\qquad Solutions

1. Find the values of the parameter a where bifurcations occur. Describe the nature of the bifurcations. Sketch the phase plane for various a's.

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=x^{2}-y-a
\end{array}\right.
$$

The rest points are at $0=\dot{x}=y$ and $0=\dot{y}=x^{2}-y-a=x^{2}-a$ so that if $a<0$ there are no rest points and if $a \geq 0$ the rest points are $(\pm \sqrt{a}, 0)$. The Jacobian is

$$
J(x, y)=\left(\begin{array}{cc}
0 & 1 \\
2 x & -1
\end{array}\right)
$$

so $D=\operatorname{det}(J(\pm \sqrt{a}, 0)=\mp 2 \sqrt{a}$ and trace $T=-1$. It follows that $(\sqrt{a}, 0)$ is a saddle and $(-\sqrt{a}, 0)$ is a stable node. Thus the system undergoes a saddle node bifurcation as a increases through the bifurcation point $a=0$.

Figure 1: Phase portraits for $a=-1, a=0$ and $a=1$.
2. Suppose $b=0$. Find the equilibrium points. Find an energy for the system. Sketch the phase portrait showing at least four equilibrium points. Suppose the constant $b>0$. Determine the stability of the equilibrium points. Sketch the phase portrait that includes at least four equilibrium points. For a stable equilibrium point, find a set in its basin of attraction.

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-\cos (x)-b y
\end{array}\right.
$$

When $b=0$ the corresponding second order equation is

$$
\ddot{x}+\cos (x)=0 .
$$

Multiplying by \dot{x} and integrating gives the first integral (energy)

$$
E=\frac{1}{2} \dot{x}^{2}+\sin (x)+1=\frac{1}{2} y^{2}+\sin (x)+1
$$

Energy is preserved because

$$
\dot{E}=y \dot{y}+\cos (x) \dot{x}=y(-\cos (x))+\cos (x) y=0 .
$$

The energy function has relative minima at the minima of sine, namely at $\left(-\frac{\pi}{2}+2 \pi k, 0\right)$ and saddles at the maxima of sine, at $\left(\frac{\pi}{2}+2 \pi k, 0\right)$ where k is an integer. The trajectories are level curves of $E(x, y)$ which are centers at $\left(-\frac{\pi}{2}+2 \pi k, 0\right)$ and saddles at $\left(\frac{\pi}{2}+2 \pi k, 0\right)$ for all integers k. The high energy orbits loop around with nonvanishing velocity.

Figure 2: $b=0$ trajectories.
When $b>0$ then

$$
\dot{E}=y \dot{y}+\cos (x) \dot{x}=y\left(-\cos (x)-\frac{b}{2}\right)+\cos (x) y=-b y^{2} \leq 0
$$

Thus the rest points at $\left(-\frac{\pi}{2}+2 \pi k, 0\right)$ are Liapunof Stable. In fact, the set $Z=\{(x, y)$: $\dot{E}(x, y)=0\}=\{y=0\}$ has no invariant subsets other than $\left\{\left(-\frac{\pi}{2}+2 \pi k, 0\right)\right\}$ in the trapping region $P_{k, \delta}=\left\{(x, y): E(x, y) \leq \delta, \left\lvert\,-\frac{\pi}{2}+2 \pi k\right. \| \pi\right\}$ for fixed integer k and $\delta<2$. Thus by the Lasalle Invariance Principle, $\left(-\frac{\pi}{2}+2 \pi k, 0\right)$ is asymptotically stable and $P_{k, \delta}$ is in its basin of attraction. The points $\left(\frac{\pi}{2}+2 \pi k, 0\right)$ are saddles since the determinant of the Jacobian

$$
\operatorname{det}\left(J\left(\frac{\pi}{2}+2 \pi k, 0\right)\right)=\left|\begin{array}{cc}
0 & 1 \\
\sin \left(\frac{\pi}{2}+2 \pi k\right) & -b
\end{array}\right|=-1
$$

All orbits eventually get trapped and spiral into one of the stable rest points.

