Math 6410 § 1.	First Midterm Exam	Name:	Solutions
Treibergs		Oct. 4, 2023	

1. Let f(t,x) be continuous for all $(t,x) \in \mathbf{R} \times \mathbf{R}^d$ and let $x_0 \in \mathbf{R}^d$. Suppose that there is $L \in \mathbf{R}$ such that

$$|f(t,x) - f(t,y)| \le L|x-y|, \qquad \text{for all } (t,x), (t,y) \in \mathbf{R} \times \mathbf{R}^d.$$
(1)

Show that there is and $\varepsilon > 0$ and a unique function $y \in C^1([0, \varepsilon], \mathbf{R}^d)$ that satisfies the initial value problem. Do not just quote theorems. Provide as detailed a proof as you can.

$$\begin{cases} \frac{dx}{dt} = f(t, x), \\ x(0) = x_0. \end{cases}$$
(2)

Finding a solution of (2) is equivalent to finding a continuous solution of the integral equation

$$x(t) = x_0 + \int_0^t f(s, x(s)) \, ds \qquad \text{for } t \in [0, \varepsilon].$$
(3)

If x(t) is a \mathcal{C}^1 solution of (2) then by the Fundamental Theorem of Calculus

$$x(t) = x(0) + \int_0^t \frac{dx}{dt}(s) \, ds = x_0 + \int_0^t f(s, x(s)) \, ds.$$

On the other hand, if x(t) is a continuous solution of (3), then since the function $s \mapsto f(s, x(s))$ is continuous, then by the other Fundamental Theorem of Calculus, the right side of (3) is differentiable, and its derivative is

$$\frac{dx}{dt}(t) = 0 + f(t, x(t)),$$

which is continuous. Hence x(t) is a C^1 solution of the differential equation of (2). Moreover, since $x(0) = x_0 + 0$ in (3), x(t) also satisfies the initial condition in (2).

Solubility of the integral equation shall follow from the Contraction Mapping Theorem.

Theorem 1 (Contraction Mapping Theorem). Let X be a Banach Space (complete normed linear space) with norm $\| \bullet \|$. Suppose $\mathcal{L} : X \to X$ be a mapping which is a contraction: there is a $\theta \in (0, 1)$ such that

$$\|\mathcal{L}[x] - \mathcal{L}[y]\| \le \theta \|x - y\|, \quad \text{for all } x, y \in X.$$
(4)

Then there is a unique fixed point $z \in X$ such that $\mathcal{L}[z] = z$.

Proof. Choose any point $z_0 \in X$ and consider the iteration sequence defined recursively by $z_1 = \mathcal{L}[z_0]$ and $z_{n+1} = \mathcal{L}[z_n]$ for n = 1, 2, 3, ... Using (4), we see by induction that

$$||z_{2} - z_{1}|| = ||\mathcal{L}[z_{1}] - \mathcal{L}[z_{0}]|| \le \theta ||x_{1} - z_{0}||$$

$$||z_{3} - z_{2}|| = ||\mathcal{L}[z_{2}] - \mathcal{L}[z_{1}]|| \le \theta ||x_{2} - z_{1}|| \le \theta^{2} ||x_{1} - z_{0}||$$

$$\vdots$$

$$||z_{n+1} - z_{n}|| = ||\mathcal{L}[z_{n}] - \mathcal{L}[z_{n-1}]|| \le \theta ||x_{n} - z_{n-1}|| \le \theta^{n} ||x_{1} - z_{0}||$$
(5)

We show $\{z_n\}$ is a Cauchy Sequence in X. Choose $\eta > 0$. Let $N \in \mathbf{R}$ be so large that

$$\frac{\theta^N}{1-\theta} \|z_1 - z_0\| < \eta.$$

Then for any $p, q \in \mathbb{N}$ such that p > N and q > N, either p = q in which case $||z_p - z_q|| = 0 < \eta$ or, because $||z_p - z_q|| = ||z_q - z_p||$ we may suppose, after swapping values if necessary, that p > q. Then using a telescoping sum, the triangle inequality, (5) and the geometric sum formula,

