
Math 5410 § 1.
Treibergs

Third Midterm Exam Name: Solutions
Nov. 16, 2022

1. Find the values of the parameter a where bifurcations occur. Describe the nature of the
bifurcations. Sketch the phase plane for various a’s.{

ẋ = y

ẏ = x2 − y − a

The rest points are at 0 = ẋ = y and 0 = ẏ = x2 − y− a = x2 − a so that if a < 0 there are
no rest points and if a ≥ 0 the rest points are (±

√
a, 0). The Jacobian is

J(x, y) =

 0 1

2x −1


so D = det(J(±

√
a, 0) = ∓2

√
a and trace T = −1. It follows that (

√
a, 0) is a saddle

and (−
√
a, 0) is a stable node. Thus the system undergoes a saddle node bifurcation as a

increases through the bifurcation point a = 0.
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Figure 1: Phase portraits for a = −1, a = 0 and a = 1.

2. Suppose b = 0. Find the equilibrium points. Find an energy for the system. Sketch the phase
portrait showing at least four equilibrium points. Suppose the constant b > 0. Determine
the stability of the equilibrium points. Sketch the phase portrait that includes at least four
equilibrium points. For a stable equilibrium point, find a set in its basin of attraction.{

ẋ = y

ẏ = − cos(x)− by

When b = 0 the corresponding second order equation is

ẍ+ cos(x) = 0.

Multiplying by ẋ and integrating gives the first integral (energy)

E =
1

2
ẋ2 + sin(x) + 1 =

1

2
y2 + sin(x) + 1

Energy is preserved because

Ė = yẏ + cos(x)ẋ = y(− cos(x)) + cos(x)y = 0.
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The energy function has relative minima at the minima of sine, namely at (−π2 + 2πk, 0)
and saddles at the maxima of sine, at (π2 + 2πk, 0) where k is an integer. The trajectories
are level curves of E(x, y) which are centers at (−π2 + 2πk, 0) and saddles at (π2 + 2πk, 0)
for all integers k. The high energy orbits loop around with nonvanishing velocity.

Figure 2: b = 0 trajectories.

When b > 0 then

Ė = yẏ + cos(x)ẋ = y

(
− cos(x)− b

2

)
+ cos(x)y = −by2 ≤ 0.

Thus the rest points at (−π2 + 2πk, 0) are Liapunof Stable. In fact, the set Z = {(x, y) :

Ė(x, y) = 0} = {y = 0} has no invariant subsets other than {(−π2 +2πk, 0)} in the trapping
region Pk,δ = {(x, y) : E(x, y) ≤ δ, |− π

2 +2πk||π} for fixed integer k and δ < 2. Thus by the
Lasalle Invariance Principle, (−π2 + 2πk, 0) is asymptotically stable and Pk,δ is in its basin
of attraction. The points (π2 + 2πk, 0) are saddles since the determinant of the Jacobian

det
(
J
(
π
2 + 2πk, 0

))
=

∣∣∣∣∣∣∣∣
0 1

sin(π2 + 2πk) −b

∣∣∣∣∣∣∣∣ = −1.

All orbits eventually get trapped and spiral into one of the stable rest points.

Figure 3: b = .2 trajectories.

3. Determine whether the given equilibrium point for the given system is Asymptotically Stable,
is Liapunov Stable but Not Asymptotically Stable, or is Not Stable. Give a brief explanation.

(a) r = 1, θ = π for

{
ṙ = r(1− r2)

θ̇ = 1 + cos θ

Not Stable. Although r = 1 is stable for ṙ = r(1 − r2), the other equation has
θ̇ = 1 + cos θ which is positive except at θ = π. Thus for every small neighborhood
about (r, θ) = (1, π), starting from a point (1, π+ε) in the neighborhood for ε > 0 small
enough, the trajectory moves in the positive θ direction until it exits the neighborhood,
and in fact loops around until it reenters it. Recall, that this is an example of a rest
point which is attractive, but not Liapunov stable.
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(b) r = 1, θ = π for

{
ṙ = r(1− r2)

θ̇ = sin θ

Asymptotically Stable. The Jacobian

J(r, θ) =

1− 3r2 0

0 cos θ

 , J(1, π) =

−2 0

0 −1


is a stability matrix at (1, π) since both eigenvalues are negative. By the linearization
stability theorem, (1, π) is asymptotically stable.

(c) X = (0, 0) for

{
ẋ = −y − x3

ẏ = x− y3

Asymptotically Stable. Consider the Liapunov function

V (x, y) =
1

2
(x2 + y2).

We have
V̇ = xẋ+ yẏ = x(−y − x3) + y(x− y3) = −(x4 + y4)

which is strictly negative for (x, y) 6= (0, 0). Thus by Liapunov’s stability theorem,
(0, 0) is asymptotically stable.

(d) [4] X = (0, 0, 0, 0) for Ẋ =



−1 1 0 0

0 −1 0 0

0 0 0 1

0 0 −2 0


X.

