2) = cos u1 du1 du2



42. Bonne Projection.

Figure 8: Bonne Projection

Bonne’s Projection is
given
r = π

2 − u1

θ = u2 cos u1

u1−π
2

.

where (r , θ) are polar
coordinates of E2. The
pulled back area is thus
r dr dθ = (π

2 − u1) du1×
(?) du1+cos u1 du2

π
2
−u1

= cos u1 du1 du2.



43. Mollweide Projection.

Figure 9: Mollweide’s Equiareal Projection

The Mollweide equiareal projection is built of conics.



44. Conformal Maps.

The angle between the vectors A = a1X1 + a2X 2 and B = b1X1 + b2X 2

is computed by the formula

cos α =

∑2
i ,j=1 gija

i bj√∑2
i ,j=1 gijai aj

√∑2
i ,j=1 gijbi bj

Thus if another metric satisfies g̃ij = λgij where λ is a positive function,
then g̃ij computes the same angle as does gij since the λ cancels. Such
metrics are called conformal.
A mapping v : Ω → E2 is conformal if it induces a metric conformal to
the spherical metric. It means that there is a function λ such that

λ(u1, u2)gij(u
1, u2) =

2∑
k=1

∂vk

∂ui

∂vk

∂uj

There are many conformal maps given by Lagrange and Von der Mühll
and others.



45. Equations for Mercator’s Conformal Map.

Let us describe the projection of mercator, which preserves the longitude
lines. We seek a mapping of the form

v1 = g(u1) v2 = u2.

where, say, we have taken (u1, u2) ∈ (−π
2 , π

2 )× (−π, π) to be the usual
spherical coordinates latitude and longitude in radians. Thus
g11 = 1,g12 = g21 = 0 and g22 = cos2 u1.
We wish to find a λ(u1, u2) such that

λg11 = λ =

(
∂v1

∂u1

)2

+

(
∂v2

∂u1

)2

=
(
g ′(u1)

)2
λg12 = 0 =

∂v1

∂u1

∂v1

∂u2
+

∂v2

∂u1

∂v2

∂u2
= 0

λg22 = λ cos2 u1 =

(
∂v1

∂u2

)2

+

(
∂v2

∂u2

)2

= 1



46. Mercator Projection.

Figure 10: Mercator Projection

The third equation implies
λ = sec2 u1. thus, the
differential equation for the
Mercator projection is

g ′(u1) = sec u1

which for g(0) = 0 has the
solution
v1 = log

(
sec u1 + tan u1

)
= log tan

(
π
4 + u1

2

)
v2 = u2.



47. Mercator Projection.

Figure 11: Political Mercator Map

Gerhard Kremer, known as Mercator (1512-1594), first published a map
using his projection in 1569.



48. Stereographic Projection of the Sphere.

Figure 12: Stereographic
Projection. P = σ(u1, u2) is the
point on the sphere corresponding
to (u1, u2) ∈ R2.

This is another coordinate chart for the
unit sphere σ : R2 → S2

For the unit sphere S2 centered at the
origin, imagine a line through the south
pole Q and some other point P ∈ S2.
This line crosses the z = 0 plane at
some coordinate x = u1 and y = u2.
Then we can express P in terms of
(u1, u2). Thus σ : U = R2 → S2 − {Q}
is a coordinate chart for the sphere
called stereographic coordinates.
σ(u1, u2) =(

2u1

1+u2
1+u2

2
, 2u2

1+u2
1+u2

2
,

1−u2
1−u2

2

1+u2
1+u2

2

)



49. Stereographic Projection of the Sphere.-

The tangent vectors for stereographic projection are

σ1 =

(
2−2u2

1+2u2
2

(1+u2
1+u2

2)
2 ,− 4u1u2

(1+u2
1+u2

2)
2 ,− 4u1

(1+u2
1+u2

2)
2

)
,

σ2 =

(
− 4u1u2

(1+u2
1+u2

2)
2 ,

2+2u2
1−2u2

2

(1+u2
1+u2

2)
2 ,− 4u2

(1+u2
1+u2

2)
2

)
so that the metric satisfies

σ1 • σ1 =
4(

1 + u2
1 + u2

2

)2 , σ1 • σ2 = 0, σ2 • σ2 =
4(

1 + u2
1 + u2

2

)2
Thus stereographic coordinates already yield a conformal mapping
because gij = λ(u1, u2) δij is a scalar multiple of the Euclidean metric.