$$\begin{aligned} \|z_p - z_q\| &= \|(z_p - z_{p-1}) + (z_{p-1} - z_{p-2}) + \dots + (z_{q+1} - z_q)\| \\ &\leq \|z_p - z_{p-1}\| + \|z_{p-1} - z_{p-2}\| + \dots + \|z_{q+1} - z_q)\| \\ &\leq \theta^{p-1} \|z_1 - z_0\| + \theta^{p-2} \|z_1 - z_0\| + \dots + \theta^q \|z_1 - z_0\| \\ &\leq \theta^q \left(\theta^{p-q-1} + \theta^{p-q-2} + \dots + \theta + 1\right) \|z_1 - z_0\| \\ &= \theta^q \left(\frac{1 - \theta^{p-q}}{1 - \theta}\right) \|z_1 - z_0\| \leq \frac{\theta^q}{1 - \theta} \|z_1 - z_0\| < \frac{\theta^N}{1 - \theta} \|z_1 - z_0\| < \eta \end{aligned}$$

because q > N. Hence $\{z_n\}$ is a Cauchy Sequence.

Because X is complete, there is a limit point $z \in X$ such that

$$z = \lim_{n \to \infty} z_n.$$

By continuity (4) we may exchange \mathcal{L} with the limit

$$z = \lim_{n \to \infty} z_{n+1} = \lim_{n \to \infty} \mathcal{L}[z_n] = \mathcal{L}\left[\lim_{n \to \infty} \ddagger_n\right] = \mathcal{L}[z],$$

so z is a fixed point. The fixed point is unique. If there were another, $y = \mathcal{L}[y]$, then

$$||y - z|| = ||\mathcal{L}[y] - \mathcal{L}[z]|| \le \theta ||y - z||$$

 \mathbf{so}

$$(1-\theta)\|y-z\| \le 0$$

implying ||y - z|| = 0 so y = z since $1 - \theta > 0$. Thus there is only one fixed point in X. \Box

Choose any positive $\varepsilon < 1/L$ and let $I = [0, \varepsilon]$. Define the Banach Space of continuous function $X = \mathcal{C}(I, \mathbf{R}^d)$ with sup norm

$$||f|| := \sup_{t \in I} |f(t)|.$$

Define the Picard operator for $f \in X$ and $t \in I$ by

$$\mathcal{L}[f](t) = x_0 + \int_0^t f(s, x(s)) \, ds.$$

We seek a fixed point $x \in X$ of the Picard operator $x = \mathcal{L}[x]$ which is a solution of the integral equation (3).

 \mathcal{L} maps X to X. To see this, for any $x \in X$, since $s \mapsto f(s, x(s))$ is continuous, then by the Fundamental Theorem of Calculus the indefinite integral $\mathcal{L}[x]$ is continuous, so in X.

Finally, \mathcal{L} is a contraction on X. Choose $x, y \in X$. Then for $t \in I$, using (1),

$$\begin{aligned} |\mathcal{L}[x](t) - \mathcal{L}[y](t)| &= \left| x_0 + \int_0^t f(s, x(s)) \, ds - x_0 - \int_0^t f(s, y(s)) \, ds \right| \\ &= \left| \int_0^t f(s, x(s)) - f(s, y(s)) \, ds \right| \\ &\leq \int_0^t \left| f(s, x(s)) - f(s, y(s)) \right| \, ds \\ &\leq \int_0^t L |x(s) - y(s)| \, ds \\ &\leq \int_0^t L ||x - y|| \, ds \\ &= Lt ||x - y|| \leq L\varepsilon ||x - y||. \end{aligned}$$

Taking supremum over $t \in I$,

$$\|\mathcal{L}[x] - \mathcal{L}[y]\| \le L\varepsilon \|x - y\|.$$

Thus \mathcal{L} is a contraction in X with constant $\theta = L\varepsilon < 1$.

By the Contraction Mapping Theorem, there is a unique $x \in X$ which is a fixed point of \mathcal{L} , hence a solution of the integral equation and the Initial Value Probelm (2).

