Math 6410 § 1. First Midterm Exam Name:_Solutions

1. Let $f(t, x)$ be continuous for all $(t, x) \in \mathbf{R} \times \mathbf{R}^{d}$ and let $x_{0} \in \mathbf{R}^{d}$. Suppose that there is $L \in \mathbf{R}$ such that

$$
\begin{equation*}
|f(t, x)-f(t, y)| \leq L|x-y|, \quad \text { for all }(t, x),(t, y) \in \mathbf{R} \times \mathbf{R}^{d} \tag{1}
\end{equation*}
$$

Show that there is and $\varepsilon>0$ and a unique function $y \in \mathcal{C}^{1}\left([0, \varepsilon], \mathbf{R}^{d}\right)$ that satisfies the initial value problem. Do not just quote theorems. Provide as detailed a proof as you can.

$$
\left\{\begin{array}{c}
\frac{d x}{d t}=f(t, x) \tag{2}\\
x(0)=x_{0}
\end{array}\right.
$$

Finding a solution of (2) is equivalent to finding a continuous solution of the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{0}^{t} f(s, x(s)) d s \quad \text { for } t \in[0, \varepsilon] \tag{3}
\end{equation*}
$$

If $x(t)$ is a \mathcal{C}^{1} solution of (2) then by the Fundamental Theorem of Calculus

$$
x(t)=x(0)+\int_{0}^{t} \frac{d x}{d t}(s) d s=x_{0}+\int_{0}^{t} f(s, x(s)) d s
$$

On the other hand, if $x(t)$ is a continuous solution of (3), then since the function $s \mapsto$ $f(s, x(s))$ is continuous, then by the other Fundamental Theorem of Calculus, the right side of (3) is differentiable, and its derivative is

$$
\frac{d x}{d t}(t)=0+f(t, x(t))
$$

which is continuous. Hence $x(t)$ is a \mathcal{C}^{1} solution of the differential equation of (2). Moreover, since $x(0)=x_{0}+0$ in (3), $x(t)$ also satisfies the initial condition in (2).
Solubility of the integral equation shall follow from the Contraction Mapping Theorem.
Theorem 1 (Contraction Mapping Theorem). Let X be a Banach Space (complete normed linear space) with norm $\|\bullet\|$. Suppose $\mathcal{L}: X \rightarrow X$ be a mapping which is a contraction: there is a $\theta \in(0,1)$ such that

$$
\begin{equation*}
\|\mathcal{L}[x]-\mathcal{L}[y]\| \leq \theta\|x-y\|, \quad \text { for all } x, y \in X \tag{4}
\end{equation*}
$$

Then there is a unique fixed point $z \in X$ such that $\mathcal{L}[z]=z$.
Proof. Choose any point $z_{0} \in X$ and consider the iteration sequence defined recursively by $z_{1}=\mathcal{L}\left[z_{0}\right]$ and $z_{n+1}=\mathcal{L}\left[z_{n}\right]$ for $n=1,2,3, \ldots$ Using (4), we see by induction that

$$
\begin{align*}
&\left\|z_{2}-z_{1}\right\|=\left\|\mathcal{L}\left[z_{1}\right]-\mathcal{L}\left[z_{0}\right]\right\| \leq \theta\left\|x_{1}-z_{0}\right\| \\
&\left\|z_{3}-z_{2}\right\|=\left\|\mathcal{L}\left[z_{2}\right]-\mathcal{L}\left[z_{1}\right]\right\| \leq \theta\left\|x_{2}-z_{1}\right\| \leq \theta^{2}\left\|x_{1}-z_{0}\right\| \tag{5}\\
& \vdots \\
&\left\|z_{n+1}-z_{n}\right\|=\left\|\mathcal{L}\left[z_{n}\right]-\mathcal{L}\left[z_{n-1}\right]\right\| \leq \theta\left\|x_{n}-z_{n-1}\right\| \leq \theta^{n}\left\|x_{1}-z_{0}\right\|
\end{align*}
$$

