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1. Let f(t, x) be continuous for all (t, x) ∈ R × Rd and let x0 ∈ Rd. Suppose that there is
L ∈ R such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for all (t, x), (t, y) ∈ R×Rd. (1)

Show that there is and ε > 0 and a unique function y ∈ C1([0, ε],Rd) that satisfies the initial
value problem. Do not just quote theorems. Provide as detailed a proof as you can.

dx

dt
= f(t, x),

x(0) = x0.
(2)

Finding a solution of (2) is equivalent to finding a continuous solution of the integral equa-
tion

x(t) = x0 +

∫ t

0

f(s, x(s)) ds for t ∈ [0, ε]. (3)

If x(t) is a C1 solution of (2) then by the Fundamental Theorem of Calculus

x(t) = x(0) +

∫ t

0

dx

dt
(s) ds = x0 +

∫ t

0

f(s, x(s)) ds.

On the other hand, if x(t) is a continuous solution of (3), then since the function s 7→
f(s, x(s)) is continuous, then by the other Fundamental Theorem of Calculus, the right side
of (3) is differentiable, and its derivative is

dx

dt
(t) = 0 + f(t, x(t)),

which is continuous. Hence x(t) is a C1 solution of the differential equation of (2). Moreover,
since x(0) = x0 + 0 in (3), x(t) also satisfies the initial condition in (2).

Solubility of the integral equation shall follow from the Contraction Mapping Theorem.

Theorem 1 (Contraction Mapping Theorem). Let X be a Banach Space (complete normed
linear space) with norm ‖ • ‖. Suppose L : X → X be a mapping which is a contraction:
there is a θ ∈ (0, 1) such that

‖L[x]− L[y] ‖ ≤ θ‖x− y‖, for all x, y ∈ X. (4)

Then there is a unique fixed point z ∈ X such that L[z] = z.

Proof. Choose any point z0 ∈ X and consider the iteration sequence defined recursively by
z1 = L[z0] and zn+1 = L[zn] for n = 1, 2, 3, . . .. Using (4), we see by induction that

‖z2 − z1‖ = ‖L[z1]− L[z0]‖ ≤ θ‖x1 − z0‖
‖z3 − z2‖ = ‖L[z2]− L[z1]‖ ≤ θ‖x2 − z1‖ ≤ θ2‖x1 − z0‖

...

‖zn+1 − zn‖ = ‖L[zn]− L[zn−1]‖ ≤ θ‖xn − zn−1‖ ≤ θn‖x1 − z0‖

(5)

We show {zn} is a Cauchy Sequence in X. Choose η > 0. Let N ∈ R be so large that

θN

1− θ
‖z1 − z0‖ < η.
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Then for any p, q ∈ N such that p > N and q > N , either p = q in which case ‖zp − zq‖ =
0 < η or, because ‖zp− zq‖ = ‖zq− zp‖ we may suppose, after swapping values if necessary,
that p > q. Then using a telescoping sum, the triangle inequality, (5) and the geometric
sum formula,

‖zp − zq‖ = ‖(zp − zp−1) + (zp−1 − zp−2) + · · ·+ (zq+1 − zq)‖
≤ ‖zp − zp−1‖+ ‖zp−1 − zp−2‖+ · · ·+ ‖zq+1 − zq)‖
≤ θp−1‖z1 − z0‖+ θp−2‖z1 − z0‖+ · · ·+ θq‖z1 − z0‖
≤ θq

(
θp−q−1 + θp−q−2 + · · ·+ θ + 1

)
‖z1 − z0‖

= θq
(

1− θp−q

1− θ

)
‖z1 − z0‖ ≤

θq

1− θ
‖z1 − z0‖ <

θN

1− θ
‖z1 − z0‖ < η

because q > N . Hence {zn} is a Cauchy Sequence.

Because X is complete, there is a limit point z ∈ X such that

z = lim
n→∞

zn.