2. Consider Griffith's model for a genetic control system, where x and y are proportional to the concentration of a protein and the messenger RNA from which it is translated, respectively, and $\mu > 0$ is a rate constant. Let $x_0 > 0$ and $y_0 > 0$.

$$\dot{x} = y - \mu x x(0) = x_0
\dot{y} = \frac{x^2}{1 + x^2} - y. y(0) = y_0 (6)$$

Assume that the solution of (6) exists for all $t \in [0,T]$. Find a bound on the solution at time t. Uning your bound, explain why the solution of (6) exists for all $t \in [0,\infty)$.

[You may use theorems, but state carefully any theorem that you use and verify that the hypotheses hold.]

Let us write (6) as a vector equation.

$$\begin{cases} \frac{dz}{dt} = Az + b(z) = f(z, \mu), \\ x(0) = z_0. \end{cases}$$

$$\tag{7}$$

where

$$z(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \quad z_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad A = \begin{pmatrix} -\mu & 1 \\ 0 & -1 \end{pmatrix}, \quad b(z) = \begin{pmatrix} 0 \\ x^2/(1+x^2) \end{pmatrix}$$

 $f(z,\mu)$ is a rational function so it is \mathcal{C}^k in (z,μ) for all k. We estimate the solution using Gronwall's Inequality.

Theorem 2 (Gronwall's Inequality). Let α , β be real constants such that $\beta \ge 0$. If u(t) is a continuous function satisfying

$$u(t) \le \alpha + \beta \int_0^t u(s) \, ds, \qquad \text{for all } t \in [0, T], \tag{8}$$

$$u(t) \le \alpha e^{\beta t} \qquad \text{for all } t \in [0, T].$$
(9)

. then

Estimating the operator norm and length, for all $z \in \mathbf{R}^2$,

$$||A|| \le ||A||_2 = \sqrt{\mu^2 + 2}, \qquad |b(z)| \le 1.$$

Estimating the integral equation, for $t \in [0, T]$,

$$\begin{aligned} |z(t)| &= \left| z_0 + \int_0^t Az(s) + b(z(s)) \, ds \right| \\ &\leq |z_0| + \int_0^t |Az(s) + b(z(s))| \, ds \\ &\leq |z_0| + \int_0^t |Az(s)| + |b(z(s))| \, ds \\ &\leq |z_0| + \int_0^t |A\| \, |z(s)| + 1 \, ds + \\ &\leq |z_0| + t + ||A\| \int_0^t |z(s)| \, ds \\ &\leq |z_0| + T + ||A\| \int_0^t |z(s)| \, ds \end{aligned}$$

Thus applying Gronwall's Inequality to u(t) = |z(t)|, $\alpha = |u_0| + T$ and $\beta = ||A|| = \sqrt{\mu^2 + 2}$ we have for all $t \in [0, T]$,

$$|z(t)| \le (|z_0| + T)e^{t\sqrt{\mu^2 + 2}}.$$
(10)

To see that the solution exists on all of $t \in [0, \infty)$, we invoke the global existence theorem.

Theorem 3 (Global Existence Theorem). Let $f(x, \mu) : \mathbf{R}^d \times \mathbf{R}^p \to \mathbf{R}^d$ be a \mathcal{C}^1 function. Then for every $(x_0, \mu) \in \mathbf{R} \times \mathbf{R}^d \times$, the initial value problem

$$\begin{cases} \frac{dz}{dt} = f(z,\mu), \\ x(0) = z_0. \end{cases}$$

has a unique maximal \mathcal{C}^1 solution $\gamma(t)$ defined on $I_{x_0,\mu} = (a,b)$ its maximal interval of existence. If $b < \infty$, then $|\gamma(t)| \to \infty$ as $t \to b-$.

The right side $f(z, \mu)$ of (7) is C^1 so we may apply the Global Existence Theorem. Let $\gamma(t)$ be the maximal solution of (7) and suppose for contradiction that it does not extend to infinity so $b < \infty$. Then by the Global existence theorem, the trajectory exits any compact set, *i.e.*, there is a time $t_0 \leq T < b$ such that

$$|\gamma(T)| > (|z_0| + b)e^{b\sqrt{\mu^2 + 2}}.$$

But this contradicts the estimate (10) we obtained at t = T, namely the solution existing on $[t_0, T]$ satisfies

$$|\gamma(t)| \le (|z_0| + T)e^{t\sqrt{\mu^2 + 2}} < (|z_0| + b)e^{b\sqrt{\mu^2 + 2}}$$

for all $t \in [t_0, T]$. Thus, b is not finite and the solution $\gamma(t)$ exists for all $t \in [t_0, \infty)$.

