
Homework for Math 6410 §1, Fall 2012

Andrejs Treibergs, Instructor

December 4, 2012

Our main text this semester is Lawrence Perko, Differential Equations and Dynamical Systems,
3rd. ed., Springer, 1991. Please read the relevant sections in the text as well as any cited
reference. Each problem is due three class days after its assignment, or on Monday, Dec. 10,
whichever comes first.

1. [Aug. 20.] Compute a Phase Portrait using a Computer Algebra System. This
exercise asks you to figure out how to make a computer algebra system draw a phase
portrait. For many of you this will already be familiar. See, e.g., the Maple worksheet
from today’s lecture

http : //www.math.utah.edu/∼treiberg/M6412eg1.mws
http : //www.math.utah.edu/∼treiberg/M6412eg1.pdf

or my lab notes from Math 2280,

http : //www.math.utah.edu/∼treiberg/M2282L4.mws.

Choose an autonomous system in the plane with at least two rest points such that one
of the rest points is a saddle and another is a source or sink. Explain why your system
satisfies this. (Everyone in class should have a different ODE.) Using your favorite computer
algebra system, e.g., Maple or Matlab, plot the phase portrait indicating the background
vector field and enough integral curves to show the topological character of the flow. You
should include trajectories that indicate the stable and unstable directions at the saddles,
trajectories at the all rest points including any that connect the nodes, as well as any
seperatrices.

2. [Aug. 22.] Continuous Dependence for Constant Coefficient Linear Systems. Let
A be an n× n real matrix. For every x0 ∈ Rn, let ϕ(t;x0) denote the solution of the IVP

dx

dt
= Ax,

x(0) = x0.

Note that ϕ(t;x0) is defined for all t ∈ R. For fixed t ∈ R show that

lim
y→x0

ϕ(t; y) = ϕ(t, x0).
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3. [Aug. 24.] Real Canonical Form. Let A be a real 2 × 2 matrix whose eigenvalues are
a± bi where a, b ∈ R such that b 6= 0. Show that there is a real matrix Q so that

Q−1AQ =
(
a − b
b a

)
.

Use this fact to solve the system

x′ = −13x− 10y
y′ = 20x+ 15y

4. [Aug. 27.] Jordan Form. Find the generalized eigenvectors, the Jordan form and the
general solution

ẏ =


6 6 4

−2 −2 −4

2 6 8

y.

5. [Aug. 29.] Just Multiply by t. Consider the n-th order constant coefficient linear
homogeneous scalar equation

x(n) + an−1x
(n−1) + · · ·+ a1x

′ + a0x = 0

where ai are complex constants. Convert to a first order differential system x′ = Ax.
Show that the geometric multiplicity of every eigenvalue of A is one. Show that a basis of
solutions is {tk exp(µit)} where i = 1, . . . , s correspond to the distinct eigenvalues µi and
0 ≤ k < mi where mi is the algebraic multiplicity of µi. [cf., Gerald Teschl, Ordinary
Differential Equations and Dynamical Systems, Amer. Math. Soc., 2012, p.68.]

6. [Aug. 31.] To Use Jordan Form or Not to Use Jordan Form. Sometimes the use
of the Jordan Canonical Form and matrices with multiple eigenvalues can be avoided using
the following considerations.

(a) Let A ∈ Mn×n(C). Show that given ε > 0 there exists a matrix B with distinct
eigenvalues so that ‖A−B‖ ≤ ε.

(b) Give three proofs of det(eA) = etrace(A).

(c) Let A ∈ Mn×n(C). By a simpler algorithm than finding the Jordan Form, one can
change basis by a P that transforms A to upper triangular

P−1AP = U =



u11 u12 . . . u1n

0 u22 . . . u2n

...
...

. . .
...

0 0 . . . unn


. (1)

Show that this fact can be used instead of Jordan Form to characterize all solutions of
ẏ = Ay (as linear combinations of products of certain exponentials, polynomials and
trigonometric functions). [c.f., Bellman, Stability Theory of Differential Equations,
pp. 21–25.] )
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(d) Let A ∈ Mn×n(C). Show that given ε > 0 there exists a nonsingular P such that in
addition to (1) we may arrange that

∑
i<j |uij | < ε.

