Math $5410 \S 1$.	Second Midterm Exam
Treibergs	
Oct. 18, 2023 Solutions	

1. Find the general solution. Determine its behavior in \mathbf{R}^{3} as $t \rightarrow \infty$.
[Hint: the eigenvalue is $\lambda=3$ with algebraic multiplicity three.]

$$
X^{\prime}=\left(\begin{array}{ccc}
3 & 1 & -1 \\
0 & 2 & 1 \\
1 & 0 & 4
\end{array}\right) X
$$

We solve for a chain of eigenvectors.

$$
\begin{aligned}
& (A-\lambda I) V_{1}=\left(\begin{array}{lll}
0 & 1 & -1 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& (A-\lambda I) V_{2}=\left(\begin{array}{lll}
0 & 0 & -1 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=V_{1} \\
& (A-\lambda I) V_{3}=\left(\begin{array}{lll}
0 & 1 & -1 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=V_{2}
\end{aligned}
$$

Then, put

$$
T=\left(V_{1}\left|V_{2}\right| V_{3}\right)=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), \quad J=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right) .
$$

To see that $T^{-1} A T=J$ we compute

$$
A T=\left(\begin{array}{ccc}
3 & 1 & -1 \\
0 & 2 & 1 \\
1 & 0 & 4
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
-3 & -1 & 3 \\
3 & 1 & 0 \\
3 & 4 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)=T J
$$

The general solution for constant vector c is

$$
\begin{aligned}
& X(t)=e^{t A} c=e^{t T J T^{-1}} c=T e^{t J} T^{-1} c=e^{3 t}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =e^{3 t}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{t^{2}}{2} & 1-t+\frac{t^{2}}{2} & t \\
t & -1+t & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=e^{3 t}\left(\begin{array}{ccc}
1-\frac{t^{2}}{2} & t-\frac{t^{2}}{2} & -t \\
\frac{t^{2}}{2} & 1-t+\frac{t^{2}}{2} & t \\
t+\frac{t^{2}}{2} & \frac{t^{2}}{2} & 1+t
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) .
\end{aligned}
$$

As a reality check, we see that $X(0)=c$.
2. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: The set of real 3×3 invertible matrices A is generic in the set of real 3×3 matrices.
True. We may describe the set of invertible matrices as those with nonvanishing determinant.

$$
S=\left\{A \in \mathcal{L}\left(\mathbf{R}^{3}\right): \operatorname{det}(A) \neq 0\right\}
$$

Generic means that the set contains an open and dense subset. We show S itself is open and dense. The function $f(A)=\operatorname{det}(A): \mathcal{L}\left(\mathbf{R}^{3}\right) \rightarrow \mathbf{R}$ is continuous. Hence it pulls back open sets to open sets. But $S=f^{-1}(U)$ is the pullback of the open set $U=(-\infty, 0) \cup(0, \infty)$, hence S is open in $\mathcal{L}\left(\mathbf{R}^{3}\right)$. We claim that it is also dense. It suffices to show that if $A \notin S$ then there is a sequence $A_{n} \in S$ such that $A_{n} \rightarrow A$ as $n \rightarrow \infty$. Consider the matrices

$$
A_{n}=A+\frac{1}{n} I
$$

Now $A_{n} \rightarrow A$ as $n \rightarrow \infty$. The eigenvalues of A_{n} are $\lambda+\frac{1}{n}$ where λ is an eigenvalue of A. Indeed, for the eigenvector $V \neq 0$ we have

$$
A_{n} V=\left(A+\frac{1}{n} I\right) V=A V+\frac{1}{n} V=\lambda V+\frac{1}{n} V=\left(\lambda+\frac{1}{n}\right) V
$$