3. Consider again the ODE from Problem 2, where $\mu > 0$ is a constant.

$$\dot{x} = y - \mu x \qquad x(0) = x_0$$

$$\dot{y} = \frac{x^2}{1 + x^2} - y. \qquad y(0) = y_0$$
(11)

Let $x_0 > 0$ and $y_0 > 0$. Explain why the solution may be differentiated with respect to μ . How big are $\frac{\partial x}{\partial \mu}(T,\mu)$ and $\frac{\partial y}{\partial \mu}(T,\mu)$ at T > 0?

The differentiability of the solution with respect to parameters follows from the Global Differentiable Dependence Theorem.

Theorem 4 (Global Differentiable Dependence Theorem). Let $f(x, \mu) : \mathbf{R}^d \times \mathbf{R}^p \to \mathbf{R}^d$ be a \mathcal{C}^k function. Then the map $\mathcal{D} \to \mathbf{R}^d$ given by the solution $(t, \bar{z}, \bar{\mu}) \mapsto z(t, \bar{x}, \bar{\mu})$ of

$$\begin{cases} \frac{dz}{dt} = f(z, \bar{\mu}), \\ z(0) = \bar{z}. \end{cases}$$
(12)

is \mathcal{C}^k in the domain

$$\mathcal{D} = \left\{ (t, \bar{z}, \bar{\mu}) \in \mathbf{R}^d \times \mathbf{R}^p : t \in I_{\bar{z}, \bar{\mu}} \right\}.$$

where $I_{\bar{x},\bar{\mu}}$ is the maximal interval of existence for the solution of (7). Moreover, the function

$$W(t) = D_{\mu}z(t;\bar{x},\bar{\mu})$$

satisfies the variational equation

$$\begin{cases} \frac{dW}{dt} = D_z f(z(t, \bar{z}, \bar{\mu}), \bar{\mu}) W(t) + D_\mu f(z(t, \bar{z}, \bar{\mu}), \\ W(0) = 0. \end{cases}$$
(13)

The right side of equivalent vector equation (7) is C^k for all k beause it is a rational function without singularities. The Global Differentiable Dependence Theorem tells us that the solution $z(t, z, \mu)$ is differentiable wrt μ for all $(t, \bar{x}, \bar{\mu})$. The partial derivatives are the components

$$W(t) = D_{\mu}z(t,\bar{z},\bar{\mu}) = \begin{pmatrix} \frac{\partial x}{\partial \mu}(t,\bar{z},\bar{\mu})\\ \frac{\partial y}{\partial \mu}(t,\bar{z},\bar{\mu}) \end{pmatrix}.$$

To estimate the size of the partial derivatives, we may apply Gronwall's Inequality to the integrated version of the variational equation. For $t \ge 0$ such that $t \in I_{\bar{x},\bar{\mu}}$

$$\begin{split} |W(t)| &= \left| 0 + \int_0^t D_z f(z(s,\bar{z},\bar{\mu}),\bar{\mu}) \, W(s) + D_\mu f(z(s,\bar{z},\bar{\mu}) \, ds \right| \\ &\leq \int_0^t |D_z f(z(s,\bar{z},\bar{\mu}),\bar{\mu}) \, W(s) + D_\mu f(z(s,\bar{z},\bar{\mu})| \, ds \\ &\leq \int_0^t \|D_z f(z(s,\bar{z},\bar{\mu}),\bar{\mu})\| \, |W(s)| + |D_\mu f(z(s,\bar{z},\bar{\mu})| \, ds \\ &\leq \int_0^t \sqrt{\mu^2 + 3} \, |W(s)| + (|z_0| + t) e^{t\sqrt{\mu^2 + 2}} \, ds \\ &\leq t(|z_0| + t) e^{t\sqrt{\mu^2 + 2}} + \int_0^t \sqrt{\mu^2 + 3} \, |W(s)| \, ds \end{split}$$