We show $\left\{z_{n}\right\}$ is a Cauchy Sequence in X. Choose $\eta>0$. Let $N \in \mathbf{R}$ be so large that

$$
\frac{\theta^{N}}{1-\theta}\left\|z_{1}-z_{0}\right\|<\eta
$$

Then for any $p, q \in \mathbb{N}$ such that $p>N$ and $q>N$, either $p=q$ in which case $\left\|z_{p}-z_{q}\right\|=$ $0<\eta$ or, because $\left\|z_{p}-z_{q}\right\|=\left\|z_{q}-z_{p}\right\|$ we may suppose, after swapping values if necessary, that $p>q$. Then using a telescoping sum, the triangle inequality, (5) and the geometric sum formula,

$$
\begin{aligned}
\left\|z_{p}-z_{q}\right\| & =\left\|\left(z_{p}-z_{p-1}\right)+\left(z_{p-1}-z_{p-2}\right)+\cdots+\left(z_{q+1}-z_{q}\right)\right\| \\
& \left.\leq\left\|z_{p}-z_{p-1}\right\|+\left\|z_{p-1}-z_{p-2}\right\|+\cdots+\| z_{q+1}-z_{q}\right) \| \\
& \leq \theta^{p-1}\left\|z_{1}-z_{0}\right\|+\theta^{p-2}\left\|z_{1}-z_{0}\right\|+\cdots+\theta^{q}\left\|z_{1}-z_{0}\right\| \\
& \leq \theta^{q}\left(\theta^{p-q-1}+\theta^{p-q-2}+\cdots+\theta+1\right)\left\|z_{1}-z_{0}\right\| \\
& =\theta^{q}\left(\frac{1-\theta^{p-q}}{1-\theta}\right)\left\|z_{1}-z_{0}\right\| \leq \frac{\theta^{q}}{1-\theta}\left\|z_{1}-z_{0}\right\|<\frac{\theta^{N}}{1-\theta}\left\|z_{1}-z_{0}\right\|<\eta
\end{aligned}
$$

because $q>N$. Hence $\left\{z_{n}\right\}$ is a Cauchy Sequence.
Because X is complete, there is a limit point $z \in X$ such that

$$
z=\lim _{n \rightarrow \infty} z_{n}
$$

By continuity (4) we may exchange \mathcal{L} with the limit

$$
z=\lim _{n \rightarrow \infty} z_{n+1}=\lim _{n \rightarrow \infty} \mathcal{L}\left[z_{n}\right]=\mathcal{L}\left[\lim _{n \rightarrow \infty} \not{ }_{n}\right]=\mathcal{L}[z]
$$

so z is a fixed point. The fixed point is unique. If there were another, $y=\mathcal{L}[y]$, then

$$
\|y-z\|=\|\mathcal{L}[y]-\mathcal{L}[z]\| \leq \theta\|y-z\|
$$

so

$$
(1-\theta)\|y-z\| \leq 0
$$

implying $\|y-z\|=0$ so $y=z$ since $1-\theta>0$. Thus there is only one fixed point in X.
Choose any positive $\varepsilon<1 / L$ and let $I=[0, \varepsilon]$. Define the Banach Space of continuous function $X=\mathcal{C}\left(I, \mathbf{R}^{d}\right)$ with sup norm

$$
\|f\|:=\sup _{t \in I}|f(t)|
$$

Define the Picard operator for $f \in X$ and $t \in I$ by

$$
\mathcal{L}[f](t)=x_{0}+\int_{0}^{t} f(s, x(s)) d s
$$

We seek a fixed point $x \in X$ of the Picard operator $x=\mathcal{L}[x]$ which is a solution of the integral equation (3).
\mathcal{L} maps X to X. To see this, for any $x \in X$, since $s \mapsto f(s, x(s))$ is continuous, then by the Fundamental Theorem of Calculus the indefinite integral $\mathcal{L}[x]$ is continuous, so in X.