By continuity (4) we may exchange L with the limit

z = lim
n→∞

zn+1 = lim
n→∞

L[zn] = L
[

lim
n→∞

‡n
]

= L[z],

so z is a fixed point. The fixed point is unique. If there were another, y = L[y], then

‖y − z‖ = ‖L[y]− L[z]‖ ≤ θ‖y − z‖

so
(1− θ)‖y − z‖ ≤ 0

implying ‖y− z‖ = 0 so y = z since 1− θ > 0. Thus there is only one fixed point in X.

Choose any positive ε < 1/L and let I = [0, ε]. Define the Banach Space of continuous
function X = C(I,Rd) with sup norm

‖f‖ := sup
t∈I
|f(t)|.

Define the Picard operator for f ∈ X and t ∈ I by

L[f ](t) = x0 +

∫ t

0

f(s, x(s)) ds.

We seek a fixed point x ∈ X of the Picard operator x = L[x] which is a solution of the
integral equation (3).

L maps X to X. To see this, for any x ∈ X, since s 7→ f(s, x(s)) is continuous, then by the
Fundamental Theorem of Calculus the indefinite integral L[x] is continuous, so in X.
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Finally, L is a contraction on X. Choose x, y ∈ X. Then for t ∈ I, using (1),

|L[x](t)− L[y](t)| =
∣∣∣∣x0 +

∫ t

0

f(s, x(s)) ds− x0 −
∫ t

0

f(s, y(s)) ds

∣∣∣∣
=

∣∣∣∣∫ t

0

f(s, x(s))− f(s, y(s)) ds

∣∣∣∣
≤
∫ t

0

∣∣f(s, x(s))− f(s, y(s))
∣∣ ds

≤
∫ t

0

L
∣∣x(s)− y(s)

∣∣ ds
≤
∫ t

0

L‖x− y‖ ds

= Lt‖x− y‖ ≤ Lε‖x− y‖.

Taking supremum over t ∈ I,

‖L[x]− L[y]‖ ≤ Lε‖x− y‖.

Thus L is a contraction in X with constant θ = Lε < 1.

By the Contraction Mapping Theorem, there is a unique x ∈ X which is a fixed point of L,
hence a solution of the integral equation and the Initial Value Probelm (2).

2. Consider Griffith’s model for a genetic control system, where x and y are proportional to the
concentration of a protein and the messenger RNA from which it is translated, respectively,
and µ > 0 is a rate constant. Let x0 > 0 and y0 > 0.

ẋ = y − µx x(0) = x0

ẏ =
x2

1 + x2
− y. y(0) = y0

(6)

Assume that the solution of (6) exists for all t ∈ [0, T ]. Find a bound on the solution at
time t. Uning your bound, explain why the solution of (6) exists for all t ∈ [0,∞).

[You may use theorems, but state carefully any theorem that you use and verify that the
hypotheses hold.]

Let us write (6) as a vector equation.
dz

dt
= Az + b(z) = f(z, µ),

x(0) = z0.
(7)

where

z(t) =

(
x(t)

y(t)

)
, z0 =

(
x0

y0

)
, A =

(
−µ 1

0 − 1

)
, b(z) =

(
0

x2/(1 + x2)

)
f(z, µ) is a rational function so it is Ck in (z, µ) for all k. We estimate the solution using
Gronwall’s Inequality.

Theorem 2 (Gronwall’s Inequality). Let α, β be real constants such that β ≥ 0. If u(t) is
a continuous function satisfying

u(t) ≤ α+ β

∫ t

0

u(s) ds, for all t ∈ [0, T ], (8)
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. then
u(t) ≤ αeβt for all t ∈ [0, T ]. (9)

.

Estimating the operator norm and length, for all z ∈ R2,

‖A‖ ≤ ‖A‖2 =
√
µ2 + 2, |b(z)| ≤ 1.

