
Math 5470 § 1.
Treibergs

Second Midterm Exam Name: Solutions
Mar. 21, 2024

1. Consider the differential equation. Find the general solution. Find the Poincaré map for
2π periodic solutions. Is there a 2π-periodic solution? Why? ẋ = (1 + sin t)x+ 2.

This is a linear equation. Multiply by the integrating factor

d

dt

[
e−t+cos tx

]
= e−t+cos t[ẋ− (1 + sin t)x] = 2e−t+cos t

Integrating with x(0) = x0 where x0 is any real gives

e−t+cos tx(t)− ex0 = 2

∫ t

0

e−s+cos s ds

so the general solution is

x(t) = et+1−cos tx0 + 2et−cos t
∫ t

0

e−s+cos s ds.

The Poincaré map determines where an initial point x0 evolves under the flow in one period.
Here

℘(x0) = x(2π) = e2πx0 + 2e2π−1
∫ 2π

0

e−s+cos s ds.

A 2π periodic solution returns to its starting point, or satisfies the fixed point equation
x∗ = ℘(x∗). In this case, solving we find the fixed point to be

x∗ =
2e2π−1

1− e2π

∫ 2π

0

e−s+cos s ds.

Thus the solution through the fixed point is a 2π periodic solution.

One notes that ℘(x0) is a linear function of x0 of slope e2π so it crosses the line y = x at
exactly one point. Hence the periodic solution is unique. Moreover ℘′(x∗) = e2π > 1, so
that the periodic solution through x∗ is unstable.

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: A periodic orbit of the predator prey system ẋ = x(1− y), ẏ = y(x− 1)
is orbitally asymtotically stable.

False.

All trajectories of the predator prey system are periodic since there is a conserved
quantity G(x, y) = x− lnx+ y− ln y. T rajectories are level sets which are concentric
ovals. Thus none of the periodic orbits is attractive since nearby orbits don’t ap-
proach them. Thus the orbits are not orbitally attractive. However, they are orbitally
Liapunoff stable.

(b) Statement: Consider the C2 planar system ż = f(z) with rest point f(z∗) = 0. If all
eigenvalues of the Jacobian df(z∗) satisfy λi ≤ 0 then z∗ is Liapunov stable.

False.

The asymptotic stability of a rest point of the nonlinear system can only be deduced
if <eλi < 0 for all eigenvalues of the Jacobian df(z∗). Without extra conditions on
f (such as reversibility) the condition λi ≤ 0 is inconclusive. For example the origin
is unstable for ẋ = x3, ẏ = y3, but the Jacobian vanishes. It is false even for linear
system ẋ = y, ẏ = 0.
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(c) Statement: There are no periodic orbits of the system
ẋ = −4x3 − 2xy2, ẏ = −2x2y − 12y3.

True.

Many ways to see it. It is a gradient system ż = −∇V (z) where V (x, y) = x4 +
x2y2 + 3y4 so all trajectories head to the origin. Or by Dulac’s Criterion (Bendixson’s
Negative Criterion) with g(x, y) = 1, since div g(x, y)f(x, y) = −14x2 − 38y2 which is
negative except at the origin, there are no closed orbits.

3. Find the values of the parameter a where bifurcations occur. Describe the nature of the
bifurcations. Sketch the phase plane for various a’s.{

ẋ = y

ẏ = x2 − y − a

The critical points are where 0 = ẋ = y and 0 = ẏ = x2 − y − a = x2 − a. Thus there are
no rest points when a < 0 and (−

√
a, 0) and (+

√
a, 0) when a ≥ 0. Thus the bifurcatiobn

occurs at a = 0 and is of saddle/node type. This is seen by computing the linearizations at
the rest points. The Jacobian is

J(x, y) =

 0 1

2x −1

 , J(±
√
a, 0) =

 0 1

±2
√
a −1

m

At (−
√
a, 0) the determinant is ∆ = 2

√
a > 0 and trace is τ = −1 < 0. In fact τ2 − 4∆ =

1 − 8
√
a is positive for 0 < a < 1/64 and negative for a > 1/64. Thus this rest point is a

stable node for 0 < a < 1/64 and a is a stable spiral for all a > 1/64. The rest point persists
and remains stable as a increases through 1/64 so this is not considered a bifurcation point,
even though the rest point switches from node to spiral. These are the same in the sense of
topological conjugatcy. At the other rest point (

√
a, 0) the determinant is τ2 − 4∆ < 0 so

that this is a saddle node for all a > 0.

The plots of isoclines for a = −1, 0, 1. Rest points at the intersections of the parabola and
horizontal line with ẏ < 0 above and ẏ < below the parablas.
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The figures are “Slopes” plots for a = −1, 0, .015, 1.
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4. Prove that there is a nontrivial periodic solution”{
ẋ = y

ẏ − x+ (1− x2 − 2y2)y

The rest points are at 0 = ẋ = y and 0 = ẏ = −x + (1 − x2 − 2y2)y = −z. so (0, 0) is the
only rest point. Let us show that there is an invariant annulus R1 ≤ x2 + y2 ≤ R2. Let
ρ = x2 + y2. Then

ρ̇ = 2xẋ+ 2yẏ

= 2xy + 2y(−x+ (1− x2 − 2y2)y)

= 2(1− x2 − 2y2)y2

Hence
2(1− 2x2 − 2y2)y2 ≤ ρ̇ = 2(1− x2 − 2y2)y2 ≤ 2(1− x2 − y2)y2

Thus ρ̇ ≥ 0 if x2 + y2 = 1
2 and ρ̇ ≤ 0 if x2 + y2 = 1. Thus A = { 12 ≤ x

2 + y2 ≤ 1} is a closed
forward invariant annulus without rest points. By the Poincaré Bendixson Theorem there
is nontrivial limit cycle (periodic orbit) in A.
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5. (a) What bifurcation occurs in the equation as the parameter µ varies and why?{
ẋ = y

ẏ − x+ (x2 + y2 − µ)y

(0, 0) is the only rest point for all µ. One observes that the circle x2 + y2 = µ is an
invariant cycle for µ > 0.

Putting ρ = x2 + y2, since

ρ̇ = 2xẋ+ 2yẏ = xy − yx+ (x2 + y2 − µ)y2 = (ρ− µ)y2

for ρ we have that ρ = 0 is a single stable rest point for µ ≤ 0 and ρ = 0 an unstable
and ρ = µ a stable rest points when µ > 0. Thus this system undergoes a subcritical
Hopf Bifurcation as µ increases through zero.

(b) Two fireflies flash according to the equations. Do they synchronize? and if so, at what
frequency? Derive any formulas you use.{

θ̇1 = 3 + sin(θ2 − θ1)

θ̇2 = 1 + 3 sin(θ1 − θ2)

Put ϕ = θ1 − θ2. Then

ϑ̇ = 3− 1− (3 + 1) sinϕ = 2− 4 sinϕ = f(ϕ)

f(ϕ) has a zeros at

1

2
= sinϕ so ϕ∗ =

π

6
or ϕ∗∗ =

5π

6
.

ϕ∗ is stable since f(ϕ) > 0 for ϕ∗∗ − 2π < ϕ < ϕ∗ and f(ϕ) < 0 for ϕ∗ < ϕ < ϕ∗∗.
Thus the fireflys synchronize since ϕ→ ϕ∗ as t→∞.

Thus the compromise frequency is the lmiting frequency of θ1 (or θ2 ) where

ω∗ =
d

dt
θ∗1 = 3 + sin(θ∗2 − θ∗1) = 3− sinϕ∗ = 3− 1

2
=

5

2
.
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