
Math 5410 § 1.
Treibergs

Second Midterm Exam Name: Solutions
Oct. 22, 2021

1. Find etA where

A =


2 3 4

0 2 5

0 0 2


A = 2I +N where

N =


0 3 4

0 0 5

0 0 0

 .

The identity matrix commutes with all matrices so (2I)N = N(2I). Thus we may decom-
pose etA = et(2I+N) = e2tIetN . Note that e2tI = e2tI,

N2 =


0 3 4

0 0 5

0 0 0




0 3 4

0 0 5

0 0 0

 =


0 0 15

0 0 0

0 0 0


and N3 = 0. Thus we may sum the exponential series

etN = I + tN +
t2

2
N2 +

t3

6
N3 + · · ·

=


1 0 0

0 1 0

0 0 1

+ t


0 3 4

0 0 5

0 0 0

+
t2

2


0 0 15

0 0 0

0 0 0

 =


1 3t 4t+ 15

2 t
2

0 1 5t

0 0 1


Finally,

etA = e2tIetN = e2t


1 3t 4t+ 15

2 t
2

0 1 5t

0 0 1

 .

2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: For infinitely many ω ∈ R with ω > 0, the solution (x(t), y(t)) of the
harmonic oscillator equations ẍ+ x = 0, ÿ + ω2y = 0 is not periodic.

True. The system of harmonic oscillators has periodic trajectories if and only if
the ratio of angular velocities ω

1 is rational. Thus the trajectories are not periodic for
infinitely many irrational ω.
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(b) Statement: If f : R → R is continuous, then any short time solution of the IVP
ẋ = f(x) and x(0) = 0 is unique.

False. The function f(x) =
√
|x| is continuous on R, but the IVP has many

solutions, x(t) = 0 for all t is one and for each k ≥ 0 there is another

x(t) =

{
1
4 (t− k)2, if t > k;

0, if t ≤ k.

(c) Statement: The set S of real 2 × 2 matrices that have distinct eigenvalue is open
and dense in the set of real 2× 2 matrices.

True. For the matrix A =
(
a b
c d

)
, the eigenvalues satisfy

det(A− λI) =

∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = λ2 − (a+ d)λ+ ad− bc = 0

so that by the quadratic formula

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

The eigenvalues are repeated if and only if

f(A) = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc = 0.

Thus S = f−1(R\{0}) is an open set because it is the pullback of an open set under a
continuous mapping. S is dense because every A /∈ S may be approximated by matrices
in S. Choose A /∈ S, which means (a − d)2 + 4bc = 0. Consider the approximating
matrices

Aε =

(
a+ ε b

c d− ε

)
.

Aε → A as ε→ 0. For these

f(Aε) = (a− d+ 2ε)2 + 4bc = (a− d)2 + 4bc+ 4(a− d)ε+ ε2 = 4(a− d)ε+ ε2

is nonzero for all but at most two ε’s. Thus a sequence can be chosen εi → 0 as i→∞
such that f(Aεi) 6= 0, thus Aεi ∈ S, and Aεi → A as i→∞.

3. Solve the initial value problem using the Variation of Parameters Formula

X ′ =

(
3 4

0 5

)
X +

(
e3t

0

)
, X(0) =

(
1

2

)
. Hint:

(
3 4

0 5

)
=

(
1 2

0 1

)(
3 0

0 5

)(
1 − 2

0 1

)
.

The solution is to apply the variation of parameters formula which requires the evaluation
of etA. By the hint, A = PDP−1, thus

etA = PetDP−1 =

(
1 2

0 1

)(
e3t 0

0 e5t

)(
1 − 2

0 1

)
=

(
1 2

0 1

)(
e3t − 2e3t

0 e5t

)
=

(
e3t 2e5t − 2e3t

0 e5t

)
.
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The solution of X ′ = AX + b(t), X(0) = x0 is given by the variation of parameters formula

X(t) = etA
(
x0 +

∫ t

0

e−sAb(s)ds

)
=

(
e3t 2e5t − 2e3t

0 e5t

){(
1

2

)
+

∫ t

0

(
e−3s 2e−5s − 2e−3s

0 e−5s

)(
e3s

0

)
ds

}
=

(
e3t 2e5t − 2e3t

0 e5t

){(
1

2

)
+

∫ t

0

(
1

0

)
ds

}
=

(
e3t 2e5t − 2e3t

0 e5t

)(
1 + t

2

)
=

(
(1 + t)e3t + 4e5t − 4e3t

2e5t

)
.

