
Math 5410 § 1.
Treibergs

Third Midterm Exam Name:
Nov. 17, 2021

1. Find the values of the parameter a where bifurcations occur. Describe the nature of the
bifurcations. Sketch the phase plane for three a’s, one at a bifurcation value one just below
and the other just above.

ṙ = r − r3

θ̇ = a+ cos θ

ṙ = 0 when r = 0 and r = 1. ṙ > 0 in 0 < r < 1 making 0 an unstable equilibrium point
for all a. Also ṙ < 0 if r > 1 making the circle C = {r = 1} an attracting invariant set for
all a. Different values of a affect the direction of flow on C.

The bifurcation curve in the a-θ plane is the solution of the equation 0 = a+cos θ, in other
words a = − cos θ, This means that there are θ̇ = 0 points for −1 ≤ a ≤ 1 and no rest
points otherwise. In fact there are no rest points for a > 1 one rest point at (a, θ) = (1, π)
for theta ∈ [0, 2π) which is attrctive but not Liapunov stable, two rest points (a, θ1), a
stable node and (a, 2π − θ1) an unstable saddle for −1 < a < 1 where 0 < θ1 < π satisfies
cos(θ1) = −a, one rest point (−1, 0) which is attractive but not Liapunov stable when
a = −1 and no rest points if a > 1. Thus there are two saddle/node bifurcation points, at
(−1, 0) and (1, π).

For various a’s the θ phase line [0, 2π] look like

a > 1 −→ −→ −→ −→

a = 1 −→ −→ π −→ −→

−1 < a < 1 −→ θ1 ←− ←− 2π − θ1 −→

a = −1 0 ←− ←− ←− ←− 2π

a < −1 ←− ←− ←− ←−

Here are “Slopes” generated plots.
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Figure 1: Saddle-node Bifurcation at a = 1.2, a = 1 and a = .8.
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Figure 2: Saddle-node Bifurcation at a = −.8, a = −1 and a = −1.2.

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let the solution φ(t, Y ) of the smooth planar ODE X ′ = F (X) and
X(0) = Y exist for all t ∈ [0,∞). Then the ω-limit set ω(Y ) consists of a single point.

False. The ω(Y ) limit set may also be empty or a limit cycle as in X ′ = X and
Y ̸= 0, or ṙ = r(1 − r2), θ̇ = 1 and (r0, θ0) ̸= (0, 0). It can also be more complicated
such as a heteroclinic cycle.

(b) Statement: Let A be a 2 × 2 matrix and φ(t, Y ) solves X ′ = AX and X(0) = Y .
Then Φ(t) = dY φ(t, Y ) satisfies Φ′ = AΦ.

True. This is just the variation equation for f(X) = AX. We can see it two ways. As
a variation equation, Φ(t) = dY φ(t, Y ) satisfies Φ′ = d f(φ(t, Y ))Φ but d f(Z) = AZ
since it is linear. The other way to see it is to use the fact that φ(t, Y ) = etAY so
Φ(t) = etA and Φ′ = AetA = AΦ.

(c) Statement: t L̇(X) ≤ 0 but not L̇(X) < 0 for all X ̸= 0 then 0 is Liapunov Stable
but not asymptotically stable.

False. If L̇ is only nonpositive, the rest point may still be asymptotically stable. An
example occurs in the pendulum equation with b > 0{

ẋ = v

ẏ = − sinx− by

With L(x, y) = 1
2y

2 + 1 − cosx and P = {L(x, y) ≤ r, |x| < π} with r < 2 we get

L̇ = −by2 so only L̇ ≤ 0. On the set Z = {(x, y) ∈ P : L̇(x, y) = 0}, the only invariant
subset is {(0, 0)}, so by Lasalle’s Invariance Principle, (0, 0) is asymptotically stable.

3. Determine whether the given equilibrium point for the given system is Asymptotically Stable,
is Liapunov Stable but Not Asymptotically Stable, or is Not Stable. Give a brief explanation.

(a) x = 0, y = 0 for

{
ẋ = Hy(x, y)

ẏ = −Hx(x, y)
where H(x, y) = (x+ 2y)2 + (x− y)4.

Stable but not asymptotically stable. This is a Hamiltonian System and
H(x, y) has a strict minimum at the origin. Since trajectories of Hamiltonian flows
stay in the level sets of H, which in this case are concentric ovals that surround (0, 0),
the origin is a center which is stable but not attractive.
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Figure 3: Levels sets H = .05, .1, .2, .4, .8, 1.6, 3.2, 6.4, 12.8.

(b) r = 1, θ = 0 for

{
ṙ = r(1− r2)

θ̇ = sin θ

Not Stable. Since d f(r, θ) =
(

1−2r2 0
0 cos θ

)
so d f(1, 0) =

(−1 0
0 1

)
, this stationary

point is a saddle, which is not stable.

