
Math 5470 § 1.
Treibergs

First Midterm Exam Name: Solutions
Feb. 8, 2024.

1. Consider the equation on the line. Sketch the phase portrait. Find the rest points and
determine their stability. Find the potential function V (x). Sketch the potential function
use it to check the stability of your rest points from (a) again.

ẋ = −4x3 + 4x

Factoring
f(x) = −4x3 + 4x = 4x(1− x2) = 4x(1− x)(1 + x)

so that the rest points are 0, 1,−1. f(x) > 0 for x < −1 or 0 < x < 1 and negative for
−1 < x < 0 or 1 < x. Thus −1, 1 are stable rest points and 0 is unstable.

The potential satisfies V ′(x) = −f(x) so, up to an additive constant,

V (x) = −
∫ x

0

f(z) dz = x4 − 2x2

This is a ”W”-shaped potential with minima at x = ±1 which are stable and a relative max
at x = 0 which is unstable.
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2. Determine whether the given equilibrium point for the given system is Attractive, is Liapunov
Stable, or is Not Stable. Give a brief explanation.

(a) θ = 0 for θ̇ = 1− cos θ.

Attractive.

f(θ) = 0 only at θ = 0 and is positive elsewhere else on the circle. Thus either θ(0) = 0
so flow stays at rest point or θ(0) > 0 and flow advances until it returns to the rest
point. Thus the rest point is attractive. It is not Liapunov stable because for small
neighborhoods, U = (−ε, ε) of zero where 0 < ε < π, starting at 0 < θ(0) < ε, the flow
exits U before it returns to zero.

(b) θ = −π
2

for θ̇ = cos3 θ

Not Stable.

cos3 θ is negative for − 3π
2 < θ < −π2 and positive for −π2 < θ < π

2 thus flow is away
from the point θ = −π2 making it unstable.
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(c) (x, y) = (0, 0) for

{
ẋ = −3x+ 2y

ẏ = −4x+ y

Both Attractive and Liapunov Stable. so Asymptotically Stable.

The trace of
(−3 2
−4 1

)
is τ = −2 and determinant ∆ = 5 so 1 = 1

4τ
2 < ∆ = 5. From the

trace-determinant plane, or by computing the eigenvalues, the roots of λ2−τλ+∆ = 0
which are

λ =
−2±

√
4− 4 · 5
2

= −1± 2i,

the trajectories are stable spirals, making the origin both attractive and Liapunov
stable.

(d) (x, y) = (0, 0) for

{
ẋ = 2x− 4y

ẏ = 3x− 6y

Liapunov Stable.

The trace of
(
2 −4
3 −6

)
is τ = −4 and determinant ∆ = 0. From the trace-determinant

plane, or by computing the eigenvalues, the roots of λ2 − τλ+ ∆ = 0 we have

λ =
−4±

√
16− 0

2
= −4, 0.

Thus the trajectories form a stable comb. There is a line of rest points through the
origin (x = 2y) and the flow is toward this line along paths (parallel to (2, 3)). Points
stay in a neighborhood of the origin if they begin close enough to it, but not all nearby
points tend to the origin so it is not attractive.

3. Let θ(t) be the phase in the circle of a firefly’s flashing rhythm, where θ(t) = 0 corresponds
to the instant when the flash is emitted. Assume that the firefly’s natural frequency is ω.
If it senses a stimulus ψ(t) at frequency Ω, then it tries to adjust according to the system.
Show that for Ω close enough to ω, the firefly manages to synchronize with the stimulus,
but if Ω is sufficiently different, it fails to synchronize. How close is “close enough”?

ψ̇ = Ω

θ̇ = ω + sin(ψ − θ)

Let ϕ = ψ − θ Then ϕ satisfies

ϕ̇ = ψ̇ − θ̇ = Ω− ω − sin(ψ − θ) = (Ω− ω)− sinϕ.

The firefly synchronizes to the flashing if there is a stable fixed point ϕ− and then

ψ(t)− ω(t) = ϕ(t)→ ϕ− as t→∞.

In other words, the firefly settles to the same frequency as the flashing except with a time
delay of θ−.

There is a stable fixed point if and only if µ = Ω−ω satisfies |µ| < 1. To see this, the fixed
points are the zeros of

f(ϕ, µ) = µ− sinϕ

which occur at ϕ−, ϕ+ ∈ sin−1(µ). For 0 ≤ µ < 1 as in the figure, we have 0 ≤ ϕ− <
π
2 <

ϕ+ ≤ π and for −1 < µ < 0 we have π < ϕ+ < 3π
2 < ϕ− < 2π. In both cases f > 0 for

nearby ϕ < ϕ− and f < 0 for ϕ− < ϕ, showing that ϕ− is a stable rest point.
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4. Sketch the qualitatively different vector fields that occur as r is varied. Find and classify
the bifurcation points. Sketch the bifurcation diagram.