Figure 3: $b=.2$ trajectories.
3. Determine whether the given equilibrium point for the given system is Asymptotically Stable, is Liapunov Stable but Not Asymptotically Stable, or is Not Stable. Give a brief explanation.
(a) $r=1, \theta=\pi$ for $\left\{\begin{array}{l}\dot{r}=r\left(1-r^{2}\right) \\ \dot{\theta}=1+\cos \theta\end{array}\right.$

Not Stable. Although $r=1$ is stable for $\dot{r}=r\left(1-r^{2}\right)$, the other equation has $\dot{\theta}=1+\cos \theta$ which is positive except at $\theta=\pi$. Thus for every small neighborhood about $(r, \theta)=(1, \pi)$, starting from a point $(1, \pi+\epsilon)$ in the neighborhood for $\epsilon>0$ small enough, the trajectory moves in the positive θ direction until it exits the neighborhood, and in fact loops around until it reenters it. Recall, that this is an example of a rest point which is attractive, but not Liapunov stable.
(b) $r=1, \theta=\pi$ for $\left\{\begin{array}{l}\dot{r}=r\left(1-r^{2}\right) \\ \dot{\theta}=\sin \theta\end{array}\right.$

Asymptotically Stable. The Jacobian

$$
J(r, \theta)=\left(\begin{array}{cc}
1-3 r^{2} & 0 \\
0 & \cos \theta
\end{array}\right), \quad J(1, \pi)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right)
$$

is a stability matrix at $(1, \pi)$ since both eigenvalues are negative. By the linearization stability theorem, $(1, \pi)$ is asymptotically stable.
(c) $X=(0,0)$ for $\left\{\begin{array}{l}\dot{x}=-y-x^{3} \\ \dot{y}=x-y^{3}\end{array}\right.$

Asymptotically Stable. Consider the Liapunov function

$$
V(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)
$$

We have

$$
\dot{V}=x \dot{x}+y \dot{y}=x\left(-y-x^{3}\right)+y\left(x-y^{3}\right)=-\left(x^{4}+y^{4}\right)
$$

which is strictly negative for $(x, y) \neq(0,0)$. Thus by Liapunov's stability theorem, $(0,0)$ is asymptotically stable.
(d) $[4] X=(0,0,0,0)$ for $\dot{X}=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -2 & 0\end{array}\right) X$.

Stable but Not Asymptotically Stable The system decouples into two 2×2 systems

$$
\frac{d}{d t}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}, \quad \frac{d}{d t}\binom{x_{3}}{x_{4}}=\left(\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right)\binom{x_{3}}{x_{4}}
$$

The first has eigenvalues $-1,-1$ thus zero is asymptotically stable. The second has eigenvalues $\pm \sqrt{2} i$, thus zero is a center. Thus for the composite system, trajectories converge to elliptical orbits and so $(0,0,0,0)$ is stable but not asymptotically stable.
4. Consider the solution $x(t)$ of the IVP for $t \geq 0$ Find estimates for $x(t)$ and $\dot{x}(t)$ in terms of t and $\left(u_{0}, u_{1}\right)$. Does the solution exist for all $t \in[0, \infty)$? Why?

$$
\ddot{x}+(2+\sin t) \dot{x}+x=0, \quad x(0)=u_{0}, \quad \dot{x}(0)=u_{1} .
$$

Convert to a system

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -2-\sin t
\end{array}\right)\binom{x}{y}=A(t)\binom{x}{y}
$$

The matrix function satisfies

$$
|A(t) X|^{2}=y^{2}+(-2-\sin t)^{2} x^{2} \leq 9 x^{2}+9 y^{2}=9|X|^{2}
$$

The integral equation for the system is

$$
X(t)=U_{0}+\int_{0}^{t} A(s) X(s) d s
$$

where $U_{0}=\left(u_{0}, u_{1}\right)$. Estimating this,

$$
|X(t)| \leq\left|U_{0}\right|+\int_{0}^{t}|A(s) X(s)| d s \leq\left|U_{0}\right|+3 \int_{0}^{t}|X(s)| d s
$$