(e) [Optional.] Find all continuous scalar valued functions f ∈ C(Mn×n(C),C) so that

f(AB) = f(A)f(B) for all A,B.

You can probably find several different arguments on your own. [ibid.; or Kurosh, Higher
Algebra, p. 334.]

7. [Sept 5.] The Contraction Mapping Principle and a Delay Differential Equation.
The local existence follows from an abstract fixed point theorem.

(a) Let (X , ‖ · ‖) be a Banach Space (a complete normed linear space). Let 0 < b < ∞
and 0 < k < 1 be constants and let T : X → X be a transformation. Suppose that for
any φ, ψ ∈ X if ‖ψ‖ ≤ b then ‖T (ψ)‖ ≤ b and if ‖φ‖ ≤ b and ‖ψ‖ ≤ b then

‖T (ψ)− T (φ)‖ ≤ k‖ψ − φ‖,

i.e., T is a cantraction. Prove that there exists an element ζ with ‖ζ‖ ≤ b such that
ζ = Tζ, that is, T has a fixed point. Prove that ζ is the unique fixed point among
points that staisfy ‖ζ‖ ≤ b. [cf. Perko 77[5]]

(b) The delay differential equation involves past values of the unknown function x, and so
its initial data ϕ must be given for all times t ≤ 0. Using the Contraction Mapping
Principle (a.), show the local existence of a solution to the delay differential equation.
Theorem. Let b > 0. Let f ∈ C(R3) be a function that satisfies a Lipschitz condition:
there is L <∞ such that for all t, x1, x2, y1, y2 ∈ R,

|f(t, x1, y1)− f(t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

Let g ∈ C(R) such that g(t) ≤ t for all t. Let ϕ ∈ C
(
(−∞, 0],R

)
such that |ϕ(t)−ϕ(0)| ≤

b for all t ≤ 0. Show that there is an r > 0 such that the initial value problem
dx

dt
(t) = f

(
t, x(t), x(g(t))

)
x(t) = ϕ(t) for all t ≤ 0.

has a unique solution x(t) ∈ C
(
(−∞, r],R

)
∩ C1

(
(0, r),R

)
.

[cf. Saaty, Modern Nonlinear Equations, Dover 1981, §5.5.]

8. [Sept. 7.] Nagumo’s Uniqueness Theorem. Prove the theorem and show that it implies
the uniqueness statement in the Picard Theorem.

Theorem. [Nagumo, 1926] Suppose f ∈ C(R2) such that

|f(t, y)− f(t, z)| ≤ |y − z|
|t|

for all t, y, z ∈ R such that t 6= 0. Then the initial value problem

dy

dt
= f(t, y),

y(0) = 0,

has a unique solution.
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9. [Sept. 10.] Existence via Schauder’s Theorem. Give another proof of the Peano
Existence Theorem using the Schauder Fixed Point Theorem.

Theorem. [Peano Existence Theorem] Let Ω ⊂ R × Rn be a domain and f ∈ C(Ω,Rn).
Then for any (t0, x0) ∈ Ω there is a > 0 and a continuously differentiable function x(t) :
[t0 − a, t0 + a]→ Rn which solves the initial value problem

dx

dt
= f(t, (x(t))), for all t ∈ [t0 − a, t0 + a];

x(t0) = x0.

Theorem. [Schauder Fixed Point Theorem] Let A be a closed, bounded, convex subset of
a Banach space X and T : A → A be a completely continuous function. Then T has a fixed
point in A.

A subset A of a Banach space is compact if any sequence in {φi}i=1,2,... ⊂ A has a subse-
quence that converges to an element in A. f is compact if for any bounded set A ⊂ X , the
closure of the set f(A) is compact. f is completely continuous if it is both compact and
continuous. [cf. Hale, p. 14.]

10. [Sept. 12.] Compare Solutions of Two Mathieu Equations. One solution for Prob-
lem 19 of the 2010 Math 6410 depended on comparing the solutions of the perturbed and
unperturbed problems. Find a sharp estimate for the difference in values and derivatives at
T = 2π

3 of the solutions for the two initial value problems, where u0, u1, ε are constants. In
fact one needed to show |y(T ; 1, 0) + ẏ(T ; 0, 1)| < 2 where y(t;u0, u1) solves the IVP. Does
this hold for small |ε|?