50. Stereographic Projection.

Figure 13: Stereographic Projection is Conformal

Stereographic
coordinates are given
by σ(u1, u2) =

2u1

1 + u2
1 + u2

2

2u2

1 + u2
1 + u2

2

1− u2
1 − u2

2

1 + u2
1 + u2

2





51. Seek Maps with Minimal Distortion.

Since the surface of the earth cannot be isometrically mapped to the
plane, the interesting mathematical question arises: what is the least
distortion mapping of a given region D ⊂ S2?

Let dS(P,Q) denote the geodesic distance between the points P and Q
of S2. This is equal to the length of the shorter great circle arc joining P
to Q. The Euclidean distance between two points V and W in the plane
will be denoted by dE (V ,W ).

Let D ⊂ S2 and f : D → E2 be a mapping The scale of map distortion
between two points P,Q ∈ D is defined to be the ratio

dE (f (P), f (Q))

dS(P,Q)

Ideally we want this to be constant but this may not be possible. If we
let σ1 to be the infimum of this ratio as P 6= Q vary through all points of
D and σ2 the supremum, then these are the best constants such that the
inequality holds for all P,Q ∈ D

σ1dS(P,Q) ≤ dE (f (P), f (Q)) ≤ σ2dS(P,Q)



52. Azimuthal Equidistant Projection.

Milnor defines logarithm of max to min scales

δ = log(σ2/σ1)

as the distortion of the mapping f of D.

Let Dα denote a spherical cap, the region bounded by a circle of the
sphere. Given a fixed point P0 ∈ S2 and 0 < α < π, the set of points
P ∈ S2 that are a geodesic distance

Dα(P0) = {P ∈ S2 : dS(P,P0) ≤ α}

Theorem (Milnor, 1969)

There is one, and up to similarity transformations of the plane, only one
minimum distotrtion map f : Dα(P0) → E2. It is given by the azimuthal
equidistant projection from P0 and has

δ = log(α/ sin α).



53. Azimuthal Equidistant Projection.

The azimuthal equidistant projection preserves distances from P0 and
angles at P0. If we let P0 = (0, 0, 1) be the north pole and write the
sphere in polar cooordinates

X (u1, u2) = (sin u1 cos u2, sin u1 sin u2, cos u1)

where u1 is the distance from the north pole and u2 the longitude. The
tangent vectors are

X1(u
1, u2) =

(
cos u1 cos u2, cos u1 sin u2, − sin u1

)
,

X2(u
1, u2) =

(
− sin u1 sin u2, sin u1 cos u2, 0

)
The metric is gij = Xi • Xj so

(
g11 g12

g21 g22

)
=

(
1 0
0 sin2 u1

)
The Azimuthal Equidistant Projection is polar coordinates of the plane

v1 = u1 cos u2, v2 = u1 sin u2



54. Azimuthal Equidistant Projection.

Figure 14: Azimuthal Equidistant Projection

The Azimuthal
Equidistant
Projection is polar
coordinates
u1 =distance from
pole and u2 =angle
at pole of a spherical
cap mapped to polar
coordinates
u1 =distance from
origin and u2 =angle
at origin in the plane.

v1 = u1 cos u2,
v2 = u1 sin u2



55. Distortion of a Map.

Lemma (1.)

The distortion δ of any map f : Dα(P0) → E2 satisfies δ ≥ log(α/ sin α).

Proof Part 1.

We may assume f has finite distortion. Hence the Lipschitz inequalities

σ1dS(P,Q) ≤ dE (f (P), f (Q)) ≤ σ2dS(P,Q)

hold. The upper one shows that f is continuous. The lower shows it is
one-to-one. Let Cα denote the bounding circle of Dα. Its image f (Cα) is
a simple closed curve in the plane.

First we show that every half-line emanating from f (P0) in E2 must
intersect f (Cα) at least once. By the Jordan Curve Theorem, the curve
cuts the plane into two disjoint components E2 − f (Cα) = E1 ∪ E2 where
one, E1, is bounded and must be the image of the interior of Dα and
contain f (P0). But the half lines are unbounded and cannot be entirely
contained in E1, thus must cross f (Cα), proving the first assertion.