4. Find the first few Picard iterates of the system. Show that they converge to a solution of
the IVP.

d

dt

(
x

y

)
= F

(
x

y

)
=

(
y

2

)
,

(
x(0)

y(0)

)
=

(
1

1

)
.

Start at the initial condition

X0(t) =

(
1

1

)
.

Then iterating

Xn+1(t) = X0 +

∫ t

0

F (Xn(s)) ds

we get

X1(t) =

(
1

1

)
+

∫ t

0

F

(
1

1

)
ds =

(
1

1

)
+

∫ t

0

(
1

2

)
ds =

(
1 + t

1 + 2t

)
X2(t) =

(
1

1

)
+

∫ t

0

F

(
1 + t

1 + 2t

)
ds =

(
1

1

)
+

∫ t

0

(
1 + 2t

2

)
ds =

(
1 + t+ t2

1 + 2t

)
X3(t) =

(
1

1

)
+

∫ t

0

F

(
1 + t+ t2

1 + 2t

)
ds =

(
1

1

)
+

∫ t

0

(
1 + 2t

2

)
ds =

(
1 + t+ t2

1 + 2t

)
The sequence stabilizes: Xn+1 = Xn for all n ≥ 2. Thus the limit of the Picard iteration is
the function

X(t) =

(
1 + t+ t2

1 + 2t

)
.

This solves the IVP since

d

dt
X(t) =

(
1 + 2t

2

)
= F

(
1 + t+ t2

1 + 2t

)
= F (X(t)), X(0) =

(
1

1

)
.
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5. Delay Differential Equations are a type of ODE we haven’t discussed, but local existence
may be derived by the techniques from the class. Let 0 < α < 1. Consider the integral
equation (IE). For a continuous function y : R → R, let J [y](t) = 1 +

∫ t
0
y(αs) ds. Let

y0(t) = 1 and yn+1(t) = J [yn](t). The first four iterations are given. Explain briefly why
{yn(t)} converges to a continuous function x(t) satisfying (IE) for t ∈ I where I = [0, 12 ].
Why is x(t) continuously differentiable? State the initial value problem satisfied by x(t).
What do you expect the solution of (IE) to be?

(IE) x(t) = 1 +

∫ t

0

x(αs) ds.



y0(t) = 1,

y1(t) = 1 + t,

y2(t) = 1 + t+ 1
2αt

2,

y3(t) = 1 + t+ 1
2αt

2 + 1
6α

3t3,

y4(t) = 1 + t+ 1
2αt

2 + 1
6α

3t3 + 1
24α

6t4.

The solution is found in the space of continuous real functions on I with sup norm ‖x‖ =
supt∈I |x(t)|. The sequence {yn} is shown to be a Uniformly Cauchy Sequence, hence
uniformly convergent to a continuous function x. This follows by showing yn+1 − yn decay
geometrically. Uniform convergence yn → x implies yn+1 = J [yn] may be taken to the limit
to show x satisfies (IE). Since J applies to all continuous functions, there is no need to
show that the yn’s stay in a fixed ball. The yn’s are a Uniformly Cauchy Sequence, hence
bounded.

First we show that the yn’s are continuous. This is done by induction. y0(t) = 1 which is
continuous. For the induction step, assume that yn is continuous on I for some n. Then

yn+1(t) = 1 +

∫ t

0

yn(αs) ds

is the integral of the continuous function yn(αs), hence is continuously differentiable.

Second, we show that consecutive terms {yn} are close to each other, namely we show for
every n that

‖yn+1 − yn‖ ≤
1

2n+1
. (1)

By induction, the base case is from the first few iterates,

|y1(t)− y0(t)| = |1 + t− 1| = |t|.

Taking sup over t ∈ I yields

‖y1 − y0‖ ≤
1

2
.