ẍ+ x = 0, ÿ + (1 + ε sin(3t))y = 0,
x(0) = u0, y(0) = u0,

ẋ(0) = u1; ẏ(0) = u1.

11. [Sept. 14.] Find a Periodic Solution. This exercise gives conditions for an ordinary
differential equation to admit periodic solutions.

(a) Let J = [0, 1] denote an interval and let φ ∈ C(J, J) be a continuous transformation.
Show that φ admits at least one fixed point. (A fixed point is y ∈ J so that φ(y) = y.)

(b) Assume that f ∈ C(R × [−1, 1]) such that for some L < ∞ and some 0 < T < ∞ we
have

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,
f(T + t, y1) = f(t, y1),
f(t,−1)f(t,+1) < 0

for all t ∈ R and all y1, y2 ∈ [−1, 1]. Using (a), show that the equation y′ = f(t, y) has
at least one solution periodic of period T .

(c) Apply (b) to y′ = a(t)y + b(t) where a, b are T periodic functions.

12. [Sept. 17.] Concrete Variational Equation. Let

f


x1

x2

x3

 =


−x1

−x2 + x2
1

x3 + x2
1

 .
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Find the solution ϕ(t, y) ∈ R3 of

dx

dt
= f

(
x(t)

)
,

x(0) = y.

Find
Φ(t, y) = D2 ϕ(t, y).

Show that it satisfies the variational equation

dΦ
dt

= Df
(
ϕ(t, y)

)
· Φ(t, y),

Φ(0) = I.

[Perko, p. 84.]

13. [Sept. 19.] Global Well-Posedness of the Initial Value Problem. Assume that f
is continuous and satisfies a local Lipschitz condition with respect to x on an open set
G ⊂ R×Rn×Rm and let (t0, x0, µ0) ∈ G. Suppose that for τ = t0, ξ = x0 and µ = µ0, the
initial value problem

x′ = f(t, x, µ),
x(τ) = ξ

(2)

has a unique solution ϕ(t; t0, x0, µ0) whose domain contains the interval [a, b]. Assume that
G contains the curve

{(t, ϕ(t; t0, x0, µ0), µ0) ∈ R× Rn × Rm : a ≤ t ≤ b} .

Show that for a sufficiently small r > 0, for every (τ, ξ, µ) ∈ Ur the initial value problem (2)
has a unique solution ϕ(t; τ, ξ, µ) whose domain contains [a, b], where

Ur = {(τ, ξ, µ) ∈ R× Rn × Rm : a ≤ τ ≤ b, |ξ − ϕ(τ ; t0, x0, µ0)| < r and |µ− µ0| < r} .

Moreover x is continuous for (t, τ, ξ, µ) ∈ [a, b]×Ur, uniformly for t ∈ [a, b]. [Cronin, 40[13].]

14. [Sept. 21.] Variation of Parameters Formula. Solve the inhomogeneous linear system{
ẋ = A(t) x + b(t),

x(t0) = c;

where

A(t) =

−2 cos2 t −1− sin 2t

1− sin 2t −2 sin2 t

 , b(t) =

 1

e−2t

 , c =

c1
c2

 .

Hint: Show that a fundamental matrix is given by

U(t, 0) =

e−2t cos t − sin t

e−2t sin t cos t

 .

[cf. Perko, Differential Equations and Dynamical Systems, Springer, 1991, p. 62.]
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15. [Sept. 24.] Condition for Asymptotic Stability. Suppose that the zero solution to
ẋ = Ax is asymptotically stable. Let g(t, x) ∈ C1(R× Rn,Rn) satisfy g(t, 0) = 0 and

|g(t, x)| ≤ h(t)|x|, for all t ≥ 0 and x ∈ Rn,

where h(t) satisfies for positive constants k and r,∫ t

0

h(s) ds ≤ kt+ r, for all t ≥ 0.

Show that there is a constant k0(A) > 0 such that if k ≤ k0, then the zero solution of

ẋ = Ax+ g(t, x)

is asymptotically stable. [cf. James H. Liu, A First Course in the Qualitative Theory of
Differential Equations, Prentice Hall 2003, p. 243.]