56. Lower Estimate on Distortion.

Proof Part 2.

By the Lipschitz bound, f (Cα) has finite length

L ≤ 2πσ2 sin α. (7)

Since every point of Q0 ∈ Cα has geodesic distance dS(P0,Q0) = α, it
follows from the lower bound that every point

σ1α ≤ dE (f (P0), f (Q0)).

Thus the curve f (Cα) lies outside the disk D∗ centered at f (P0) and
radius σ1α.

Second we show that L ≥ 2πσ1α, with equality if and only if
f (Cα) = ∂D∗.



57. Lower Estimate on Distortion. -

Proof Part 3.

Cut f (Cα) by a line through the disk center f (P0) and choose two line
points A,B ∈ f (Cα) on opposite sides of D∗. Let γ be one of the two
arcs of f (Cα) from A to B. Using polar coordinates centered at P0, we
may assume that the arc γ is given by piecewise differentiable functions

ρ = ρ(t), θ = θ(t), for 0 ≤ t ≤ 1.

It follows from ρ ≥ σ1α that

L(γ) =

1∫
0

√
ρ̇2 + ρ2θ̇2 dt ≥

1∫
0

ρ|θ̇| dt ≥ σ1α

∣∣∣∣∣∣
1∫

0

θ̇ dt

∣∣∣∣∣∣ ≥ σ1απ.

Adding both arc lengths, we find L(γ) ≥ 2πσ1α.
If γ were not piecewise differentiable, the same length inequality could be
obtained by an approximation argument.



58. Lower Estimate on Distortion. - -

Proof Part 4.

Now suppose that L(γ) = απσ1. If any portion of γ is strictly outside
D∗, then a small subarc may be removed from γ, replaced by a straight
line segment outside D∗ with shorter length, which is impossible.
It follows that L(γ) = απσ1 implies that f (Cα) is the cull circle ∂D∗.

Combining with the second assertion with (7) we obtain

2πσ1α ≤ 2πσ2 sin α

from which it follows that
α

sin α
≤ σ2

σ1
.

and hence log(α/ sin α) ≤ δ.



59. Minimal Distortion Maps.

Lemma (2.)

Let f : Dα(P0) → E2 be a map with distortion δ = log(α/ sin α). Then f
is an azimuthal equidistant projection.

Proof Part 1.

We have already shown that if δ = log(α/ sin α) then f (Cα) is the circle
centered at f (P0) of radius σ1α = σ2 sin α and f (Dα) is the disk D∗

bounded by this circle.
Consider a point Q ∈ Dα. Construct a great circle arc from P0 through
Q to Q̄ ∈ Cα. If c = dS(P0,Q) is the geodesic distance, then
dS(Q, Q̄) = α− c and the distance to every other point on Cα is strictly
greater. By the Lipschitz bound, dE (f (P0, f (Q)) ≥ σ1c ,
dE (f (Q), f (Q̄)) ≥ σ1(c − α) and dE (f (Q), f (Q ′)) > σ1(c − α) for every
other Q ′ ∈ Cα − Q̄. These three conditions hold for exactly one point in
D∗, namely the point at distance σ1c on the line segment from f (P0) to
f (Q̄). Thus the map f is completely determined by what it does to the
points of Cα.



60. Minimal Distortion Maps. -

Proof Part 2.

It remains to show that the the circle Cα is carried to the circle f (Cα) by
a similarity transform that preserves angles between points. Cut Cα into
two arcs γ and γ′ such that

L(γ) + L(γ′) = L(Cα) = 2π sin α

By the Lipschitz inequality

L(f (γ)) ≤ σ2 L(γ), L(f (γ′)) ≤ σ2 L(γ′) (8)

But
L(f (γ)) + L(f (γ′)) = L(f (Cα)) = 2πσ2 sin α.

Hence the inequalities in (8) are equalities, proving the lemma.



61. Distortion of the Azimuthal Distance Projection.

Lemma (3.)

The azimuthal equidistant projection f : Dα → E2 has distortion
δ = log(α/ sin α).

Proof. Part 1.

