Name:
Nov. 17, 2021

1. Find the values of the parameter a where bifurcations occur. Describe the nature of the bifurcations. Sketch the phase plane for three a's, one at a bifurcation value one just below and the other just above.

$$
\begin{aligned}
\dot{r} & =r-r^{3} \\
\dot{\theta} & =a+\cos \theta
\end{aligned}
$$

$\dot{r}=0$ when $r=0$ and $r=1 . \dot{r}>0$ in $0<r<1$ making 0 an unstable equilibrium point for all a. Also $\dot{r}<0$ if $r>1$ making the circle $C=\{r=1\}$ an attracting invariant set for all a. Different values of a affect the direction of flow on C.

The bifurcation curve in the $a-\theta$ plane is the solution of the equation $0=a+\cos \theta$, in other words $a=-\cos \theta$, This means that there are $\dot{\theta}=0$ points for $-1 \leq a \leq 1$ and no rest points otherwise. In fact there are no rest points for $a>1$ one rest point at $(a, \theta)=(1, \pi)$ for theta $\in[0,2 \pi)$ which is attrctive but not Liapunov stable, two rest points $\left(a, \theta_{1}\right)$, a stable node and $\left(a, 2 \pi-\theta_{1}\right)$ an unstable saddle for $-1<a<1$ where $0<\theta_{1}<\pi$ satisfies $\cos \left(\theta_{1}\right)=-a$, one rest point $(-1,0)$ which is attractive but not Liapunov stable when $a=-1$ and no rest points if $a>1$. Thus there are two saddle/node bifurcation points, at $(-1,0)$ and $(1, \pi)$.
For various a 's the θ phase line $[0,2 \pi]$ look like

Here are "Slopes" generated plots.

Figure 1: Saddle-node Bifurcation at $a=1.2, a=1$ and $a=.8$.

Figure 2: Saddle-node Bifurcation at $a=-.8, a=-1$ and $a=-1.2$.
2. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: Let the solution $\varphi(t, Y)$ of the smooth planar $O D E X^{\prime}=F(X)$ and $X(0)=Y$ exist for all $t \in[0, \infty)$. Then the ω-limit set $\omega(Y)$ consists of a single point. False. The $\omega(Y)$ limit set may also be empty or a limit cycle as in $X^{\prime}=X$ and $Y \neq 0$, or $\dot{r}=r\left(1-r^{2}\right), \dot{\theta}=1$ and $\left(r_{0}, \theta_{0}\right) \neq(0,0)$. It can also be more complicated such as a heteroclinic cycle.
(b) Statement: Let A be a 2×2 matrix and $\varphi(t, Y)$ solves $X^{\prime}=A X$ and $X(0)=Y$. Then $\Phi(t)=\mathrm{d}_{Y} \varphi(t, Y)$ satisfies $\Phi^{\prime}=A \Phi$.
True. This is just the variation equation for $f(X)=A X$. We can see it two ways. As a variation equation, $\Phi(t)=\mathrm{d}_{Y} \varphi(t, Y)$ satisfies $\Phi^{\prime}=\mathrm{d} f(\varphi(t, Y)) \Phi$ but $\mathrm{d} f(Z)=A Z$ since it is linear. The other way to see it is to use the fact that $\varphi(t, Y)=e^{t A} Y$ so $\Phi(t)=e^{t A}$ and $\Phi^{\prime}=A e^{t A}=A \Phi$.
(c) Statement: $t \dot{L}(X) \leq 0$ but not $\dot{L}(X)<0$ for all $X \neq 0$ then 0 is Liapunov Stable but not asymptotically stable.
FALSE. If \dot{L} is only nonpositive, the rest point may still be asymptotically stable. An example occurs in the pendulum equation with $b>0$

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{y}=-\sin x-b y
\end{array}\right.
$$

With $L(x, y)=\frac{1}{2} y^{2}+1-\cos x$ and $P=\{L(x, y) \leq r,|x|<\pi\}$ with $r<2$ we get $\dot{L}=-b y^{2}$ so only $\dot{L} \leq 0$. On the set $Z=\{(x, y) \in P: \dot{L}(x, y)=0\}$, the only invariant subset is $\{(0,0)\}$, so by Lasalle's Invariance Principle, $(0,0)$ is asymptotically stable.
3. Determine whether the given equilibrium point for the given system is Asymptotically Stable, is Liapunov Stable but Not Asymptotically Stable, or is Not Stable. Give a brief explanation.
(a) $x=0, y=0$ for $\left\{\begin{array}{l}\dot{x}=H_{y}(x, y) \\ \dot{y}=-H_{x}(x, y)\end{array}\right.$ where $H(x, y)=(x+2 y)^{2}+(x-y)^{4}$.

Stable but not asymptotically stable. This is a Hamiltonian System and $H(x, y)$ has a strict minimum at the origin. Since trajectories of Hamiltonian flows stay in the level sets of H, which in this case are concentric ovals that surround $(0,0)$, the origin is a center which is stable but not attractive.

