
Math 5410 § 1.
Treibergs

Second Midterm Exam Name: Solutions
Oct. 18, 2023

1. Find the general solution. Determine its behavior in R3 as t→∞.

[Hint: the eigenvalue is λ = 3 with algebraic multiplicity three.]

X ′ =


3 1 −1

0 2 1

1 0 4

X.

We solve for a chain of eigenvectors.

(A− λI)V1 =


0 1 −1

0 −1 1

1 0 1




−1

1

1

 =


0

0

0



(A− λI)V2 =


0 0 −1

0 −1 1

1 0 1




0

0

1

 =


−1

1

1

 = V1

(A− λI)V3 =


0 1 −1

0 −1 1

1 0 1




1

0

0

 =


0

0

1

 = V2

Then, put

T = (V1 | V2 | V3 ) =


−1 0 1

1 0 0

1 1 0

 , J =


3 1 0

0 3 1

0 0 3

 .

To see that T−1AT = J we compute

AT =


3 1 −1

0 2 1

1 0 4




−1 0 1

1 0 0

1 1 0

 =


−3 −1 3

3 1 0

3 4 1

 =


−1 0 1

1 0 0

1 1 0




3 1 0

0 3 1

0 0 3

 = TJ

1



The general solution for constant vector c is

X(t) = etAc = etTJT
−1

c = TetJT−1c = e3t


−1 0 1

1 0 0

1 1 0




1 t t2

2

0 1 t

0 0 1




0 1 0

0 −1 1

1 1 0




c1

c2

c3



= e3t


−1 0 1

1 0 0

1 1 0




t2

2 1− t+ t2

2 t

t −1 + t 1

1 1 0




c1

c2

c3

 = e3t


1− t2

2 t− t2

2 −t

t2

2 1− t+ t2

2 t

t+ t2

2
t2

2 1 + t




c1

c2

c3

 .

As a reality check, we see that X(0) = c.

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: The set of real 3 × 3 invertible matrices A is generic in the set of real
3× 3 matrices.

True. We may describe the set of invertible matrices as those with nonvanishing
determinant.

S = {A ∈ L(R3) : det(A) 6= 0}.

Generic means that the set contains an open and dense subset. We show S itself is
open and dense. The function f(A) = det(A) : L(R3) → R is continuous. Hence it
pulls back open sets to open sets. But S = f−1(U) is the pullback of the open set
U = (−∞, 0) ∪ (0,∞), hence S is open in L(R3). We claim that it is also dense. It
suffices to show that if A /∈ S then there is a sequence An ∈ S such that An → A as
n→∞. Consider the matrices

An = A+
1

n
I.

Now An → A as n→∞. The eigenvalues of An are λ+ 1
n where λ is an eigenvalue of

A. Indeed, for the eigenvector V 6= 0 we have

AnV = (A+
1

n
I)V = AV +

1

n
V = λV +

1

n
V =

(
λ+

1

n

)
V.

Except for at most three n′s the eigenvalues λ+ 1
n are nonzero, hence det(An) 6= 0 for

these and so An ∈ S. Thus we have shown S is also dense in L(R3).

(b) Statement: If ω1 > 0 and ω2 > 0 then the solution of the harmonic oscillator system
ẍ1 + ω2

1x1 = 0, ẍ2 + ω2
2x2 = 0 with x1(0) = ẋ1(0) = ẋ2(0) = ẋ2(0) = 1 is periodic.

False. This is true if and only if ω2/ω1 is rational. Writing as a first order system
yi(t) = ẋi(t) in polar coordinates xi = ri cos(θi) and yi = ri sin(θi), we have ṙi = 0 so
the radii remain constant and θ̇i = −ωi increase linearly. On the torus r1 = r2 =

√
2

the slope of the (θ1(t), θ2(t)) line has slope m = ω2/ω1 which does not close up in the
torus if m is irrational. Hence the trajectory is not periodic.
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(c) Statement: If u(t) ≥ 0 is continuous and satisfies u(t) ≤ 2+3
∫ t
0
u(s) ds for all t ≥ 0

then u(t) ≤ 2 + 3t for t ≥ 0.

False. The Gronwall Inequality says that a continuous function satisfying u(t) ≤
2 + 3

∫ t
0
u(s) ds for all t ≥ 0 satisfies u(t) ≤ 2e3t for all t ≥ 0, not as in this statement.

. To get a counterexample, consider w(t) = 2e3t. Then for any t ≥ 0 we have

2 + 3

∫ t

0

w(s) ds = 2 + 3

∫ t

0

2e3s ds = 2 + 2
(
e3t − 1

)
= 2e3t = w(t)

so the integral inequality holds. But for t > 0,

w(t) = 2e3t = 2

(
1 + 3t+

∞∑
k=2

3ktk

k!

)
> 2 + 6t

contrary to w(t) ≤ 2 + 3t.