Estimating the integral equation, for t ∈ [0, T ],

|z(t)| =
∣∣∣∣z0 +

∫ t

0

Az(s) + b(z(s)) ds

∣∣∣∣
≤ |z0|+

∫ t

0

|Az(s) + b(z(s))| ds

≤ |z0|+
∫ t

0

|Az(s)|+ |b(z(s))| ds

≤ |z0|+
∫ t

0

‖A‖ |z(s)|+ 1 ds+

≤ |z0|+ t+ ‖A‖
∫ t

0

|z(s)| ds

≤ |z0|+ T + ‖A‖
∫ t

0

|z(s)| ds

Thus applying Gronwall’s Inequality to u(t) = |z(t)|, α = |u0|+T and β = ‖A‖ =
√
µ2 + 2

we have for all t ∈ [0, T ],

|z(t)| ≤ (|z0|+ T )et
√
µ2+2. (10)

To see that the solution exists on all of t ∈ [0,∞), we invoke the global existence theorem.

Theorem 3 (Global Existence Theorem). Let f(x, µ) : Rd ×Rp → Rd be a C1 function.
Then for every (x0, µ) ∈ R×Rd×, the initial value problem

dz

dt
= f(z, µ),

x(0) = z0.

has a unique maximal C1 solution γ(t) defined on Ix0,µ = (a, b) its maximal interval of
existence. If b <∞, then |γ(t)| → ∞ as t→ b−.

The right side f(z, µ) of (7) is C1 so we may apply the Global Existence Theorem. Let γ(t)
be the maximal solution of (7) and suppose for contradiction that it does not extend to
infinity so b <∞. Then by the Global existence theorem, the trajectory exits any compact
set, i.e., there is a time t0 ≤ T < b such that

|γ(T )| > (|z0|+ b)eb
√
µ2+2.

But this contradicts the estimate (10) we obtained at t = T , namely the solution existing
on [t0, T ] satisfies

|γ(t)| ≤ (|z0|+ T )et
√
µ2+2 < (|z0|+ b)eb

√
µ2+2

for all t ∈ [t0, T ]. Thus, b is not finite and the solution γ(t) exists for all t ∈ [t0,∞).
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3. Consider again the ODE from Problem 2, where µ > 0 is a constant.

ẋ = y − µx x(0) = x0

ẏ =
x2

1 + x2
− y. y(0) = y0

(11)

Let x0 > 0 and y0 > 0. Explain why the solution may be differentiated with respect to µ.

How big are
∂x

∂µ
(T, µ) and

∂y

∂µ
(T, µ) at T > 0?

The differentiability of the solution with respect to parameters follows from the Global
Differentiable Dependence Theorem.

Theorem 4 (Global Differentiable Dependence Theorem). Let f(x, µ) : Rd×Rp → Rd be
a Ck function. Then the map D → Rd given by the solution (t, z̄, µ̄) 7→ z(t, x̄, µ̄) of

dz

dt
= f(z, µ̄),

z(0) = z̄.
(12)

is Ck in the domain
D =

{
(t, z̄, µ̄) ∈ Rd ×Rp : t ∈ Iz̄,µ̄

}
.

where Ix̄,µ̄ is the maximal interval of existence for the solution of (7). Moreover, the
function

W (t) = Dµz(t; x̄, µ̄)

satisfies the variational equation
dW

dt
= Dzf(z(t, z̄, µ̄), µ̄)W (t) +Dµf(z(t, z̄, µ̄),

W (0) = 0.
(13)

The right side of equivalent vector equation (7) is Ck for all k beause it is a rational function
without singularities. The Global Differentiable Dependence Theorem tells us that the
solution z(t, z, µ) is differentiable wrt µ for all (t, x̄, µ̄). The partial derivatives are the
components

W (t) = Dµz(t, z̄, µ̄) =


∂x

∂µ
(t, z̄, µ̄)

∂y

∂µ
(t, z̄, µ̄)

 .