Figure 3: Levels sets $H=.05, .1, .2, .4, .8,1.6,3.2,6.4,12.8$.
(b) $r=1, \theta=0$ for $\left\{\begin{array}{l}\dot{r}=r\left(1-r^{2}\right) \\ \dot{\theta}=\sin \theta\end{array}\right.$

Not Stable. Since d $f(r, \theta)=\left(\begin{array}{cc}1-2 r^{2} & 0 \\ 0 & \cos \theta\end{array}\right)$ so $\mathrm{d} f(1,0)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, this stationary point is a saddle, which is not stable.
(c) [4] $X=(0,0)$ for $\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}-2 & 3 \\ 1 & -4\end{array}\right)\binom{x}{y}$

Asymptotically stable. Since the matrix has trace $T=-6$ and determinant $D=5$ with $36=T^{2}>4 D=20$, the origin of this linear system is a spiral sink, thus is asymptotically stable.
(d) $[4](x, y)=(0,0)$ for $\left\{\begin{array}{l}\dot{x}=x^{3}(y-1) \\ \dot{y}=y^{3}(x-2)\end{array}\right.$

Asymptotically stable. Consider $L(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$, a positive definite function at the origin. Then in the neighborhood of the origin $\Omega=\left\{(x, y) \in \mathbf{R}^{2}\right.$: $x<2$ and $y<1\}$ we have for $(x, y) \in \Omega$ such that $(x, y) \neq(0,0)$,

$$
\dot{V}=x \dot{x}+y \dot{y}=x^{4}(y-1)+y^{4}(x-2)<0 .
$$

Thus this is a strict Liapunov Function and the origin is asymptotically stable.
4. Consider the solution $x(t)$ of the IVP for $t \geq 0$. Find estimates for $x(t)$ and $\dot{x}(t)$ in terms of t and $\left(u_{0}, u_{1}\right)$. Does the solution exist for all $t \in[0, \infty)$? Why?

$$
\ddot{x}+\frac{\dot{x}}{1+x^{2}}+x=0, \quad x(0)=u_{0}, \quad \dot{x}(0)=u_{1} .
$$

Convert to a 2×2 system.

$$
\binom{\dot{x}}{\dot{y}}=\binom{y}{-x-\frac{y}{1+x^{2}}}=F\binom{x}{y}
$$

We observe that we have an estimate for $F(X)$ for every $X=\binom{x}{y} \in \mathbf{R}^{2}$ given by

$$
\begin{aligned}
|F(X)|^{2} & =y^{2}+\left(-x-\frac{y}{1+x^{2}}\right)^{2}=y^{2}+x^{2}+\frac{2 x y}{1+x^{2}}+\frac{y^{2}}{\left(1+x^{2}\right)^{2}} \\
& \leq y^{2}+x^{2}+\frac{x^{2}+y^{2}}{1+x^{2}}+\frac{y^{2}}{\left(1+x^{2}\right)^{2}} \leq 3 y^{2}+2 x^{2} \leq 3\left(x^{2}+y^{2}\right)=3|X|^{2} .
\end{aligned}
$$

where we have used $2 x y \leq x^{2}+y^{2}$.
Now we estimate X using Gronwall's inequality. Assume we have a solution $X(t)$ on $t \in$ $[0, T]$. For every $0 \leq t \leq T$, the integral equation is

$$
X(t)=U_{0}+\int_{0}^{t} F(X(s)) d s
$$

where $U_{0}=\binom{u_{0}}{u_{1}}$. Taking absolute value and using the estimate for $F(X(s))$,

$$
\left.|X(t)| \leq\left|U_{0}\right|+\int_{0}^{t}|F(X(s))| d s \leq\left|U_{0}\right|+\sqrt{3} \int_{0}^{t} \mid X(s)\right) \mid d s
$$

Gronwall's Inequality gives the desired estimate on X for $0 \leq t \leq T$,

$$
|X(t)| \leq\left|U_{0}\right| e^{\sqrt{3} t}
$$

The solution exists for all $t \in[0, \infty)$. This follows from the estimate, because if there were a maximal interval of existence $[0, \beta)$ with $\beta<\infty$, then the solution $|X(t)|$ would have had to exit any compact set as $t \rightarrow \beta-$. However, the solution satisfies $|X(t)| \leq\left|U_{0}\right| e^{\sqrt{3} \beta}$ for all $0 \leq t<\beta$.
5. You may assume that the system is defined only for $x, y \geq 0$. The equilibrium points are $(0,0),(2,0)$ and $(1,1)$. Draw the x and y nullclines and use this information to sketch the global phase portrait of this nonlinear system. At the interior equilibrium point $(1,1)$, give a detailed description of the behavior of the linearized system.

$$
\begin{aligned}
& \dot{x}=x(2-x-y) \\
& \dot{y}=y(x-1)
\end{aligned}
$$

The $\dot{x}=0$ nullclines are the lines $x=0$ and $x+y=2$. Flow is vertical on these lines. We have $\dot{x}>0$ to the left and $\dot{x}<0$ to the right of $x+y=2$.
The $\dot{y}=0$ nullclines are the lines $y=0$ and $x=1$. Flow is horizontal on these lines. We have $\dot{y}<0$ to the left and $\dot{y}>0$ to the right of $x=1$.

Figure 4: Nullclines and directions of flow for (5).
Hence the direction of flow in the regions cut by the nullclines is SE, NE, NW, SW going anticlockwise in order around $(1,1)$ starting from the region near the origin.

The Jacobian of $F(X)$ is

$$
\mathrm{d} F(x, y)=\left(\begin{array}{cc}
2-2 x-y & -x \\
y & x-1
\end{array}\right)
$$

At the rest point $(1,1)$ we have

$$
\mathrm{d} F(1,1)=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)
$$

It has trace $T=-1$ and determinant $D=1$ with $1=T^{2}<4 D=4$ so that the rest point $(1,1)$ is a spiral sink.
We provide a discussion of the other rest points for completeness sake but it was not required. For the rest point $(0,0)$ we have

$$
\mathrm{d} F(0,0)=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)
$$

It is a saddle with incoming eigendirection $\binom{0}{1}$ and outgoing eigendirection $\binom{1}{0}$.
At the rest point $(1,1)$ we have

$$
\mathrm{d} F(2,0)=\left(\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}\right)
$$

It is a saddle with incoming eigendirection $\binom{1}{0}$ and outgoing eigendirection $\binom{-2}{3}$.

Figure 5: "Slopes" generated phase plane for (5).

