Course Title:	Ordinary Differential Equations	August 4, 2009
Course Number:	MATH 6410 - 1	5
Instructor:	Andrejs Treibergs	
Home Page:	http://www.math.utah.edu/~treiberg/M6412.html	
Place & Time:	M, W, F, 2:00 – 2:50 in LCB 215	
Office Hours:	9:45 – 10:35 M, W, F, in JWB 224 (tent.) and by appt.	
E-mail:	treiberg@math.utah.edu	
Prerequisites:	Math 5210 or consent of instructor.	
Main Ťext:	James H. Liu, A First Course in Qualitative Theory of	
	Differential Equations, Prentice Hall, 2003.	

Grading. The course grade will be based entirely on homework solutions. Students are expected to complete all assigned problems. Students are encouraged to study and work on problems together, but the solutions should be written up individually. Make your papers self-contained. This means that your papers should include a statement of the question as well as enough description of any theorems and formulas used so that the reader doesn't have to refer to the text or another source to follow your solution.

Content. In this first semester of a year long graduate course in differential equations, we shall focus on ordinary differential equations and dynamical systems. The second semester, Math 6420 taught by D. Dobson, will emphasize partial differential equations. In this course, along with the Math 6420, we shall try to cover the syllabus for the qualifying exam in differential equations. Although some mathematical sophistication is required to take the course, we shall provide any background materials needed by the class. Topics include (depending on time):

Introduction to ODE. Applications. Review of calculus.
Existence, uniqueness and continuity theorems.
Linear systems and stability.
Qualitative theory, Lipunov stability. Limit sets and attractors.
Applications to physical, biological, charged particle, coupled pendula and planetary systems.
Invariant manifolds and linearizations. Hartman-Grobman theorem.
Planar flows. Poincaré-Bendixon theory.
Periodic solutions and their stability. Floquet Theory.
Sturm-Liouville Theory.
Bifurcation Theory.

ADA. The Americans with Disability Act requires that reasonable accommodations be provided for students with cognitive, systemic, learning and psychiatric disabilities. Please contact me at the beginning of the quarter to discuss any such accommodations you may require for this course.