
Math 5410 § 1.
Treibergs

Third Midterm Exam Name: Solutions
Nov. 15, 2023

1. Find the values of the parameter a where bifurcations occur. Describe the nature of the
bifurcations. Sketch the phase plane for various a’s.

ṙ = r(a− r2)

θ̇ = 1

The bifurcation occurs at a = 0. For a ≤ 0 the origin is the only stable restpoint. For 0 < a
the origin is still the only rest point, but it is unstable. ṙ is zero at r =

√
a. But θ̇ is not

zero so r =
√
a is a stable limit cycle. ”Grapher” plots for a = −.5, a = 0 and a = 1.

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let γ(t) be an entire solution of the the smooth planar system
ẋ = F (x). Then the omega limit set ωγ is either a point, a nontrivial periodic orbit or
the empty set.

False. The ω limit set is not restricted to only these three possibilities. It is possible
to have ωγ to be more complicated, consisting of the union of heteroclinic or homoclinic
orbits. For example:
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(b) Statement: The zero solution is asymptotically stable for the pendulum equation
θ̈ + bθ̇ + sin θ = 0 where b is a positive constant.

True. The energy for the corresponding system

θ̇ = y

ẏ = − sin(θ)− by

is E = 1
2y

2 + 1− cos(θ). It satisfies

Ė = yẏ + sin(θ)θ̇ = y[− sin(θ)− by] + sin(θ)y = −by2

Let P = {(θ, y) : E(θ, P ) ≤ c, |θ| ≤ π
2 } where 0 < c < 2. On the set Z = {(θ, y) :

Ė(θ, y) = 0} = {(θ, y) : y = 0} the only invariant solution in Z ∩ P is (θ, y) = (0, 0).
By LaSalle’s Invariance Principle, (0, 0) is asyptotically stable and attracts P .

(c) Statement: Every smooth planar system ẋ = F (x) with f(0) = 0 is locally topologi-
cally conjugate near zero to the linear system ẏ = Ay where A = DF0.

False. This is not true unless 0 is a hyperbolic. For example, in

ẋ = −x3

ẏ = −y3

the origin is asymptotically stable as can be seen by using the Liapunov function
L(x, y) = x2 + y2 which satisfies

L̇ = 2xẋ+ 2yẏ = −2(x4 + y4) < 0

for (x, y) 6= (0, 0). However the origin is not hyperbolic because A = D0F (0) = 0 and
all points of the plane are rest points for ẏ = Ay. So the nonlinear flow near the origin
is not topologically conjugate to the linearized flow.

3. Determine whether the given equilibrium point for the given system is Asymptotically Stable,
is Liapunov Stable but Not Asymptotically Stable, or is Not Stable. Give a brief explanation.

(a) r = 1, θ = 0 for

{
ṙ = r(1− r2)

θ̇ = −(2 + cos θ) sin θ

Asymptotically Stable. This can be seen from the linearization.

DF (r, θ) =

r − 3r2 0

0 sin2 θ − (2 + cos θ) cos θ

 , DF (1, 0) =

−2 0

0 −3



(b) r = 1, θ = 0 for


ṙ = r(1− r2)

θ̇ = sin2

(
θ

4

)
Not Stable. θ̇ > 0 for θ 6= 0 thus θ is increasing away from θ = 0 for θ > 0 near
zero but θ is heading toward θ = 0 for θ < 0 near zero. In fact, this system is an
example for which (1, 0) is attractive but not Liapunov stable.
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(c) X = (1, 1) for

{
ẋ = x(3− x− 2y)

ẏ = y(3− 2x− y)

Not Stable. Linearizing

DF (x, y) =

3− 2x− 2y −2x

−2y 3− 2x− 2y

 , DF (1, 1) =

−1 −2

−2 −1


has determinant −4 so (1, 1) is a saddle and not stable.