16. [Sept. 26.] Feedback Control. Consider the equation for the pendulum of length `, mass
m in a viscous medium with friction proportional to the velocity of the pendulum. Suppose
that the objective is to stabilize the pendulum in the vertical position (above its pivot) by a
control mechanism which can move the pendulum horizontally. Let us assume that ϑ is the
angle from the vertical position measured in a clockwise direction and the restoring force v
due to the control mechanism is a linear function of ϑ and ϑ̇, that is, v(ϑ, ϑ̇) = c1ϑ + c2ϑ̇.
Explain why the differential equation describing the motion is

mϑ̈+ kϑ̇− mg

`
sinϑ− 1

`
(c1ϑ+ c2ϑ̇) cosϑ = 0.

Show that constants c1 and c2 can be chosen in such a way as to make the equilibrium point
(ϑ, ϑ̇) = (0, 0) asymptotically stable. [cf. J. Hale and H. Koçek, Dynamics and Bifurcations,
Springer 1991, p. 277.]

17. [Sept. 28.] Discrete Dynamical Systems. Let T ∈ C(Rn,Rn). Consider the difference
equation

x(0) = x,

x(n+ 1) = T (x(n)).
(3)

Writing Tx := T (x), a solution sequence of (3) can be given as the n-th iterates x(n) = Tnx
where T 0 = I is the identity function and Tn = TTn−1. The solution automatically exists
and is unique on nonnegative integers Z+. Solutions Tnx depend continuously on x since
T is continuous. The forward orbit of a point x is the set {Tnx : n = 0, 1, 2, . . .}. A set
H ⊂ Rn is positively (negatively) invariant if T (H) ⊂ H (H ⊂ T (H)). H is said to be
invariant if T (H) = H, that is if it is both positively and negatively invariant. A closed
invariant set is invariantly connected if it is not the union of two nonempty disjoint invariant
closed sets. The solution Tnx starting from a given point x is periodic or cyclic if for some
k > 0, T kx = x. The least such k is called the period of the solution or the order of the
cycle. If k = 1 then x is a fixed point of T or an equilibrium state of (3). Tnx (defined for
all n ∈ Z) is called an extension of the solution Tnx to Z if T0x = x and T (Tnx) = Tn+1x
for all n ∈ Z. Thus Tnx = Tnx for n ≥ 0.

(a) Show that a finite set (a finite number of points) is invariantly connected if and only if
it is a periodic orbit. [Hint: Any permutation can be written as a product of disjoint
cycles.]

(b) Show that a set H is invariant if and only if each motion starting in H has an extension
to Z that is in H for all n.
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(c) Show, however, that an invariant set H may have an extension to Z from a point in
H which is not in H.

[J. P. LaSalle in J. Hale’s Studies in ODE, Mathematical Association of America, 1977, p. 7]

18. [Oct. 1.] Stable and Unstable Manifolds. Find the stable manifold W s and unstable
manifold Wu near the origin of the system

ẋ = −x
ẏ = −y + x2

ż = z + y2.

[cf. Perko, Differential Equations and Dynamical Systems, Springer, 1991, p. 116–117.]

19. [Oct. 3.] Traveling Wave. For constant r > 0 let u(x, t) be a real valued function
satisfying Fischer’s Euqation

∂u

∂t
=
∂2u

∂x2
+ ru(1− u), for x ∈ R and t ≥ 0.

which models the spread of disease. A special solution is the travelling wave, u(t, x) =
v(x− ct) where c > 0 is the wave speed.

(a) Show that the traveling wave satisfies the ODE

v′′ + cv′ + rv(1− v) = 0,

where v′ = dv/ds and s = x− ct.
(b) Show that for every c ≥ 2

√
r, Fischer’s Equation has a travelling wave solution satis-

fying v(s) → 1 as s → −∞ and v(s) → 0 as s → ∞ with v′(s) < 0 for all s. [Hint:
Discuss the stability properties of equilibrium points. Use special properties of the
unstable manifold at (1, 0). Show there is a forward invariant triangle in the (v, v′)
plane bounded by the lines v′ = 0, v = 1 and v′ = −µv for appropriate µ > 0. ]

[cf. J. Hale and H. Koçek, Dynamics and Bifurcations, Springer 1991, p. 299.]