Thus, by Gronwall's Inequality, for all $t \geq 0$,

$$
\begin{equation*}
|X(t)| \leq\left|U_{0}\right| e^{3 t} \tag{1}
\end{equation*}
$$

That a solution for the ODE exists for all $t \geq 0$ follows from the short and long time existence theorems. Since the right side $F(t, X)=A(t) X$ is continuously differentiable for all (t, X), the ODE has a short time solution starting at any initial point U_{0} and time t_{0}. If the maximal interval of existence for a solution $X(t)$ starting from U_{0} is $0 \leq t<T$, then by the long time existence theorem, $X(t)$ would leave any compact set as $t \rightarrow T-$. However, by (1), the solution stays bounded for the whole time $|X(t)| \leq\left|U_{0}\right| e^{3 T}$ for all $0 \leq t<T$. Thus the solution does not cease existing at any $T>0$, thus exists for all time.
5. You may assume that this competing species system is defined only for $x, y \geq 0$. The equilibrium points are $(0,0),(0,1.5),(1.5,0)$ and $(1,1)$. Draw the x and y nullclines and use this information to sketch the global phase portrait of this nonlinear system. At the interior equilibrium point $(1,1)$, give a detailed description of the behavior of the linearized system.

$$
\begin{aligned}
& \dot{x}=x(3-2 x-y) \\
& \dot{y}=y(3-x-2 y)
\end{aligned}
$$

The nullclines for $\dot{x}=0$ are $x=0$ and $2 x+y=3$ where the flow is vertical. For (x, y) outside the line, $\dot{x}<0$. For $\dot{y}=0$ the nullclines are $y=0$ and $x+2 y=3$ where the flow is horizontal. For points outside this line, $\dot{y}<0$. Thus going clockwise around $(1,1)$ starting outside both slant lines the general flow direction is SW, SE, NE, NW, resp. suggesting that $(0,0)$ might be a stable node.
The Jacobian is

$$
J(x, y)=\left(\begin{array}{cc}
3-4 x-y & -x \\
-y & 3-x-4 y
\end{array}\right)
$$

At the interior rest point

$$
J(1,1)=\left(\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right)
$$

whose eigengalues are $\lambda_{1}=-1$ and $\lambda_{2}=-3$. Thus $(1,1)$ is a stable node. The slow incoming flow is in the λ_{1} eigenvector $V_{1}= \pm(1,-1)$ directions. The fast incoming flow is in the λ_{2} eigenvector $V_{2}= \pm(1,1)$ directions. Thus the incoming trajectories are tangent

Figure 4: Competing Species System.
to V_{1} at $(0,0)$. The general flow pattern may be concluded from this information. For al starting values $\left(x_{0}, y_{0}\right)$ with both coordinates posotive tend to the equilibrium point $(1,1)$. The species can coexist.
We complete the local analyses of the remaining rest points which was not required in your answer. At the origin rest point

$$
J(0,0)=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

whose eigengalues are $\lambda_{1}=\lambda_{2}=3$. Thus $(0,0)$ is a source. The eigenvalues are the same so the unstable space is the whole plane: every vector through the origin is tangent to an outgoing trajectory.
At the x-axis rest point

$$
J(1.5,0)=\left(\begin{array}{cc}
-3 & -1.5 \\
0 & 1.5
\end{array}\right)
$$

whose eigengalues are $\lambda_{1}=-3$ and $\lambda_{2}=1.5$. Thus $(1.5,0)$ is a saddle. The incoming stable curve is in the λ_{1} eigenvector $V_{1}= \pm(1,0)$ direction. The outgoing unstable curve is in the λ_{2} eigenvector $V_{2}=(-1,3)$ direction.
At the y-axis rest point

$$
J(0,1.5)=\left(\begin{array}{cc}
1.5 & 0 \\
-1.5 & -3
\end{array}\right)
$$

whose eigengalues are $\lambda_{1}=1.5$ and $\lambda_{2}=-3$. Thus $(0,1.5)$ is a saddle. The outgoing unstable curve is in the λ_{1} eigenvector $V_{1}=(3,-1)$ direction. The incoming stable curve is in the λ_{2} eigenvector $V_{2}= \pm(0,1)$ direction.