where we have used

$$D_z f(z(t, \bar{z}, \bar{\mu}), \bar{\mu}) = \begin{pmatrix} -\mu & 1\\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 0\\ \frac{2x}{(1+x^2)^2} & 0 \end{pmatrix}$$
$$D_\mu f(z(t, \bar{z}, \bar{\mu}) = \begin{pmatrix} -1 & 0\\ 0 & 0 \end{pmatrix} z(t, \bar{z}, \bar{\mu})$$

that are estimated using $2|z| \le 1 + z^2$ and (10),

$$\|D_z f(z(t, \bar{z}, \bar{\mu}), \bar{\mu})\| \le \sqrt{\mu^2 + 3},$$

$$|D_\mu f(z(t, \bar{z}, \bar{\mu})| \le |z(t, \bar{z}, \bar{\mu})| \le (|z_0| + t)e^{t\sqrt{\mu^2 + 2}}.$$

By the Gronwall Inequality, we find the desired estimates on the derivative. For $0 \le t$ such that $t \in I_{\bar{z},\bar{\mu}}$,

$$|W(t)| \le t(|z_0|+t)e^{t\sqrt{\mu^2+2}}e^{t\sqrt{\mu^2+3}} \le t(|z_0|+t)e^{2t\sqrt{\mu^2+3}}.$$

4. Consider the first order differential equation

$$\frac{dx}{dt} = f(t, x)$$

where f(t, x) is smooth and periodic in t: f(t+1, x) = f(t, x) for all x and t in **R**.

- (a) Define the Poincare map for this differential equation.
- (b) Suppose $f(t,x) = A(t)x x^2$, where $0 < \alpha < A(t) < \beta$. Prove that the differential equation has at least one nontrivial periodic solution.

By the Global Existence theorem, the initial value problem

$$\begin{cases} \frac{dx}{dt} = f(t, x), \\ x(0) = x_0. \end{cases}$$
(14)

has a solution $x(t; x_0)$ which is defined whenever $t \in I_{x_0}$, the maximal interval of existence. The Poincaré Map in the context of T = 1 periodic solutions is the time-one map

$$\wp(x_0) = x(1; x_0)$$

provided $1 \in I_{x_0}$. There is a *T*-periodic solution $x(t, x_0)$ whenever x_0 is a fixed point of the Poincaré Map $x_0 = \wp(x_0)$.

In the special case $f(t, x) = A(t)x - x^2$ where A(t) is a smooth (\mathcal{C}^k for any k) T = 1 periodic real function. Under the hypothesis $0 < \alpha < A(t) < \beta$, we see that

$$f(\alpha) = A(t)\alpha - \alpha^2 > \alpha^2 - \alpha^2 = 0$$

$$f(\beta) = A(t)\beta - \beta^2 < \beta^2 - \beta^2 = 0.$$

We wish to show \wp is defined for $x_0 \in [\alpha, \beta]$. First, we observe that for any $x_0 \in [\alpha, \beta]$, there is a $\tau > 0$ such that $\alpha < x(t, x_0) < \beta$ for $0 < t < \tau$. By the Global Existence Theorem (or Local Existence Theorem), we know that for all $x_0, x(t, x_0)$ is defined for t in a neighborhood of t = 0. By the continuity of solutions, if $\alpha < x_0 < \beta$ then there is a

 $\tau > 0$ so that $\alpha < x(t, x_0) < \beta$ for $0 < t < \tau$. On the other hand if $x_0 = \beta$, we know that $\dot{x}(0, \beta) = f(0, \beta) < 0$. Since $x(t, \beta)$ is differentiable in t,

$$0 > f(0,\beta) = \frac{dx}{dt}(0,\beta) = \lim_{t \to 0} \frac{x(t,\beta) - \beta}{t - 0}.$$

Thus there is a $\tau > 0$ such that for every $0 < t < \tau$

$$\frac{x(t,\beta)-\beta}{t-0} < 0$$

so $x(t, x_0) < \beta$. Similarly, if $x_0 = \alpha$ then there is a $\tau > 0$ such that $x(t, x_0) > \alpha$ whenever $0 < t < \tau$.