Finally, \mathcal{L} is a contraction on X. Choose $x, y \in X$. Then for $t \in I$, using (1),

$$
\begin{aligned}
|\mathcal{L}[x](t)-\mathcal{L}[y](t)| & =\left|x_{0}+\int_{0}^{t} f(s, x(s)) d s-x_{0}-\int_{0}^{t} f(s, y(s)) d s\right| \\
& =\left|\int_{0}^{t} f(s, x(s))-f(s, y(s)) d s\right| \\
& \leq \int_{0}^{t}|f(s, x(s))-f(s, y(s))| d s \\
& \leq \int_{0}^{t} L|x(s)-y(s)| d s \\
& \leq \int_{0}^{t} L\|x-y\| d s \\
& =L t\|x-y\| \leq L \varepsilon\|x-y\|
\end{aligned}
$$

Taking supremum over $t \in I$,

$$
\|\mathcal{L}[x]-\mathcal{L}[y]\| \leq L \varepsilon\|x-y\|
$$

Thus \mathcal{L} is a contraction in X with constant $\theta=L \varepsilon<1$.
By the Contraction Mapping Theorem, there is a unique $x \in X$ which is a fixed point of \mathcal{L}, hence a solution of the integral equation and the Initial Value Probelm (2).
2. Consider Griffith's model for a genetic control system, where x and y are proportional to the concentration of a protein and the messenger RNA from which it is translated, respectively, and $\mu>0$ is a rate constant. Let $x_{0}>0$ and $y_{0}>0$.

$$
\begin{array}{ll}
\dot{x}=y-\mu x & x(0)=x_{0} \\
\dot{y}=\frac{x^{2}}{1+x^{2}}-y . & y(0)=y_{0} \tag{6}
\end{array}
$$

Assume that the solution of (6) exists for all $t \in[0, T]$. Find a bound on the solution at time t. Uning your bound, explain why the solution of (6) exists for all $t \in[0, \infty)$.
[You may use theorems, but state carefully any theorem that you use and verify that the hypotheses hold.]
Let us write (6) as a vector equation.

$$
\left\{\begin{array}{c}
\frac{d z}{d t}=A z+b(z)=f(z, \mu) \tag{7}\\
x(0)=z_{0}
\end{array}\right.
$$

where

$$
z(t)=\binom{x(t)}{y(t)}, \quad z_{0}=\binom{x_{0}}{y_{0}}, \quad A=\left(\begin{array}{cc}
-\mu & 1 \\
0 & -1
\end{array}\right), \quad b(z)=\binom{0}{x^{2} /\left(1+x^{2}\right)}
$$

$f(z, \mu)$ is a rational function so it is \mathcal{C}^{k} in (z, μ) for all k. We estimate the solution using Gronwall's Inequality.

Theorem 2 (Gronwall's Inequality). Let α, β be real constants such that $\beta \geq 0$. If $u(t)$ is a continuous function satisfying

$$
\begin{equation*}
u(t) \leq \alpha+\beta \int_{0}^{t} u(s) d s, \quad \text { for all } t \in[0, T] \tag{8}
\end{equation*}
$$

. then

$$
\begin{equation*}
u(t) \leq \alpha e^{\beta t} \quad \text { for all } t \in[0, T] \tag{9}
\end{equation*}
$$

Estimating the operator norm and length, for all $z \in \mathbf{R}^{2}$,

$$
\|A\| \leq\|A\|_{2}=\sqrt{\mu^{2}+2}, \quad|b(z)| \leq 1
$$

Estimating the integral equation, for $t \in[0, T]$,

$$
\begin{aligned}
|z(t)| & =\left|z_{0}+\int_{0}^{t} A z(s)+b(z(s)) d s\right| \\
& \leq\left|z_{0}\right|+\int_{0}^{t}|A z(s)+b(z(s))| d s \\
& \leq\left|z_{0}\right|+\int_{0}^{t}|A z(s)|+|b(z(s))| d s \\
& \leq\left|z_{0}\right|+\int_{0}^{t}\|A\||z(s)|+1 d s+ \\
& \leq\left|z_{0}\right|+t+\|A\| \int_{0}^{t}|z(s)| d s \\
& \leq\left|z_{0}\right|+T+\|A\| \int_{0}^{t}|z(s)| d s
\end{aligned}
$$