20. [Oct. 5.] Hartman-Grobman Theorem. Find a homeomorphism H in a neighborhood
of 0 that establishes an isochronous flow equivalence between the flow of the differential
system and the flow of the linearized system, i.e., H(φ(t, x)) = etAH(x) where A = Df(0)
and φ(t, x0) is the solution of ẋ = f(x), the nonlinear system given by

ẋ = −x
ẏ = −y + xz,

ż = z.

[In 8.5.10, Liu discusses the approximation used in the proof, but you can guess H from the
solutions and verify.]

21. [Oct. 15.] Asymptotically Stable Equilibrium in a Discrete Dynamical System.

(a) Let A be a real n × n matrix such that |λ| < γ for all eigenvalues λ of A. Show that
there is a norm ‖ · ‖ on Rn so that ‖Ax‖ ≤ γ‖x‖ for all x ∈ Rn.

(b) Let P ∈ C1(Rn,Rn) such that P (0) = 0 and |λ| < 1 for all eigenvalues of DP (0). Show
that 0 is an asymptotically stable fixed point of the discrete dynamical system in Rn

xn+1 = P (xn),
x1 = ξ.
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22. [Oct. 17.] Liapunov Function. Use a Liapunov Function to show that the zero solution
is asymptotically stable

ẍ+ (2 + 3x2) ẋ+ x = 0.

Hint: Show that this equation is equivalent to the system

ẋ = y − x3

ẏ = −x+ 2x3 − 2y.

[D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction
for Scientists and Engineers, 4th ed., Oxford U. Press, 2007, pp. 348–349.]

23. [Oct. 19.] Četaev’s Theorem. Show that the zero solution is not asymptotically stable.

ẋ = x3 + xy

ẏ = −y + y2 + xy − x3.

[J. Hale and H. Koçek, Dynamics and Bifurcations, Springer 1991, p. 286.]

24. [Oct. 22.] LaSalle’s Invariance Principle. Use LaSalle’s Invariance Principle of find a
Liapunov Function to show that the zero solution is asymptotically stable

ẍ+ (ẋ)3 + x = 0.

[Chicone, Ordinary Differential Equations with Applications, Springer 1999, p. 27.]

25. [Oct. 24.] Stationary Points of a Hamiltonian System. Show that the system is
Hamiltonian.

ẋ = (x2 − 1)(3y2 − 1)

ẏ = −2xy(y2 − 1)

Find the equilibrium points and classify them. Find the Hamiltonian. Using obvious ex-
act solutions and the Hamiltonian property, draw a rough sketch of the phase diagram.
[D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction
for Scientists and Engineers, 4th ed., Oxford U. Press, 2007, p. 79.]

26. [Oct. 26.] Particle in a Central Force Field. Consider the motion of a particle om a
cemntral force field. That is, suppose that

mẍ = −∇U(x), x ∈ R3\{0},

where U(x) = U0(|x|) and U0 ∈ C2((0,∞)).

(a) Prove that the angular momentum M relative to the point 0 os “conserved,” where M
is defined by the cross product

M = x×mẋ.

(b) Show that all orbits are planar (in a plane perpendicular to M).

(c) Prove Kepler’s Law, which says that the radius vector “sweeps out equal area in equal
time.”
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[H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Walter
de Gruyter, 1990, p. 48.]

27. [Oct. 29.] Brusselator System. Show that there is a nonconstant periodic trajectory for
the system

ẋ = 1− 4x+ x2y

ẏ = 3x− x2y

[University of Utah Ph.D. Preliminary Examination in Differential Equations, August 2004.]

28. [Oct. 31.] Dulac’s Criterion. Prove the following theorem.
Theorem. Let A ⊂ R2 be an annular domain. Let f ∈ C1(A,R2) and let ρ ∈ C1(A,R).
Show that if div(ρf) is not identically zero and does not change signs in any open subset
of A then the equation x′ = f(x) has at most one periodic solution in A.

Use this to show that the van der Pol oscillator (λ = const. 6= 0)

ẋ = y

ẏ = −x+ λ(1− x2)y

has at most one limit cycle in the plane. Hint: let ρ = (x2 +y2−1)−1/2. [Chicone, Ordinary
Differential Equations with Applications, Springer 1999, p. 90.]