ẋ = 2 + rx+ x3 = f(x, r)

We look at y = 2+x3 and y = −rx for r = −2,−3,−4 and see that the equation 2+x3 = −rx
has one, two and three intersection points corresponding to the zeros of f(x, r) = 0. f is
positive when y = 2 + x3 is above y = −rx and negative when below.
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Thus plotting f(x, r) for several r values shows the stability of the rest points. At r = −3
and x = 1 a saddle-node bifurcation point appears as r decreases through r = −3.
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For r > −3 there is only one negative unstable rest point. For r = −3 a second rest point
appears at x = 1. As r decreases from r = −3 the rest point splits into a stable rest point
below x = 1 and an unstable one abopve x = 1, making three rest points in the r < −3
regime.

The bifurcation diagram is the locus of f(x, r) = 0. This is most easily plotted by solving
for r

r = − 2

x
− x2.
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5. The predation on a population P (N) is very fast and a model of the prey N(t) satisfies an
ODE with small 0 < ε and with R, K, P and A positive constants.

dN

dt
= RN

(
1− N

K

)
− P

{
1− exp

(
− N

2

εA2

)}
What are the dimensions of R, K, P and A? Find dimensionless quantities x, τ , and
parameters r and q so that the equation can be put into the dimensionless form

dx

dτ
= rx

(
1− x

q

)
−
{

1− exp

(
−x

2

ε

)}
Show that the system can have three rest points if the parameteers r and q lie in the region
approximately given by rq > 4. What is hysteresis? Could this system exhibit hysteresis?

N(t) is population, which has the same dimension as A and K. The left side has the dimen-
sion (pop.)(time)−1, thus R has dimension (time)−1 and P has dimension (pop.)(time)−1.

Writing in terms of x = N
A , dimensionless population, the equation becomes

A
dx

dt
= RAx

(
1− Ax

K

)
− P

{
1− exp

(
−x

2

ε

)}
Dividing through by P ,

dt

dτ

dx

dt
=
A

P

dx

dt
=
RA

P
x

(
1− Ax

K

)
−
{

1− exp

(
−x

2

ε

)}
This suggests that we set τ = P

A t, dimensionless time and r = RA
P and q = K

A dimensionless
constants, yielding

dx

dτ
= rx

(
1− x

q

)
−
{

1− exp

(
−x

2

ε

)}
.

Fixing q, we may consider what happens as r increases from zero. The rest points are the
intersections of the left and right sides of

rx

(
1− x

q

)
=

{
1− exp

(
−x

2

ε

)}
.

For small ε, the right side quickly increases from zero to y = 1.

The maximum of the left side occurs at the point ( q2 ,
rq
4 ). Thus when rq > 4 the maximum

exceeds one and the parabola is above the right side. The plot is for q = 2.5 and ε = .1
and for values r = 1.2, 1.6, 2, 2.38. The blue curve is the right side. At r ≈ 1.6, there is
a saddle-node bifurcation at P3. As r increases this splits into unstable and stable fixed
points P1 and P2, pictured at r = 2. As r increases, the stable and unstable rest points P4

and P1 coincide at another saddle node bifurcation at P6 at r = 2.38.
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Solving for r at the rest points gives

r =

1− exp

(
−x

2

ε

)
x
(

1− x
q

) .

whose plot together with x = 0 is the bifurcation diagram. The blue curves of rest points are
stable and the red unstable. In particular, there are four rest points when 1.6 < r < 2.38.
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Hysteresis is the lack of reversibility of the solution as the parameter is altered. This
equation exhibits hysteresis. For example, starting at the stable point P2 at r = 2, we
decrease r until it dips below the bifurcation value r = 1.6. The stable point gets dragged
along the upper curve until it passes the bifurcation point at P3 and then jumps to the only
remaining stable rest point on the lower blue line. Then when the parameter is increased
back to r = 2 we’re at the rest point P4 on the lower stable branch instead of where we
started at P2. Continuing to raise r past r = 2.38, the rest point passes another bifurcation
point at P6 where it jumps back to the only stable point, which is on the upper blue line.
Decreasing the parameter down to r = 2 returns the rest point to P2
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