Thus applying Gronwall's Inequality to $u(t)=|z(t)|, \alpha=\left|u_{0}\right|+T$ and $\beta=\|A\|=\sqrt{\mu^{2}+2}$ we have for all $t \in[0, T]$,

$$
\begin{equation*}
|z(t)| \leq\left(\left|z_{0}\right|+T\right) e^{t \sqrt{\mu^{2}+2}} \tag{10}
\end{equation*}
$$

To see that the solution exists on all of $t \in[0, \infty)$, we invoke the global existence theorem.
Theorem 3 (Global Existence Theorem). Let $f(x, \mu): \mathbf{R}^{d} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{d}$ be a \mathcal{C}^{1} function. Then for every $\left(x_{0}, \mu\right) \in \mathbf{R} \times \mathbf{R}^{d} \times$, the initial value problem

$$
\left\{\begin{array}{c}
\frac{d z}{d t}=f(z, \mu) \\
x(0)=z_{0}
\end{array}\right.
$$

has a unique maximal \mathcal{C}^{1} solution $\gamma(t)$ defined on $I_{x_{0}, \mu}=(a, b)$ its maximal interval of existence. If $b<\infty$, then $|\gamma(t)| \rightarrow \infty$ as $t \rightarrow b-$.

The right side $f(z, \mu)$ of (7) is \mathcal{C}^{1} so we may apply the Global Existence Theorem. Let $\gamma(t)$ be the maximal solution of (7) and suppose for contradiction that it does not extend to infinity so $b<\infty$. Then by the Global existence theorem, the trajectory exits any compact set, i.e., there is a time $t_{0} \leq T<b$ such that

$$
|\gamma(T)|>\left(\left|z_{0}\right|+b\right) e^{b \sqrt{\mu^{2}+2}}
$$

But this contradicts the estimate (10) we obtained at $t=T$, namely the solution existing on $\left[t_{0}, T\right]$ satisfies

$$
|\gamma(t)| \leq\left(\left|z_{0}\right|+T\right) e^{t \sqrt{\mu^{2}+2}}<\left(\left|z_{0}\right|+b\right) e^{b \sqrt{\mu^{2}+2}}
$$

for all $t \in\left[t_{0}, T\right]$. Thus, b is not finite and the solution $\gamma(t)$ exists for all $t \in\left[t_{0}, \infty\right)$.
3. Consider again the ODE from Problem 2, where $\mu>0$ is a constant.

$$
\begin{array}{ll}
\dot{x}=y-\mu x & x(0)=x_{0} \\
\dot{y}=\frac{x^{2}}{1+x^{2}}-y . & y(0)=y_{0}
\end{array}
$$

Let $x_{0}>0$ and $y_{0}>0$. Explain why the solution may be differentiated with respect to μ. How big are $\frac{\partial x}{\partial \mu}(T, \mu)$ and $\frac{\partial y}{\partial \mu}(T, \mu)$ at $T>0$?
The differentiability of the solution with respect to parameters follows from the Global Differentiable Dependence Theorem.

Theorem 4 (Global Differentiable Dependence Theorem). Let $f(x, \mu): \mathbf{R}^{d} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{d}$ be $a \mathcal{C}^{k}$ function. Then the map $\mathcal{D} \rightarrow \mathbf{R}^{d}$ given by the solution $(t, \bar{z}, \bar{\mu}) \mapsto z(t, \bar{x}, \bar{\mu})$ of

$$
\left\{\begin{array}{c}
\frac{d z}{d t}=f(z, \bar{\mu}) \tag{12}\\
z(0)=\bar{z}
\end{array}\right.
$$

is \mathcal{C}^{k} in the domain

$$
\mathcal{D}=\left\{(t, \bar{z}, \bar{\mu}) \in \mathbf{R}^{d} \times \mathbf{R}^{p}: t \in I_{\bar{z}, \bar{\mu}}\right\} .
$$

where $I_{\bar{x}, \bar{\mu}}$ is the maximal interval of existence for the solution of (7). Moreover, the function

$$
W(t)=D_{\mu} z(t ; \bar{x}, \bar{\mu})
$$

satisfies the variational equation

$$
\left\{\begin{array}{c}
\frac{d W}{d t}=D_{z} f(z(t, \bar{z}, \bar{\mu}), \bar{\mu}) W(t)+D_{\mu} f(z(t, \bar{z}, \bar{\mu}) \tag{13}\\
W(0)=0
\end{array}\right.
$$