3. Let A =

(
3 1

−4 3

)
. Find etA. Solve the initial value problem. [You may leave the answer

as an integral.]
dX

dt
=

(
3 1

−4 3

)
X +

(
1 + t2

tan t

)
, X(0) =

(
c1
c2

)
.

Finding eigenvalues

0 = det(A− λI) =

∣∣∣∣∣3− λ 1

−4 3− λ

∣∣∣∣∣ = (3− λ)2 + 4

which implies λ = 3± 2i. Finding a complex eigenvector of λ = 3 + 2i yields

(A− λI)V =

(
−2i 1

−4 − 2i

)(
1

2i

)
= 0

A complex solution is

Z(t) = eλtV = e3t(cos(2t) + i sin(2t))

(
1

2i

)
= e3t

(
cos 2t

−2 sin 2t

)
+ ie3t

(
sin 2t

2 cos 2t

)
.

A linear combination of the real and imaginary parts of this solution gives the solution with
X(0) = c, the exponential

etAc = X(t) = e3t
(

cos 2t 1
2 sin 2t

−2 sin 2t cos 2t

)(
c1
c2

)
.

To solve the inhomogeneous equation X ′ = AX + b(t) we use the Variation of Parameters
formula

X(t) = etA
{
c+

∫ t

0

e−sAb(s) ds

}
= e3t

(
cos 2t 1

2 sin 2t

−2 sin 2t cos 2t

){(
c1
c2

)
+

∫ t

0

e−3s
(

cos 2s − 1
2 sin 2s

2 sin 2s cos 2s

)(
1 + s2

tan s

)
ds

}
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4. (a) Let x0 ∈ R. Define a sequence of functions xj : [0, 12 ] → R by x0(t) = x0 and
xj+1(t) = J [xj ](t) where

J [x](t) = x0 +

∫ t

0

sin(x(s)) ds.

Show for all n ≥ 0 that xn(t) is continuous and

|xn+1(t)− xn(t)| ≤ 1

2n+1
for all 0 ≤ t ≤ 1

2
.

[Hint: You may need the fact that | sin p− sin q | ≤ |p− q| for all p, q ∈ R.]

(b) [5] From (a) we conclude that {xj(t)} is a sequence of continuous functions on [0, 12 ]
that converges uniformly to a function x∞(t). Assuming this, show that x∞(t) satisfies
a differential equation and boundary condition.
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5. Find the first four Picard iterates of the system. Predict the nth Picard iterate. Show that
the limit of the Picard iterates is a solution of the initial value problem.

d

dt

(
x

y

)
= F

(
x

y

)
=

(
y

x

)
,

(
x(0)

y(0)

)
=

(
1

−1

)
.

Writing vectors

z(t) =

(
x(t)

y(t)

)
, z0 =

(
1

−1

)
The Picard iteration yields a sequence of functions approximating the solution. The initial
guess z1(t) = z0 and then for n ∈ N define

zn+1 = z0 +

∫ t

0

F (zn(t)) ds

Thus the first four terms are

z1(t) =

(
1

−1

)
+

∫ t

0

F

((
1

−1

))
ds =

(
1

−1

)
+

∫ t

0

(
−1

1

)
ds =

(
1− t
−1 + t

)
z2(t) =

(
1

−1

)
+

∫ t

0

F

((
1− s
−1 + s

))
ds =

(
1

−1

)
+

∫ t

0

(
−1 + s

1− s

)
ds =

(
1− t+ t2

2

−1 + t− t2

2

)

z3(t) =

(
1

−1

)
+

∫ t

0

F

((
1− s+ s2

2

−1 + s− s2

2

))
ds =

(
1

−1

)
+

∫ t

0

(−1 + s− s2

2

1− s+ s2

2

)
ds

=

(
1− t+ t2

2 −
t3

3!

−1 + t− t2

2 + t3

3!

)

z4(t) =

(
1

−1

)
+

∫ t

0

F

((
1− t+ t2

2 −
t3

3!

−1 + t− t2

2 + t3

3!

))
ds =

(
1

−1

)
+

∫ t

0

(−1 + t− t2

2 + t3

3!

1− t+ t2

2 −
t3

3!

)
ds

=

(
1− t+ t2

2 −
t3

3! + t4

4!

−1 + t− t2

2 + t3

6 −
t4

4!

)
The limit as n→∞ seems to be

z∞(t) =


∞∑
j=0

(−t)j

j!

−
∞∑
j=0

(−t)j

j!

 =

 e−t

−e−t


which satisfies the IVP

dz∞
d t

=
d

dt

(
e−t

−e−t

)
=

(
−e−t

e−t

)
= F

(
e−t

−e−t

)
= F (z∞),

z∞(0) =

(
e0

−e0

)
=

(
1

−1

)
= z0.
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