Except for at most three $n^{\prime} s$ the eigenvalues $\lambda+\frac{1}{n}$ are nonzero, hence $\operatorname{det}\left(A_{n}\right) \neq 0$ for these and so $A_{n} \in S$. Thus we have shown S is also dense in $\mathcal{L}\left(\mathbf{R}^{3}\right)$.
(b) Statement: If $\omega_{1}>0$ and $\omega_{2}>0$ then the solution of the harmonic oscillator system $\ddot{x}_{1}+\omega_{1}^{2} x_{1}=0, \ddot{x}_{2}+\omega_{2}^{2} x_{2}=0$ with $x_{1}(0)=\dot{x}_{1}(0)=\dot{x}_{2}(0)=\dot{x}_{2}(0)=1$ is periodic.
False. This is true if and only if ω_{2} / ω_{1} is rational. Writing as a first order system $y_{i}(t)=\dot{x}_{i}(t)$ in polar coordinates $x_{i}=r_{i} \cos \left(\theta_{i}\right)$ and $y_{i}=r_{i} \sin \left(\theta_{i}\right)$, we have $\dot{r}_{i}=0$ so the radii remain constant and $\dot{\theta}_{i}=-\omega_{i}$ increase linearly. On the torus $r_{1}=r_{2}=\sqrt{2}$ the slope of the $\left(\theta_{1}(t), \theta_{2}(t)\right)$ line has slope $m=\omega 2 / \omega_{1}$ which does not close up in the torus if m is irrational. Hence the trajectory is not periodic.
(c) Statement: If $u(t) \geq 0$ is continuous and satisfies $u(t) \leq 2+3 \int_{0}^{t} u(s) d s$ for all $t \geq 0$ then $u(t) \leq 2+3 t$ for $t \geq 0$.
FALSE. The Gronwall Inequality says that a continuous function satisfying $u(t) \leq$ $2+3 \int_{0}^{t} u(s) d s$ for all $t \geq 0$ satisfies $u(t) \leq 2 e^{3 t}$ for all $t \geq 0$, not as in this statement. . To get a counterexample, consider $w(t)=2 e^{3 t}$. Then for any $t \geq 0$ we have

$$
2+3 \int_{0}^{t} w(s) d s=2+3 \int_{0}^{t} 2 e^{3 s} d s=2+2\left(e^{3 t}-1\right)=2 e^{3 t}=w(t)
$$

so the integral inequality holds. But for $t>0$,

$$
w(t)=2 e^{3 t}=2\left(1+3 t+\sum_{k=2}^{\infty} \frac{3^{k} t^{k}}{k!}\right)>2+6 t
$$

contrary to $w(t) \leq 2+3 t$.
3. Let $A=\left(\begin{array}{cc}3 & 1 \\ -4 & 3\end{array}\right)$. Find $e^{t A}$. Solve the initial value problem. [You may leave the answer as an integral.]

$$
\frac{d X}{d t}=\left(\begin{array}{cc}
3 & 1 \\
-4 & 3
\end{array}\right) X+\binom{1+t^{2}}{\tan t}, \quad X(0)=\binom{c_{1}}{c_{2}}
$$

Finding eigenvalues

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
3-\lambda & 1 \\
-4 & 3-\lambda
\end{array}\right|=(3-\lambda)^{2}+4
$$

which implies $\lambda=3 \pm 2 i$. Finding a complex eigenvector of $\lambda=3+2 i$ yields

$$
(A-\lambda I) V=\left(\begin{array}{cc}
-2 i & 1 \\
-4 & -2 i
\end{array}\right)\binom{1}{2 i}=0
$$

A complex solution is

$$
Z(t)=e^{\lambda t} V=e^{3 t}(\cos (2 t)+i \sin (2 t))\binom{1}{2 i}=e^{3 t}\binom{\cos 2 t}{-2 \sin 2 t}+i e^{3 t}\binom{\sin 2 t}{2 \cos 2 t}
$$

A linear combination of the real and imaginary parts of this solution gives the solution with $X(0)=c$, the exponential

$$
e^{t A} c=X(t)=e^{3 t}\left(\begin{array}{cc}
\cos 2 t & \frac{1}{2} \sin 2 t \\
-2 \sin 2 t & \cos 2 t
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

To solve the inhomogeneous equation $X^{\prime}=A X+b(t)$ we use the Variation of Parameters formula

$$
\begin{aligned}
X(t) & =e^{t A}\left\{c+\int_{0}^{t} e^{-s A} b(s) d s\right\} \\
& =e^{3 t}\left(\begin{array}{cc}
\cos 2 t & \frac{1}{2} \sin 2 t \\
-2 \sin 2 t & \cos 2 t
\end{array}\right)\left\{\binom{c_{1}}{c_{2}}+\int_{0}^{t} e^{-3 s}\left(\begin{array}{cc}
\cos 2 s & -\frac{1}{2} \sin 2 s \\
2 \sin 2 s & \cos 2 s
\end{array}\right)\binom{1+s^{2}}{\tan s} d s\right\}
\end{aligned}
$$