The right side of equivalent vector equation (7) is \mathcal{C}^{k} for all k beause it is a rational function without singularities. The Global Differentiable Dependence Theorem tells us that the solution $z(t, z, \mu)$ is differentiable wrt μ for all $(t, \bar{x}, \bar{\mu})$. The partial derivatives are the components

$$
W(t)=D_{\mu} z(t, \bar{z}, \bar{\mu})=\binom{\frac{\partial x}{\partial \mu}(t, \bar{z}, \bar{\mu})}{\frac{\partial y}{\partial \mu}(t, \bar{z}, \bar{\mu})}
$$

To estimate the size of the partial derivatives, we may apply Gronwall's Inequality to the integrated version of the variational equation. For $t \geq 0$ such that $t \in I_{\bar{z}, \bar{\mu}}$

$$
\begin{aligned}
|W(t)| & =\mid 0+\int_{0}^{t} D_{z} f(z(s, \bar{z}, \bar{\mu}), \bar{\mu}) W(s)+D_{\mu} f(z(s, \bar{z}, \bar{\mu}) d s \mid \\
& \leq \int_{0}^{t} \mid D_{z} f(z(s, \bar{z}, \bar{\mu}), \bar{\mu}) W(s)+D_{\mu} f(z(s, \bar{z}, \bar{\mu}) \mid d s \\
& \leq \int_{0}^{t}\left\|D_{z} f(z(s, \bar{z}, \bar{\mu}), \bar{\mu})\right\||W(s)|+\mid D_{\mu} f(z(s, \bar{z}, \bar{\mu}) \mid d s \\
& \leq \int_{0}^{t} \sqrt{\mu^{2}+3}|W(s)|+\left(\left|z_{0}\right|+t\right) e^{t \sqrt{\mu^{2}+2}} d s \\
& \leq t\left(\left|z_{0}\right|+t\right) e^{t \sqrt{\mu^{2}+2}}+\int_{0}^{t} \sqrt{\mu^{2}+3}|W(s)| d s
\end{aligned}
$$

where we have used

$$
\begin{array}{r}
D_{z} f(z(t, \bar{z}, \bar{\mu}), \bar{\mu})=\left(\begin{array}{cc}
-\mu & 1 \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
\frac{2 x}{\left(1+x^{2}\right)^{2}} & 0
\end{array}\right) \\
D_{\mu} f\left(z(t, \bar{z}, \bar{\mu})=\left(\begin{array}{rc}
-1 & 0 \\
0 & 0
\end{array}\right) z(t, \bar{z}, \bar{\mu})\right.
\end{array}
$$

that are estimated using $2|z| \leq 1+z^{2}$ and (10),

$$
\begin{aligned}
\left\|D_{z} f(z(t, \bar{z}, \bar{\mu}), \bar{\mu})\right\| & \leq \sqrt{\mu^{2}+3} \\
\mid D_{\mu} f(z(t, \bar{z}, \bar{\mu}) \mid & \leq|z(t, \bar{z}, \bar{\mu})| \leq\left(\left|z_{0}\right|+t\right) e^{t \sqrt{\mu^{2}+2}}
\end{aligned}
$$

By the Gronwall Inequality, we find the desired estimates on the derivative. For $0 \leq t$ such that $t \in I_{\bar{z}, \bar{\mu}}$,

$$
|W(t)| \leq t\left(\left|z_{0}\right|+t\right) e^{t \sqrt{\mu^{2}+2}} e^{t \sqrt{\mu^{2}+3}} \leq t\left(\left|z_{0}\right|+t\right) e^{2 t \sqrt{\mu^{2}+3}}
$$

4. Consider the first order differential equation

$$
\frac{d x}{d t}=f(t, x)
$$

where $f(t, x)$ is smooth and periodic in $t: f(t+1, x)=f(t, x)$ for all x and t in \mathbf{R}.
(a) Define the Poincare map for this differential equation.
(b) Suppose $f(t, x)=A(t) x-x^{2}$, where $0<\alpha<A(t)<\beta$. Prove that the differential equation has at least one nontrivial periodic solution.