29. [Nov. 2.] T -Periodic Linear Equations. Consider the T -periodic non-autonomous linear
differential equation

ẋ = A(t)x, x ∈ Rn, A(t+ T ) = A(t).

Let Φ(t) be the fundamental matrix with Φ(0) = I.

(a) Show that there is at least one nontrivial solution χ(t) such that χ(t + T ) = µχ(t),
where µ is an eigenvalue of Φ(T ).

(b) Suppose that Φ(T ) has n distinct eigenvalues µi, i = 1, . . . , n. Show that there are
n linearly independent solutions of the form xi = pi(t)eρit where pi(t) is T -periodic.
How is ρi related to µi?

(c) Consider the equation ẋ = f(t)A0 x, x ∈ R2, with f(t) a scalar T -periodic function
and A0 a constant matrix with real distinct eigenvalues. Determine the corresponding
Floquet Multipliers.

[U. Utah PhD Preliminary Examination in Differential Equations, August 2008.]
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30. [Nov. 5.] Blowup in a periodic linear equation. Let φ(t) be a real, continuous,
π-periodic function. Consider the scalar equation

ẍ− (cos2 t)ẋ+ φ(t)x = 0.

Show that there is a solution that tends to infininty as t→∞. [cf. James H. Liu, A First
Course in the Qualitative Theory of Differential Equations, Prentice Hall 2003, p. 162.]

31. [Nov. 7.] Show that if |ε| is small enough, then all solutions are bounded.

ẍ+
[
1 + ε sin 3t

]
x = 0.

[U. Utah PhD Preliminary Examination in Differential Equations, January 2004.]

32. [Nov. 9.] Stability of a Periodic Orbit. Find a periodic solution to the system

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)
ż = z,

Let Σ be a halfplane whose boundary is the z axis. Determine the Poincare map P : Σ→
Σ and determine its differential at the periodic orbit. Determine the stability type. In
particular, compute the Floquet Multipliers for the fundamental matrix associated with the
periodic orbit. Is it orbitally asymptotically stable? Is it asymptotically stable? [cf. Perko,
Differential Equations and Dynamical Systems, Springer, 1991, p. 201.]

33. [Nov 12.] International Whaling Commission Model. A simple rescaled difference
equation for modeling the population un of sexually mature baleen whales is

un+1 = sun +R(un−T ),

where 0 < s < 1 is the survival parameter, T is an integer corresponding to time to sexual
maturity, and R(un−T ) is the recruitment function that augments the adult population
from births T years earlier. If

R(u) = (1− s)[1− q(1− u)]u,

where q > 0 describes the fecundity increase due to low density and the delay is T = 1,
derive the condition for a positive steady state u∗ to be stable and find for which q it holds.
[J. D. Murray, Mathematicsl Biology, Biomathematics Texts 19, Springer 1989, p. 62.]

34. [Nov. 14.] Stability in a Non-Autonomous Equation. Show the stability of the
solution

x(t) =
√

2b cos
1
2
t

of the equation

ẍ+
(

1
4
− 2εb cos2

1
2
t

)
x+ εx3 = 0.

[D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction
for Scientists and Engineers, 4th ed., Oxford U. Press, 2007, pp. 334.]

35. [Nov. 16.] Stable Solution of van der Pol Equation Persists under Autonomous
Perturbation. Suppose g ∈ C2(R2) and µ > 0. Show that there is an ε0 > 0 such that
there is a unique periodic solution of the perturbed van der Pol equation

ẍ+ µ(x2 − 1)ẋ+ x = εg(x, ẋ)
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in the neighborhood of the unique solution of

ẍ+ µ(x2 − 1)ẋ+ x = 0.

Can you prove that this solution is orbitally asymptotically stable? [J. Hale, Ordinary
Differential Equations, Dover 2009; repub. R. Krieger 1980; orig. J. Wiley 1969, p. 227.]

36. [Nov. 19.] Period of the van der Pol Oscillator. For |ε| small enough, we showed that
there is initial data x(ε) such that the solution ϕ(t, x(ε), ε) of the van der Pol equation

ẍ+ ε(x2 − 1)ẋ+ x = 0

is a nonconstant periodic orbit of period T (ε). Find the Taylor expansion of T (ε) up to
second order.