To estimate the size of the partial derivatives, we may apply Gronwall’s Inequality to the
integrated version of the variational equation. For t ≥ 0 such that t ∈ Iz̄,µ̄

|W (t)| =
∣∣∣∣0 +

∫ t

0

Dzf(z(s, z̄, µ̄), µ̄)W (s) +Dµf(z(s, z̄, µ̄) ds

∣∣∣∣
≤
∫ t

0

|Dzf(z(s, z̄, µ̄), µ̄)W (s) +Dµf(z(s, z̄, µ̄)| ds

≤
∫ t

0

‖Dzf(z(s, z̄, µ̄), µ̄)‖ |W (s)|+ |Dµf(z(s, z̄, µ̄)| ds

≤
∫ t

0

√
µ2 + 3 |W (s)|+ (|z0|+ t)et

√
µ2+2 ds

≤ t(|z0|+ t)et
√
µ2+2 +

∫ t

0

√
µ2 + 3 |W (s)| ds
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where we have used

Dzf(z(t, z̄, µ̄), µ̄) =

(
−µ 1

0 − 1

)
+

(
0 0

2x
(1+x2)2 0

)
Dµf(z(t, z̄, µ̄) =

(
−1 0

0 0

)
z(t, z̄, µ̄)

that are estimated using 2|z| ≤ 1 + z2 and (10),

‖Dzf(z(t, z̄, µ̄), µ̄)‖ ≤
√
µ2 + 3,

|Dµf(z(t, z̄, µ̄)| ≤ |z(t, z̄, µ̄)| ≤ (|z0|+ t)et
√
µ2+2.

By the Gronwall Inequality, we find the desired estimates on the derivative. For 0 ≤ t such
that t ∈ Iz̄,µ̄,

|W (t)| ≤ t(|z0|+ t)et
√
µ2+2et

√
µ2+3 ≤ t(|z0|+ t)e2t

√
µ2+3.

4. Consider the first order differential equation

dx

dt
= f(t, x),

where f(t, x) is smooth and periodic in t: f(t+ 1, x) = f(t, x) for all x and t in R.

(a) Define the Poincare map for this differential equation.

(b) Suppose f(t, x) = A(t)x − x2, where 0 < α < A(t) < β. Prove that the differential
equation has at least one nontrivial periodic solution.

By the Global Existence theorem, the initial value problem
dx

dt
= f(t, x),

x(0) = x0.
(14)

has a solution x(t;x0) which is defined whenever t ∈ Ix0
, the maximal interval of existence.

The Poincaré Map in the context of T = 1 periodic solutions is the time-one map

℘(x0) = x(1;x0)

provided 1 ∈ Ix0
. There is a T -periodic solution x(t, x0) whenever x0 is a fixed point of the

Poincaré Map x0 = ℘(x0).

In the special case f(t, x) = A(t)x−x2 where A(t) is a smooth (Ck for any k) T = 1 periodic
real function. Under the hypothesis 0 < α < A(t) < β, we see that

f(α) = A(t)α− α2 > α2 − α2 = 0

f(β) = A(t)β − β2 < β2 − β2 = 0.

We wish to show ℘ is defined for x0 ∈ [α, β]. First, we observe that for any x0 ∈ [α, β],
there is a τ > 0 such that α < x(t, x0) < β for 0 < t < τ . By the Global Existence
Theorem (or Local Existence Theorem), we know that for all x0, x(t, x0) is defined for t
in a neighborhood of t = 0. By the continuity of solutions, if α < x0 < β then there is a
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τ > 0 so that α < x(t, x0) < β for 0 < t < τ . On the other hand if x0 = β, we know that
ẋ(0, β) = f(0, β) < 0. Since x(t, β) is differentiable in t,

0 > f(0, β) =
dx

dt
(0, β) = lim

t→0

x(t, β)− β
t− 0

.

Thus there is a τ > 0 such that for every 0 < t < τ

x(t, β)− β
t− 0

< 0

so x(t, x0) < β. Similarly, if x0 = α then there is a τ > 0 such that x(t, x0) > α whenever
0 < t < τ .

To finish the claim, we argue both that the solution exists for t ∈ [0, 1] and that α ≤
x(t, x0) ≤ β for all t ∈ [0, 1]. If for some x0 ∈ [α, β] the maximal interval Ix0

= (p, q) does
not include t = 1 then x(t, x0) exits any compact set: there is 0 < t1 < p < 1 such that
|x(t1, x0)| > β. If on the other hand for some x0 ∈ [α, β] the trajectory exits the interval,
then there is 0 < t1 ≤ 1 such that x(t1, x0) /∈ [α, β]. In either case x(t1, x0) /∈ [α, β].