By the Global Existence theorem, the initial value problem

$$
\left\{\begin{array}{c}
\frac{d x}{d t}=f(t, x) \tag{14}\\
x(0)=x_{0}
\end{array}\right.
$$

has a solution $x\left(t ; x_{0}\right)$ which is defined whenever $t \in I_{x_{0}}$, the maximal interval of existence. The Poincaré Map in the context of $T=1$ periodic solutions is the time-one map

$$
\wp\left(x_{0}\right)=x\left(1 ; x_{0}\right)
$$

provided $1 \in I_{x_{0}}$. There is a T-periodic solution $x\left(t, x_{0}\right)$ whenever x_{0} is a fixed point of the Poincaré Map $x_{0}=\wp\left(x_{0}\right)$.
In the special case $f(t, x)=A(t) x-x^{2}$ where $A(t)$ is a smooth $\left(\mathcal{C}^{k}\right.$ for any $\left.k\right) T=1$ periodic real function. Under the hypothesis $0<\alpha<A(t)<\beta$, we see that

$$
\begin{aligned}
& f(\alpha)=A(t) \alpha-\alpha^{2}>\alpha^{2}-\alpha^{2}=0 \\
& f(\beta)=A(t) \beta-\beta^{2}<\beta^{2}-\beta^{2}=0
\end{aligned}
$$

We wish to show \wp is defined for $x_{0} \in[\alpha, \beta]$. First, we observe that for any $x_{0} \in[\alpha, \beta]$, there is a $\tau>0$ such that $\alpha<x\left(t, x_{0}\right)<\beta$ for $0<t<\tau$. By the Global Existence Theorem (or Local Existence Theorem), we know that for all $x_{0}, x\left(t, x_{0}\right)$ is defined for t in a neighborhood of $t=0$. By the continuity of solutions, if $\alpha<x_{0}<\beta$ then there is a
$\tau>0$ so that $\alpha<x\left(t, x_{0}\right)<\beta$ for $0<t<\tau$. On the other hand if $x_{0}=\beta$, we know that $\dot{x}(0, \beta)=f(0, \beta)<0$. Since $x(t, \beta)$ is differentiable in t,

$$
0>f(0, \beta)=\frac{d x}{d t}(0, \beta)=\lim _{t \rightarrow 0} \frac{x(t, \beta)-\beta}{t-0}
$$

Thus there is a $\tau>0$ such that for every $0<t<\tau$

$$
\frac{x(t, \beta)-\beta}{t-0}<0
$$

so $x\left(t, x_{0}\right)<\beta$. Similarly, if $x_{0}=\alpha$ then there is a $\tau>0$ such that $x\left(t, x_{0}\right)>\alpha$ whenever $0<t<\tau$.
To finish the claim, we argue both that the solution exists for $t \in[0,1]$ and that $\alpha \leq$ $x\left(t, x_{0}\right) \leq \beta$ for all $t \in[0,1]$. If for some $x_{0} \in[\alpha, \beta]$ the maximal interval $I_{x_{0}}=(p, q)$ does not include $t=1$ then $x\left(t, x_{0}\right)$ exits any compact set: there is $0<t_{1}<p<1$ such that $\left|x\left(t_{1}, x_{0}\right)\right|>\beta$. If on the other hand for some $x_{0} \in[\alpha, \beta]$ the trajectory exits the interval, then there is $0<t_{1} \leq 1$ such that $x\left(t_{1}, x_{0}\right) \notin[\alpha, \beta]$. In either case $x\left(t_{1}, x_{0}\right) \notin[\alpha, \beta]$.
By continuity of $x\left(t, x_{0}\right)$ there is a first $0<t_{2}<t_{1}$ such that $x\left(t_{2}, x_{0}\right) \in\{\alpha, \beta\}$. In other words

$$
t_{2}=\sup \left\{\tau \in\left(0, t_{1}\right): x\left(s, x_{0}\right) \in(\alpha, \beta) \text { for all } 0<s<\tau\right\}
$$