[Chicone, Ordinary Differential Equations with Applications, Springer 1999, p. 324.]

37. [Nov. 21.] Resonant Forced Duffings Equation. Prove that for k = 9ω2, the equation

ẍ+ kx+ λx3 = σ cosωt

has no solutions y(t) of period 2π/ω for small λ, “near” the solution z(t) =
σ

8ω2
cosωt.

[F. John, Ordinary Differential Equations, Courant Institute of Mathematical Science, 1965,
p. 148.]

38. [Nov. 23.] Autonomous Perturbation. Let f, g ∈ C1(R2). Consider the autonomous
system

ẋ =
x√

x2 + y2
− x− y + λf(x, y)

ẏ =
y√

x2 + y2
+ x− y + λg(x, y)

with special periodic solution (cos t, sin t) for λ = 0. Prove that for small |λ|, periodic
solutions exist close to (cos t, sin t). [F. John, Ordinary Differential Equations, Courant
Institute of Mathematical Science, 1965, p. 148.]

39. [Nov. 26.] Continuation from Harmonic Oscillator. Show that Rayleigh’s Equation
has a periodic solution for small ε parameter values that is a continuations from an ε = 0
solution

ẍ+ ε
(
ẋ− ẋ3

)
+ x = 0.

[Chicone, Ordinary Differential Equations with Applications, Springer 1999, pp. 318–324.]

40. [Nov. 28.] Perihelion of Mercury. The orbital equation of a planet about the sun is

d2 u

dϑ2
+ u = k(1 + εu2)

where u = 1
r and r, ϑ are polar coordinates, k > 0 is a celestial constant and kεu2 is a

relativistic correction term. Obtain a perturbation solution with initial condition u(0) =
k(e + 1), u̇(0) = 0 where e is the eccentricity of the unperturbed orbit. These are the
conditions at the perihelion, the nearest point to the sun on the unperturbed orbit. Show
that the expansion to order ε predicts that in each orbit, the perihelion advances by 2k2πε.
[D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction
for Scientists and Engineers, 4th ed., Oxford U. Press, 2007, p. 181.]
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41. [Nov. 30.] Center Manifold. Find a center manifold for the system

ẋ = −xy
ẏ = −y + x2 − 2y2

through the rest point at the origin. Find a differential equation for the dynamics on
the center manifold. Show that every nearby solution is attracted to the center manifold.
Determine the stability of the origin.

Hint: Look for a center manifold that is a graph y = ψ(x) of the form

ψ(x) =
∞∑
k=2

ak x
k

using the condition of invariance ẏ = ψ′(x)ẋ and ψ(0) = ψ′(0) = 0. Find the first few terms
of the expansion, guess the rest and check. Then get the equation for the induced flow on
the center manifold. [Chicone, Ordinary Differential Equations with Applications, Springer
1999, p. 304.]

42. [Dec. 3.] Bifurcation in a Genetic Control System. Consider Griffith’s model for a
genetic control system, where x and y are proportional to concentration of protein and the
messenger RNA from which it is translated, respectively, and µ > 0 is a rate constant

ẋ = y − µx

ẏ =
x2

1 + x2
− y.

(a) Show that the system has three fixed points when µ < µc and one when µ > µcwhere
µc is to be determined.

(b) What is the nature of the bifurcation at µ = µc?

[University of Utah Ph.D. Preliminary Examination in Differential Equations, August 2012.]

43. [Dec. 5.] Extended Center Manifold. Find the value of µ for which there is a bifurcation
at the origin for the system

ẋ = y − x− x2

ẏ = µx− y − y2.

(a) Find the evolution equation on the extended center manifold correct to third order.

(b) What is the nature of the bifurcation?

[Glendenning, Stability, Instability and Chaos, Cambridge U. Press, 1994, p. 246.]

44. [Dec. 7.] Bifurcation in the Brusselator. Show that the system undergoes a supercrit-
ical Hopf Bifurcation as the parameter passes through 2.

ẋ = 1− (1 + λ)x+ x2y.

ẏ = λx− x2y.

[Y. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd. ed., Springer, 2004, p. 103.]
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