Assuming (1) for some n ≥ 0 we have

|yn+2(t)− yn+1(t)| = |J [yn+1](t)− J [yn](t)|

=

∣∣∣∣1 +

∫ t

0

yn+1(αs) ds− 1−
∫ t

0

yn(αs) ds

∣∣∣∣
≤
∫ t

0

|yn+1(αs)− yn(αs)| ds

≤
∫ t

0

‖yn+1 − yn‖ ds

= t‖yn+1 − yn‖

≤ 1

2
· 1

2n+1
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Taking sup over t ∈ I yields

‖yn+2 − yn+1‖ ≤
1

2n+2

and the induction step is proved.

Third we show that {yn} is a Uniformly Cauchy Sequence. Choose ε > 0. Let N ∈ R
satisfy 1

2N
= ε . Then for every p, q ∈ N such that p > N and q > N , we may suppose that

p > q. If p = q then ‖yp − yq‖ = 0 < ε. If p < q then we swap the roles of p and q. Then
by the telescoping sum trick,

‖yp − yq‖ = ‖(yp − yp−1) + (yp−1 − yp−2) + · · ·+ (yq+1 − yq)‖
≤ ‖yp − yp−1‖+ ‖yp−1 − yp−2‖+ · · ·+ ‖yq+1 − yq‖

≤ 1

2p
+

1

2p−1
+ · · ·+ 1

2q+1

=
1

2q+1

p−q−1∑
`=0

1

2`

=
1

2q+1

1− 1
2p−q

1− 1
2

<
1

2q
<

1

2N
= ε.

It follows that yn → x uniformly to some function x : I → R. Since the yn are continuous,
and the convergence is uniform, x must also be continuous.

Fourth we show that (IE) holds for x. Note that yn(αt) → x(αt) as n → ∞ converges
uniformly on I. But since the convergence is uniform, we may exchange limit and integral

x(t) = lim
n→∞

yn+1(t) = lim
n→∞

(
1 +

∫ t

0

yn(αs) ds

)
= 1 +

∫ t

0

(
lim
n→∞

yn(αs)
)
ds = 1 +

∫ t

0

x(αs) ds.

Fifth, x(t) is continuously differentiable for t ∈ I because in (IE),

x(t) = 1 +

∫ t

0

x(αs) ds

it is the integral of a continuous function.

Sixth, it satisfies an IVP. Using the Fundamental Theorem of Calculus on (IE) and evalu-
ating at t = 0,

dx

dt
(t) = x(αt); x(0) = 1.

Seventh, we see that the Picard Iterates are the partial sums of a power series that actually
converges faster than the exponential series for all t ∈ R. The only missing detail is what
is the correct power of α? Let us write the integer valued function m(k), where according
to the first few iterates takes the values m(0) = 0, m(1) = 0, m(2) = 1, m(3) = 3 and
m(4) = 6. We claim

yn(t) =

n∑
k=0

αm(k)

k!
tk.
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Arguing by induction, the base case is true because it agrees with the first few listed yn’s.
For the induction case, assume this is true for some n ∈ N. Substituting into

yn+1(t) = 1 +

∫ t

0

yn(αs) ds

we find that

yn+1(t) = 1 +

∫ t

0

(
n∑
`=0

αm(`)

`!
(αs)`

)
ds = 1 +

n∑
`=0

αm(`)α`

(`+ 1)`!
t`+1 =

n+1∑
k=0

αm(k−1)αk−1

k!
tk

proving the claim. The k = n+ 1 term says

m(n+ 1) = m(n) + n.

Each new term is gotten by adding n to the old term. Thus we see that for n ≥ 1,

m(n) =

n−1∑
`=0

` =
1

2
n(n− 1),

which agrees with the first few m(n)’s. It follows that the solution of the IVP is

x(t) =

∞∑
k=0

α
1
2k(k−1)

k!
tk.

Note that this power series is majorized by the exponential series, thus converges for all t.
Or, we see it by applying the ratio test

lim
n→∞

α
1
2
(n+1)n

(n+1)! t
n+1

α
1
2
n(n−1)

n! tn
= lim
n→∞

αnt

n+ 1
= 0.
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