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This is discussed in the chapter on “One Dimensional Maps,” [Strogatz 1994, pp. 348–365].
To demonstrate the idea of a dynamical system, we consider the dynamics given by a continuously
differentiable map

f : I → I

where I = [0, 1] is the closed unit interval. For us today, we consider the logistic map

f(x) = rx(1− x)

where r is a real parameter. To make sure f(I) ⊂ I we require that 0 ≤ r ≤ 4. the map defines
the motions on I. Starting from an initial point x1 ∈ I we define recursively

xk+1 = f(xk)

The sequence {x1, x2, x3, . . .} is called the orbit of the point x1.
If r ≤ 1 then f(x) < x for 0 < x ≤ 1 so that xn+1 = f(xn) < xn (unless all xi = 0.) Hence

xn is a decreasing sequence xn → 0 as n → ∞. The convergence is to the unique fixed point of
the map, the point x∗ ∈ I such that

x∗ = f(x∗).

If r > 1 then there are more fixed points. Indeed, solving x∗ = f(x∗) yields

0 = x∗(r − 1− rx∗)

or

x∗ = 0 or x∗ =
r − 1

r

which is in I since r > 1.
Note that x∗ is an attractive fixed point for 1 < r < 3. We show that if xk is close to x∗ then

xk+1 is even closer. Writing xk = x∗ + ηk we see using Taylor’s formula that

x∗ + ηk+1 = xx+1 = f(xk) = f(x∗ + ηk) = f(x∗) + f ′(x∗)ηk + O(η2k)

as ηk → 0. As long as |f ′(x∗)| < 1 then |ηk+1| < |ηk| (for |ηk| small enough) so xk+1 is closer to
x∗ than xk so x∗ is an attractive fixed point.

For the logistic map, f ′ = r − 2rx so that

f ′(x∗) = r − 2r

(
r − 1

r

)
= 2− r

so that |f ′(x∗)| < 1 for 1 < r < 3. If r > 3 then x∗ is unstable and the orbit will not limit to x∗

unless x1 = x∗. Instead the map f(f(x)) has two new stable fixed points p, q ∈ I and so these
become limit points of orbits of period two. The dynamical system undergoes a period doubling
bifurcation at r = 3.

f(f(x)) = rf(x)
(
1− f(x)

)
= r2x(1− x)

(
1− rx+ rx2

)
The fixed points of f ◦ f are roots of x = f(f(x)). Factoring, we find

0 = x− f(f(x)) = x− r2x(1− x)
(
1− rx+ rx2

)
= x(1− r + rx)(1 + r − rx− r2x+ r2x2)

so

x∗ = 0 or x∗ =
r − 1

r
or p, q =

1 + r ±
√

(r − 3)(r + 1)

2r
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This example is done in c©R. First we plot y = x, y = f(x) for r = 2.9 and y = x, y = f(f(x))
for r = 3.2.

Second we compute the sequence xn for the staring values x1 = 1/π and for various r. The
zig-zag line from (1, x1) to (2, x2) to (3, x3) and so on shows the dynamics. We consider several
cases: when there is an attractive fixed point, after the first few period doubling bifurcations, and
in the chaos region r > r∞ = 3.569946 . . . For r = 3.83, the orbit has period three. For r = 3.828
near there, there is intermittent behavior: the orbit has period three or so for a long time and
then there is a spurt of chaotic activity until it settles down again.
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> # Plot y=f(x)

> x=0:299/299

> r=2.9; f = function(x){r*x*(1-x)}

> plot(x,f(x),ylim=0:1,type="l"); abline(0,1,lty=4)

>

># Plot y=f(f(x))

> r=3.2; f = function(x){r*x*(1-x)}

> plot(x,f(f(x)),ylim=0:1,type="l"); abline(0,1,lty=4)

>

> # Iterate the map. print the first 21 c[n]’s

> r=2.9; c[1]=1/pi; for(k in 1:20){c[k+1]=r*c[k]*(1-c[k])};c;

[1] 0.3183099 0.6292672 0.6765409 0.6346166 0.6724473 0.6387596 0.6691628 0.6420135

[9] 0.6665133 0.6445926 0.6643696 0.6466496 0.6626323 0.6482972 0.6612231 0.6496207

[17] 0.6600796 0.6506861 0.6591517 0.6515451 0.6583988
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> # Iterate with different r values. Plot points (n,c[n]) connected by lines.

>

> r=2.9; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r = 2.9")

>

> r=3.2; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r = 3.2")

>

> r=3.5; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r = 3.5")

>

> r=3.55; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r=3.55")

> r=3.83; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r=3.83")

>

> r=3.828; c[1]=1/pi; for(k in 1:99){c[k+1]=r*c[k]*(1-c[k])};plot(c,type="l",xlab="r = 3.828")
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