For simplicity, put f (P0) = 0 and use ρ =distance to north pole P0 and
θ =longitude instead of (u1, u2). Then the metric of the sphere and the
metric at the corresponding points in E2 are

ds2
S = dρ2 + sin2 ρ dθ2; ds2

E = dρ2 + ρ2 dθ2

For a piecewise smooth curve (ρ(t), θ(t)) in Dα and for the
corresponding curve in f (Dα) we have

LS =

∫ √
ρ̇2 + sin2 ρ θ̇2 dt LE =

∫ √
ρ̇2 + ρ2 θ̇2 dt.



62. Distortion of the Azimuthal Distance Projection. -

Proof. Part 2.

Since ρ/ sin ρ is a monotone increasing function of ρ we have

sin ρ ≤ ρ ≤ α

sin α
sin ρ

from which it follows that

LS ≤ LE ≤ α

sin α
LS . (9)

From this we’ll deduce that for every P,Q ∈ Dα

dS(P,Q) ≤ dE (f (P), f (Q)) ≤ α

sin α
dS(P,Q).

which implies δ ≤ log(α/ sin α), and by Lemma 1, that δ = log(α/ sin α).



63. Distortion of the Azimuthal Distance Projection. - -

Proof. Part 3.

The main fact is that the distance between two points the infimum of
the lengths of all piecewise smooth curves connecting the points. To see
the first inequality, join f (P) to f (Q) in the convex set f (Dα) by a line
segment which realizes the minimum length LE = d(f (P), f (Q)). The
corresponding curve in Dα will have length LS ≥ dS(P.Q). Since
LS ≤ LE we conclude dS(P,Q) ≤ dE (P,Q).

If α ≤ π/2 the same argument works because Dα is geodesically convex.
The great circle arc joining P to Q that minimizes the length remains in
Dα and has length LS = dS(P,Q). Its image curve has length
LE ≤ α

sin αLS do that dE (P,Q) ≤ α
sin αdS(P,Q).

If α > π/2, it may happen that shortest connecting curve, the great
circle arc leaves Dα. That is it passes through a boundary point at P ′

and then crosses back in at another boundary point Q ′.



64. Distortion of the Azimuthal Distance Projection. - - -

Proof. Part 4.

We show that

dE (f (P), f (P ′)) ≤ α
sin αdS(P,P ′) (10)

dE (f (P ′), f (Q ′)) ≤ α
sin αdS(P ′,Q ′) (11)

dE f (Q ′), f (Q)) ≤ α
sin αdS(Q ′,Q) (12)

The sum of the left sides exceeds dS(P,Q) by the triangle inequality and
the sum of the right sides equals α

sin αdS(P,Q) since they are all on the
same great circle arc, proving the required inequality.

Inequalities (10) and (12) can be proved by the argument above.



65. Distortion of the Azimuthal Distance Projection. - - - -

Proof. Part 5.

To see (11), consider the azimuthal equidistant projection g from the
south pole P ′

0, whose domain is the complementary disk Dπ−α(P ′
0).

Observe that the points g(P ′) and g(Q ′) are on the circle of radius π−α
about g(P ′

0) with the same angle ∠f (P ′)0f (Q ′) = ∠g(P ′)g(P ′
0)g(Q ′).

Now since π − α < π/2, we have as before,

π − α

α
dE (f (P ′), f (Q ′)) = dE (g(P ′), g(Q ′) ≤ π − α

sin(π − α)
dS(P ′,Q ′)

Multiplying by α/(π − α) yields the inequality (11). This completes the
proof of the lemma.

Proof of Milnor’s Theorem.

Lemmas 1, 2 and 3 imply Milnor’s Theorem.



66. Best Conformal Map.

If D ⊂ S2 is an open set and f : D → S2 is conformal, then f has a well
defined infinitesimal scale

σ(P) = lim
Q→P

dE (f (Q), f (P))

dS(Q,P)

Theorem (P. L. Chebychef’s Theorem (1860))

If D is a simply connected region bounded by a twice differentiable curve,
then there exists one, and up to similarity transformations of E2, only
one conformal map projection which minimizes

supP∈D σ(P)

infP∈D σ(P)
.

This “best possible” conformal mapping is characterized by property that
its infinitesimal scale function σ is constant along the boundary of D.



Thanks!