(d) (x, y) = (0, 0) for

{
ẋ = −x− y
ẏ = −x+ y

Asymptotically Stable. This linear system is already in canonical form, so its
eigenvalue is λ = −1± i which says that the origin is a spiral sink.

4. Determine whether the given system admits a nontrivial limit cycle. Give a brief explana-
tion.

(a)

{
ẋ = −2x3 − xy2

ẏ = −x2y − 2y3

There are no limit cycles. This is a gradient system

ẋ = −φx(x, y)

ẏ = −φy(x, y)

with

φ(x, y) =
1

2

(
x4 + x2y2 + y4

)
.

The origin is the only critical point and a global minimum of φ(x, y). Hence the
trajectories all tend to the origin and are not periodic.

(b)

{
ẋ = x2y + 2y3

ẏ = −2x3 − xy2

There are limit cycles. This is a Hamiltonian system

ẋ = Hy(x, y)

ẏ = −Hx(x, y)

with the same function

H(x, y) =
1

2

(
x4 + x2y2 + y4

)
.

Trajectories of this system are level curves of H, all of which are ovals surrounding
the origin. All trajectories except the stationary point at the origin are periodic limit
cycles.

(c)

{
ṙ = r(2 + sin θ − r2)

θ̇ = 1 + r2

There are limit cycles. This follows from the Poincaré Bendixson Theorem. The
vector field does not vanish except at the origin. The annulus A = {(r, θ) : 1 ≤ r ≤ 2}
is a trapping annulus. For r = 1,

ṙ = r(2 + sin θ − r2) ≥ 1 · (2− 1− 12) = 0
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so flow is in the increasing r direction into A. For r = 3,

ṙ = r(2 + sin θ − r2) ≤ 3 · (2 + 1− 22) = −1

so flow is in the decreasing r direction into A as well. Since there are no rest points in
A, there must be a limit cycle.

5. The only equilibrium points is (1, 1).

ẋ = −x+ y

ẏ = 2− 2xy2

Draw the x and y nullclines and use this information to sketch the global phase portrait
of this nonlinear system. At the equilibrium point (1, 1), give a detailed description of the
behavior of the linearized system.

The ẋ = 0 nullcline is the curve −x+ y = 0 which is colored ewd in the figure. The flow is
vertical through this line. We also have ẋ > 0 if the point is above the nullcline and ẋ < 0
if it is below the nullcline. The other nullcline for ẏ = 0 is the curve given by 2− 2xy2 = 0
or x = y−2 which is colored blue in the figure. Also ẏ > 0 if the point is to the left of this
curve and ẏ > 0 for points to the right. Thus in the sector above the red and blue curves,
the flow goes SE with ẋ < 0 and ẏ < 0. In the sector to the right the flow is SW, Between
the blue curves and to the right of the red curve the flow is NW and to the left of both the
blu and red curves the flow is NE. There is only one rest point at the intersection of the
blue and red curves at (1, 1). We can draw the trajectories of the phase portrait following
the vector field.
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The Jacobian is

J(x, y) =

 −1 1

−2y2 −4xy

 , A = J(1, 1) =

−1 1

−2 −4
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At the rest point, the trace and determinant are T = −5 and D = 6. Thus the rest point
is a sink. We have eigenvalues

λ =
−5±

√
52 − 4 · 6
2

=
−5± 1

2
∈ {−2,−3}

Thus the eigenvalues of the rest point are λ = −2,−3 so the rest pont is a proper stable
node. The eigenvectors corresponding to λ1 = −2, λ2 = −3 are

0 = (A− λ1)v1 =

 1 1

−2 −2


 1

−1

 , 0 = (A− λ2)v2 =

 2 1

−2 −1


 1

−2


Thus for the two eigendirections at the rest point, the slow approach is in the ±v1 direction
and the fast approach is in the ±v2 direction. Ths means that except for trajectories in the
eigendirections, all other trajectories that approach (1, 1) will come in tangent to the ±v1
line.
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