4. (a) Let $x_{0} \in \mathbf{R}$. Define a sequence of functions $x_{j}:\left[0, \frac{1}{2}\right] \rightarrow \mathbf{R}$ by $x_{0}(t)=x_{0}$ and $x_{j+1}(t)=J\left[x_{j}\right](t)$ where

$$
J[x](t)=x_{0}+\int_{0}^{t} \sin (x(s)) d s
$$

Show for all $n \geq 0$ that $x_{n}(t)$ is continuous and

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \frac{1}{2^{n+1}} \quad \text { for all } 0 \leq t \leq \frac{1}{2}
$$

[Hint: You may need the fact that $|\sin p-\sin q| \leq|p-q|$ for all $p, q \in \mathbf{R}$.]
(b) [5] From (a) we conclude that $\left\{x_{j}(t)\right\}$ is a sequence of continuous functions on [0, $\frac{1}{2}$] that converges uniformly to a function $x_{\infty}(t)$. Assuming this, show that $x_{\infty}(t)$ satisfies a differential equation and boundary condition.
5. Find the first four Picard iterates of the system. Predict the nth Picard iterate. Show that the limit of the Picard iterates is a solution of the initial value problem.

$$
\frac{d}{d t}\binom{x}{y}=F\binom{x}{y}=\binom{y}{x}, \quad\binom{x(0)}{y(0)}=\binom{1}{-1}
$$

Writing vectors

$$
z(t)=\binom{x(t)}{y(t)}, \quad z_{0}=\binom{1}{-1}
$$

The Picard iteration yields a sequence of functions approximating the solution. The initial guess $z_{1}(t)=z_{0}$ and then for $n \in \mathbb{N}$ define

$$
z_{n+1}=z_{0}+\int_{0}^{t} F\left(z_{n}(t)\right) d s
$$

Thus the first four terms are

$$
\begin{aligned}
z_{1}(t) & =\binom{1}{-1}+\int_{0}^{t} F\left(\binom{1}{-1}\right) d s=\binom{1}{-1}+\int_{0}^{t}\binom{-1}{1} d s=\binom{1-t}{-1+t} \\
z_{2}(t) & =\binom{1}{-1}+\int_{0}^{t} F\left(\binom{1-s}{-1+s}\right) d s=\binom{1}{-1}+\int_{0}^{t}\binom{-1+s}{1-s} d s=\binom{1-t+\frac{t^{2}}{2}}{-1+t-\frac{t^{2}}{2}} \\
z_{3}(t) & =\binom{1}{-1}+\int_{0}^{t} F\left(\binom{1-s+\frac{s^{2}}{2}}{-1+s-\frac{s^{2}}{2}}\right) d s=\binom{1}{-1}+\int_{0}^{t}\binom{-1+s-\frac{s^{2}}{2}}{1-s+\frac{s^{2}}{2}} d s \\
& =\binom{1-t+\frac{t^{2}}{2}-\frac{t^{3}}{3!}}{-1+t-\frac{t^{2}}{2}+\frac{t^{3}}{3!}} \\
z_{4}(t) & =\binom{1}{-1}+\int_{0}^{t} F\left(\binom{1-t+\frac{t^{2}}{2}-\frac{t^{3}}{3!}}{-1+t-\frac{t^{2}}{2}+\frac{t^{3}}{3!}}\right) d s=\binom{1}{-1}+\int_{0}^{t}\binom{-1+t-\frac{t^{2}}{2}+\frac{t^{3}}{3!}}{1-t+\frac{t^{2}}{2}-\frac{t^{3}}{3!}} d s \\
& =\binom{1-t+\frac{t^{2}}{2}-\frac{t^{3}}{3!}+\frac{t^{4}}{4!}}{-1+t-\frac{t^{2}}{2}+\frac{t^{3}}{6}-\frac{t^{4}}{4!}}
\end{aligned}
$$

The limit as $n \rightarrow \infty$ seems to be

$$
z_{\infty}(t)=\binom{\sum_{j=0}^{\infty} \frac{(-t)^{j}}{j!}}{-\sum_{j=0}^{\infty} \frac{(-t)^{j}}{j!}}=\binom{e^{-t}}{-e^{-t}}
$$

which satisfies the IVP

$$
\begin{aligned}
\frac{d z_{\infty}}{d t} & =\frac{d}{d t}\binom{e^{-t}}{-e^{-t}}=\binom{-e^{-t}}{e^{-t}}=F\binom{e^{-t}}{-e^{-t}}=F\left(z_{\infty}\right) \\
z_{\infty}(0) & =\binom{e^{0}}{-e^{0}}=\binom{1}{-1}=z_{0}
\end{aligned}
$$