(c) [4] X = (0, 0) for

(
ẋ

ẏ

)
=

(
−2 3

1 −4

)(
x

y

)
Asymptotically stable. Since the matrix has trace T = −6 and determinant
D = 5 with 36 = T 2 > 4D = 20, the origin of this linear system is a spiral sink, thus
is asymptotically stable.

(d) [4] (x, y) = (0, 0) for

{
ẋ = x3(y − 1)

ẏ = y3(x− 2)

Asymptotically stable. Consider L(x, y) = 1
2 (x

2 + y2), a positive definite
function at the origin. Then in the neighborhood of the origin Ω = {(x, y) ∈ R2 :
x < 2 and y < 1} we have for (x, y) ∈ Ω such that (x, y) ̸= (0, 0),

V̇ = xẋ+ yẏ = x4(y − 1) + y4(x− 2) < 0.

Thus this is a strict Liapunov Function and the origin is asymptotically stable.

4. Consider the solution x(t) of the IVP for t ≥ 0. Find estimates for x(t) and ẋ(t) in terms
of t and (u0, u1). Does the solution exist for all t ∈ [0,∞)? Why?

ẍ+
ẋ

1 + x2
+ x = 0, x(0) = u0, ẋ(0) = u1.

Convert to a 2× 2 system. (
ẋ

ẏ

)
=

(
y

−x− y
1+x2

)
= F

(
x

y

)
We observe that we have an estimate for F (X) for every X =

(
x
y

)
∈ R2 given by

|F (X)|2 = y2 +

(
−x− y

1 + x2

)2

= y2 + x2 +
2xy

1 + x2
+

y2

(1 + x2)
2

≤ y2 + x2 +
x2 + y2

1 + x2
+

y2

(1 + x2)
2 ≤ 3y2 + 2x2 ≤ 3

(
x2 + y2

)
= 3|X|2.
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where we have used 2xy ≤ x2 + y2.

Now we estimate X using Gronwall’s inequality. Assume we have a solution X(t) on t ∈
[0, T ]. For every 0 ≤ t ≤ T , the integral equation is

X(t) = U0 +

∫ t

0

F (X(s)) ds,

where U0 =
(
u0

u1

)
. Taking absolute value and using the estimate for F (X(s)),

|X(t)| ≤ |U0|+
∫ t

0

|F (X(s))| ds ≤ |U0|+
√
3

∫ t

0

|X(s))| ds,

Gronwall’s Inequality gives the desired estimate on X for 0 ≤ t ≤ T ,

|X(t)| ≤ |U0|e
√
3 t.

The solution exists for all t ∈ [0,∞). This follows from the estimate, because if there were
a maximal interval of existence [0, β) with β <∞, then the solution |X(t)| would have had

to exit any compact set as t → β−. However, the solution satisfies |X(t)| ≤ |U0|e
√
3 β for

all 0 ≤ t < β.

5. You may assume that the system is defined only for x, y ≥ 0. The equilibrium points are
(0, 0), (2, 0) and (1, 1). Draw the x and y nullclines and use this information to sketch the
global phase portrait of this nonlinear system. At the interior equilibrium point (1, 1), give
a detailed description of the behavior of the linearized system.

ẋ = x(2− x− y)

ẏ = y(x− 1)

The ẋ = 0 nullclines are the lines x = 0 and x+ y = 2. Flow is vertical on these lines. We
have ẋ > 0 to the left and ẋ < 0 to the right of x+ y = 2.

The ẏ = 0 nullclines are the lines y = 0 and x = 1. Flow is horizontal on these lines. We
have ẏ < 0 to the left and ẏ > 0 to the right of x = 1.

Figure 4: Nullclines and directions of flow for (5).

Hence the direction of flow in the regions cut by the nullclines is SE, NE, NW, SW going
anticlockwise in order around (1, 1) starting from the region near the origin.
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The Jacobian of F (X) is

dF (x, y) =

(
2− 2x− y − x

y x− 1

)
At the rest point (1, 1) we have

dF (1, 1) =

(
−1 − 1

1 0

)
It has trace T = −1 and determinant D = 1 with 1 = T 2 < 4D = 4 so that the rest point
(1, 1) is a spiral sink.

We provide a discussion of the other rest points for completeness sake but it was not required.
For the rest point (0, 0) we have

dF (0, 0) =

(
2 0

0 − 1

)
It is a saddle with incoming eigendirection

(
0
1

)
and outgoing eigendirection

(
1
0

)
.

At the rest point (1, 1) we have

dF (2, 0) =

(
−2 − 2

0 1

)
It is a saddle with incoming eigendirection

(
1
0

)
and outgoing eigendirection

(−2
3

)
.
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Figure 5: “Slopes” generated phase plane for (5).
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