By continuity of x(t, x0) there is a first 0 < t2 < t1 such that x(t2, x0) ∈ {α, β}. In other
words

t2 = sup {τ ∈ (0, t1) : x(s, x0) ∈ (α, β) for all 0 < s < τ} .
We have already shown that there is a τ > 0 for every x0 ∈ [α, β]. By continuity x(t2, x0) =
α or x(t2, x0) = β and x(s, x0) ∈ (α, β) for all 0 < s < τ .

Let us rule out the possibility x(t2, x0) = β. The argument in case x(t2, x0) = α is similar.
Since x(s, x0) < β for 0 < s < t2 it follows that

ẋ(t2, x0) = lim
s→t2−

x(s, x0)− β
s− t2

≥ 0.

But this contradicts the ODE since

ẋ(t2, x0) = f(t2, x(t2, x0)) = f(t2, β) < 0.

This completes the claim that for x0 ∈ [α, β] the solution exists for 0 ≤ t ≤ 1 and that
x(t, x0) ∈ [α, β] for all 0 ≤ t ≤ 1.

This implies that ℘([α, β]) ⊂ [α, β]. By the Global Differentiable Dependence Theorem
(or Global Continuity Theorem) ℘(x0) is continuous in x0. By the Intermediate Value
Theorem, ℘ which maps a compact interval to itself has a fixed point x1 ∈ [α, β] such that
x1 = ℘(x1). Thus the solution x(t, x1) is a nontrivial T = 1 periodic solution.

5. Find a matrix T that such that T−1AT = J , the Jordan form, and check your answer.
Using your J , find the solution to ẋ = Ax, x(0) = c.

A =


1 2 3

0 1 4

0 0 1

 , c =


c1

c2

c3

 .

The eigenvalues are the diagonals λ = 1 with algebraic multiplicity three. An eigenvector satisfies

0 = (A− λI)V1 =


0 2 3

0 0 4

0 0 0




1

0

0

 ,
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As A− λI has rank two, V1 generates the one dimensional eigenspace. It follows that the Jordan
form of this matrix is a 3× 3 block

J =


1 1 0

0 1 1

0 0 1

 =


1 0 0

0 1 0

0 0 1

+


0 1 0

0 0 1

0 0 0

 = I +N.

To find T , we write the cyclic vectors by inspection.

(A− λI)V2 =


0 2 3

0 0 4

0 0 0




0

1
2

0

 =


1

0

0

 = V1,

(A− λI)V3 =


0 2 3

0 0 4

0 0 0




0

− 3
16

1
8

 =


0

1
2

0

 = V2

Take

T =
(
V1 | V2 | V3) =


1 0 0

0 1
2 − 3

16

0 0 1
8

 .

To check T−1AT = J we compute

AT =


1 2 3

0 1 4

0 0 1




1 0 0

0 1
2 − 3

16

0 0 1
8

 =


1 1 0

0 1
2

5
16

0 0 1
8

 =


1 0 0

0 1
2 − 3

16

0 0 1
8




1 1 0

0 1 1

0 0 1

 = JT.

Using IN = NI,

etJ = et(I+N) = etIetN =


et 0 0

0 et 0

0 0 et




1 t 1

2 t
2

0 1 t

0 0 1

 = et


1 t 1

2 t
2

0 1 t

0 0 1
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The solution of ẋ = Ax, x(0) = c is given by

x(t) = etAc = etTJT
−1

c = TetJT−1c = et


1 0 0

0 1
2 − 3

16

0 0 1
8




1 t 1

2 t
2

0 1 t

0 0 1




1 0 0

0 2 3

0 0 8




c1

c2

c3



= et


1 0 0

0 1
2 − 3

16

0 0 1
8




1 2t 3t+ 4t2

0 2 3 + 8t

0 0 8




c1

c2

c3

 = et


1 2t 3t+ 4t2

0 1 4t

0 0 1




c1

c2

c3

 .
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