Stable but Not Asymptotically Stable The system decouples into two 2 × 2
systems

d

dt

x1
x2

 =

−1 1

0 −1


x1
x2

 ,
d

dt

x3
x4

 =

 0 1

−2 0


x3
x4


The first has eigenvalues −1,−1 thus zero is asymptotically stable. The second has
eigenvalues ±

√
2 i, thus zero is a center. Thus for the composite system, trajectories

converge to elliptical orbits and so (0, 0, 0, 0) is stable but not asymptotically stable.

4. Consider the solution x(t) of the IVP for t ≥ 0 Find estimates for x(t) and ẋ(t) in terms
of t and (u0, u1). Does the solution exist for all t ∈ [0,∞)? Why?

ẍ+ (2 + sin t)ẋ+ x = 0, x(0) = u0, ẋ(0) = u1.

Convert to a system

d

dt

x
y

 =

 0 1

−1 −2− sin t


x
y

 = A(t)

x
y
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The matrix function satisfies

|A(t)X|2 = y2 + (−2− sin t)2x2 ≤ 9x2 + 9y2 = 9|X|2.

The integral equation for the system is

X(t) = U0 +

∫ t

0

A(s)X(s) ds

where U0 = (u0, u1). Estimating this,

|X(t)| ≤ |U0|+
∫ t

0

|A(s)X(s)| ds ≤ |U0|+ 3

∫ t

0

|X(s)| ds.

Thus, by Gronwall’s Inequality, for all t ≥ 0,

|X(t)| ≤ |U0|e3t. (1)

That a solution for the ODE exists for all t ≥ 0 follows from the short and long time
existence theorems. Since the right side F (t,X) = A(t)X is continuously differentiable for
all (t,X), the ODE has a short time solution starting at any initial point U0 and time t0. If
the maximal interval of existence for a solution X(t) starting from U0 is 0 ≤ t < T , then by
the long time existence theorem, X(t) would leave any compact set as t → T−. However,
by (1), the solution stays bounded for the whole time |X(t)| ≤ |U0|e3T for all 0 ≤ t < T .
Thus the solution does not cease existing at any T > 0, thus exists for all time.

5. You may assume that this competing species system is defined only for x, y ≥ 0. The
equilibrium points are (0, 0), (0, 1.5), (1.5, 0) and (1, 1). Draw the x and y nullclines and
use this information to sketch the global phase portrait of this nonlinear system. At the
interior equilibrium point (1, 1), give a detailed description of the behavior of the linearized
system.

ẋ = x(3− 2x− y)

ẏ = y(3− x− 2y)

The nullclines for ẋ = 0 are x = 0 and 2x + y = 3 where the flow is vertical. For (x, y)
outside the line, ẋ < 0. For ẏ = 0 the nullclines are y = 0 and x+ 2y = 3 where the flow is
horizontal. For points outside this line, ẏ < 0. Thus going clockwise around (1, 1) starting
outside both slant lines the general flow direction is SW, SE, NE, NW, resp. suggesting
that (0, 0) might be a stable node.

The Jacobian is

J(x, y) =

3− 4x− y −x

−y 3− x− 4y


At the interior rest point

J(1, 1) =

−2 −1

−1 −2


whose eigengalues are λ1 = −1 and λ2 = −3. Thus (1, 1) is a stable node. The slow
incoming flow is in the λ1 eigenvector V1 = ±(1,−1) directions. The fast incoming flow is
in the λ2 eigenvector V2 = ±(1, 1) directions. Thus the incoming trajectories are tangent
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Figure 4: Competing Species System.

to V1 at (0, 0). The general flow pattern may be concluded from this information. For al
starting values (x0, y0) with both coordinates posotive tend to the equilibrium point (1, 1).
The species can coexist.

We complete the local analyses of the remaining rest points which was not required in your
answer. At the origin rest point

J(0, 0) =

3 0

0 3


whose eigengalues are λ1 = λ2 = 3. Thus (0, 0) is a source. The eigenvalues are the same
so the unstable space is the whole plane: every vector through the origin is tangent to an
outgoing trajectory.

At the x-axis rest point

J(1.5, 0) =

−3 −1.5

0 1.5


whose eigengalues are λ1 = −3 and λ2 = 1.5. Thus (1.5, 0) is a saddle. The incoming stable
curve is in the λ1 eigenvector V1 = ±(1, 0) direction. The outgoing unstable curve is in the
λ2 eigenvector V2 = (−1, 3) direction.

At the y-axis rest point

J(0, 1.5) =

 1.5 0

−1.5 −3


whose eigengalues are λ1 = 1.5 and λ2 = −3. Thus (0, 1.5) is a saddle. The outgoing
unstable curve is in the λ1 eigenvector V1 = (3,−1) direction. The incoming stable curve
is in the λ2 eigenvector V2 = ±(0, 1) direction.
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