We have already shown that there is a $\tau>0$ for every $x_{0} \in[\alpha, \beta]$. By continuity $x\left(t_{2}, x_{0}\right)=$ α or $x\left(t_{2}, x_{0}\right)=\beta$ and $x\left(s, x_{0}\right) \in(\alpha, \beta)$ for all $0<s<\tau$.
Let us rule out the possibility $x\left(t_{2}, x_{0}\right)=\beta$. The argument in case $x\left(t_{2}, x_{0}\right)=\alpha$ is similar. Since $x\left(s, x_{0}\right)<\beta$ for $0<s<t_{2}$ it follows that

$$
\dot{x}\left(t_{2}, x_{0}\right)=\lim _{s \rightarrow t_{2}-} \frac{x\left(s, x_{0}\right)-\beta}{s-t_{2}} \geq 0
$$

But this contradicts the ODE since

$$
\dot{x}\left(t_{2}, x_{0}\right)=f\left(t_{2}, x\left(t_{2}, x_{0}\right)\right)=f\left(t_{2}, \beta\right)<0
$$

This completes the claim that for $x_{0} \in[\alpha, \beta]$ the solution exists for $0 \leq t \leq 1$ and that $x\left(t, x_{0}\right) \in[\alpha, \beta]$ for all $0 \leq t \leq 1$.
This implies that $\wp([\alpha, \beta]) \subset[\alpha, \beta]$. By the Global Differentiable Dependence Theorem (or Global Continuity Theorem) $\wp\left(x_{0}\right)$ is continuous in x_{0}. By the Intermediate Value Theorem, \wp which maps a compact interval to itself has a fixed point $x_{1} \in[\alpha, \beta]$ such that $x_{1}=\wp\left(x_{1}\right)$. Thus the solution $x\left(t, x_{1}\right)$ is a nontrivial $T=1$ periodic solution.
5. Find a matrix T that such that $T^{-1} A T=J$, the Jordan form, and check your answer. Using your J, find the solution to $\dot{x}=A x, x(0)=c$.

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right), \quad c=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

The eigenvalues are the diagonals $\lambda=1$ with algebraic multiplicity three. An eigenvector satisfies

$$
0=(A-\lambda I) V_{1}=\left(\begin{array}{lll}
0 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

As $A-\lambda I$ has rank two, V_{1} generates the one dimensional eigenspace. It follows that the Jordan form of this matrix is a 3×3 block

$$
J=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=I+N
$$

To find T, we write the cyclic vectors by inspection.

$$
\begin{aligned}
& (A-\lambda I) V_{2}=\left(\begin{array}{ccc}
0 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)=V_{1} \\
& (A-\lambda I) V_{3}=\left(\begin{array}{lll}
0 & 2 & 3 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
-\frac{3}{16} \\
\frac{1}{8}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right)=V_{2}
\end{aligned}
$$

Take

$$
T=\left(V_{1}\left|V_{2}\right| V_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{3}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)
$$

To check $T^{-1} A T=J$ we compute

$$
A T=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{3}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & \frac{1}{2} & \frac{5}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{3}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=J T .
$$

Using $I N=N I$,

$$
e^{t J}=e^{t(I+N)}=e^{t I} e^{t N}=\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)\left(\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)=e^{t}\left(\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)
$$

The solution of $\dot{x}=A x, x(0)=c$ is given by

$$
\begin{aligned}
x(t) & =e^{t A} c=e^{t T J T^{-1}} c=T e^{t J} T^{-1} c=e^{t}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{3}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)\left(\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =e^{t}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{3}{16} \\
0 & 0 & \frac{1}{8}
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 t & 3 t+4 t^{2} \\
0 & 2 & 3+8 t \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=e^{t}\left(\begin{array}{ccc}
1 & 2 t & 3 t+4 t^{2} \\
0 & 1 & 4 t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) .
\end{aligned}
$$