To finish the claim, we argue both that the solution exists for $t \in [0, 1]$ and that $\alpha \leq x(t, x_0) \leq \beta$ for all $t \in [0, 1]$. If for some $x_0 \in [\alpha, \beta]$ the maximal interval $I_{x_0} = (p, q)$ does not include t = 1 then $x(t, x_0)$ exits any compact set: there is $0 < t_1 < p < 1$ such that $|x(t_1, x_0)| > \beta$. If on the other hand for some $x_0 \in [\alpha, \beta]$ the trajectory exits the interval, then there is $0 < t_1 \leq 1$ such that $x(t_1, x_0) \notin [\alpha, \beta]$. In either case $x(t_1, x_0) \notin [\alpha, \beta]$.

By continuity of $x(t, x_0)$ there is a first $0 < t_2 < t_1$ such that $x(t_2, x_0) \in \{\alpha, \beta\}$. In other words

$$t_2 = \sup \{ \tau \in (0, t_1) : x(s, x_0) \in (\alpha, \beta) \text{ for all } 0 < s < \tau \}.$$

We have already shown that there is a $\tau > 0$ for every $x_0 \in [\alpha, \beta]$. By continuity $x(t_2, x_0) = \alpha$ or $x(t_2, x_0) = \beta$ and $x(s, x_0) \in (\alpha, \beta)$ for all $0 < s < \tau$.

Let us rule out the possibility $x(t_2, x_0) = \beta$. The argument in case $x(t_2, x_0) = \alpha$ is similar. Since $x(s, x_0) < \beta$ for $0 < s < t_2$ it follows that

$$\dot{x}(t_2, x_0) = \lim_{s \to t_2 -} \frac{x(s, x_0) - \beta}{s - t_2} \ge 0.$$

But this contradicts the ODE since

$$\dot{x}(t_2, x_0) = f(t_2, x(t_2, x_0)) = f(t_2, \beta) < 0.$$

This completes the claim that for $x_0 \in [\alpha, \beta]$ the solution exists for $0 \le t \le 1$ and that $x(t, x_0) \in [\alpha, \beta]$ for all $0 \le t \le 1$.

This implies that $\wp([\alpha,\beta]) \subset [\alpha,\beta]$. By the Global Differentiable Dependence Theorem (or Global Continuity Theorem) $\wp(x_0)$ is continuous in x_0 . By the Intermediate Value Theorem, \wp which maps a compact interval to itself has a fixed point $x_1 \in [\alpha,\beta]$ such that $x_1 = \wp(x_1)$. Thus the solution $x(t,x_1)$ is a nontrivial T = 1 periodic solution.

5. Find a matrix T that such that $T^{-1}AT = J$, the Jordan form, and check your answer. Using your J, find the solution to $\dot{x} = Ax$, x(0) = c.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}, \qquad c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}.$$

The eigenvalues are the diagonals $\lambda = 1$ with algebraic multiplicity three. An eigenvector satisfies

$$0 = (A - \lambda I)V_1 = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

As $A - \lambda I$ has rank two, V_1 generates the one dimensional eigenspace. It follows that the Jordan form of this matrix is a 3×3 block

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = I + N.$$

To find T, we write the cyclic vectors by inspection.

$$(A - \lambda I)V_2 = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = V_1,$$
$$(A - \lambda I)V_3 = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -\frac{3}{16} \\ \frac{1}{8} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix} = V_2$$

Take

$$T = \begin{pmatrix} V_1 \mid V_2 \mid V_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix}.$$

To check $T^{-1}AT = J$ we compute

$$AT = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{5}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = JT.$$

Using IN = NI,

$$e^{tJ} = e^{t(I+N)} = e^{tI}e^{tN} = \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^t \end{pmatrix} \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} = e^t \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

The solution of $\dot{x} = Ax$, x(0) = c is given by

$$\begin{aligned} x(t) &= e^{tA}c = e^{tTJT^{-1}}c = Te^{tJ}T^{-1}c = e^t \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 8 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \\ &= e^t \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{16} \\ 0 & 0 & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 1 & 2t & 3t + 4t^2 \\ 0 & 2 & 3 + 8t \\ 0 & 0 & 8 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = e^t \begin{pmatrix} 1 & 2t & 3t + 4t^2 \\ 0 & 1 & 4t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}. \end{aligned}$$