1. Find $e^{t A}$ where

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 5 \\
0 & 0 & 2
\end{array}\right)
$$

$A=2 I+N$ where

$$
N=\left(\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

The identity matrix commutes with all matrices so $(2 I) N=N(2 I)$. Thus we may decompose $e^{t A}=e^{t(2 I+N)}=e^{2 t I} e^{t N}$. Note that $e^{2 t I}=e^{2 t} I$,

$$
N^{2}=\left(\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 15 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and $N^{3}=0$. Thus we may sum the exponential series

$$
\begin{aligned}
e^{t N} & =I+t N+\frac{t^{2}}{2} N^{2}+\frac{t^{3}}{6} N^{3}+\cdots \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+t\left(\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right)+\frac{t^{2}}{2}\left(\begin{array}{lll}
0 & 0 & 15 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llc}
1 & 3 t & 4 t+\frac{15}{2} t^{2} \\
0 & 1 & 5 t \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Finally,

$$
e^{t A}=e^{2 t I} e^{t N}=e^{2 t}\left(\begin{array}{ccc}
1 & 3 t & 4 t+\frac{15}{2} t^{2} \\
0 & 1 & 5 t \\
0 & 0 & 1
\end{array}\right)
$$

2. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: For infinitely many $\omega \in \mathbf{R}$ with $\omega>0$, the solution $(x(t), y(t))$ of the harmonic oscillator equations $\ddot{x}+x=0, \ddot{y}+\omega^{2} y=0$ is not periodic.
True. The system of harmonic oscillators has periodic trajectories if and only if the ratio of angular velocities $\frac{\omega}{1}$ is rational. Thus the trajectories are not periodic for infinitely many irrational ω.
(b) Statement: If $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, then any short time solution of the IVP $\dot{x}=f(x)$ and $x(0)=0$ is unique.
False. The function $f(x)=\sqrt{|x|}$ is continuous on \mathbf{R}, but the IVP has many solutions, $x(t)=0$ for all t is one and for each $k \geq 0$ there is another

$$
x(t)= \begin{cases}\frac{1}{4}(t-k)^{2}, & \text { if } t>k \\ 0, & \text { if } t \leq k\end{cases}
$$

(c) Statement: The set S of real 2×2 matrices that have distinct eigenvalue is open and dense in the set of real 2×2 matrices.
True. For the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the eigenvalues satisfy

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right|=\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

so that by the quadratic formula

$$
\lambda=\frac{a+d \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
$$

The eigenvalues are repeated if and only if

$$
f(A)=(a+d)^{2}-4(a d-b c)=(a-d)^{2}+4 b c=0
$$

Thus $S=f^{-1}(\mathbf{R} \backslash\{0\})$ is an open set because it is the pullback of an open set under a continuous mapping. S is dense because every $A \notin S$ may be approximated by matrices in S. Choose $A \notin S$, which means $(a-d)^{2}+4 b c=0$. Consider the approximating matrices

$$
A_{\epsilon}=\left(\begin{array}{cc}
a+\epsilon & b \\
c & d-\epsilon
\end{array}\right)
$$

$A_{\epsilon} \rightarrow A$ as $\epsilon \rightarrow 0$. For these

$$
f\left(A_{\epsilon}\right)=(a-d+2 \epsilon)^{2}+4 b c=(a-d)^{2}+4 b c+4(a-d) \epsilon+\epsilon^{2}=4(a-d) \epsilon+\epsilon^{2}
$$

is nonzero for all but at most two ϵ 's. Thus a sequence can be chosen $\epsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$ such that $f\left(A_{\epsilon_{i}}\right) \neq 0$, thus $A_{\epsilon_{i}} \in S$, and $A_{\epsilon_{i}} \rightarrow A$ as $i \rightarrow \infty$.
3. Solve the initial value problem using the Variation of Parameters Formula

$$
X^{\prime}=\left(\begin{array}{ll}
3 & 4 \\
0 & 5
\end{array}\right) X+\binom{e^{3 t}}{0}, \quad X(0)=\binom{1}{2} . \quad \text { Hint: } \quad\left(\begin{array}{ll}
3 & 4 \\
0 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)
$$

The solution is to apply the variation of parameters formula which requires the evaluation of $e^{t A}$. By the hint, $A=P D P^{-1}$, thus

$$
\begin{aligned}
e^{t A} & =P e^{t D} P^{-1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{3 t} & 0 \\
0 & e^{5 t}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{3 t} & -2 e^{3 t} \\
0 & e^{5 t}
\end{array}\right)=\left(\begin{array}{cc}
e^{3 t} & 2 e^{5 t}-2 e^{3 t} \\
0 & e^{5 t}
\end{array}\right)
\end{aligned}
$$

The solution of $X^{\prime}=A X+b(t), X(0)=x_{0}$ is given by the variation of parameters formula

$$
\begin{aligned}
X(t) & =e^{t A}\left(x_{0}+\int_{0}^{t} e^{-s A} b(s) d s\right) \\
& =\left(\begin{array}{cc}
e^{3 t} & 2 e^{5 t}-2 e^{3 t} \\
0 & e^{5 t}
\end{array}\right)\left\{\binom{1}{2}+\int_{0}^{t}\left(\begin{array}{cc}
e^{-3 s} & 2 e^{-5 s}-2 e^{-3 s} \\
0 & e^{-5 s}
\end{array}\right)\binom{e^{3 s}}{0} d s\right\} \\
& =\left(\begin{array}{cc}
e^{3 t} & 2 e^{5 t}-2 e^{3 t} \\
0 & e^{5 t}
\end{array}\right)\left\{\binom{1}{2}+\int_{0}^{t}\binom{1}{0} d s\right\} \\
& =\left(\begin{array}{cc}
e^{3 t} & 2 e^{5 t}-2 e^{3 t} \\
0 & e^{5 t}
\end{array}\right)\binom{1+t}{2} \\
& =\binom{(1+t) e^{3 t}+4 e^{5 t}-4 e^{3 t}}{2 e^{5 t}}
\end{aligned}
$$

4. Find the first few Picard iterates of the system. Show that they converge to a solution of the IVP.

$$
\frac{d}{d t}\binom{x}{y}=F\binom{x}{y}=\binom{y}{2}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}
$$

Start at the initial condition

$$
X_{0}(t)=\binom{1}{1}
$$

Then iterating

$$
X_{n+1}(t)=X_{0}+\int_{0}^{t} F\left(X_{n}(s)\right) d s
$$

we get

$$
\begin{gathered}
X_{1}(t)=\binom{1}{1}+\int_{0}^{t} F\binom{1}{1} d s=\binom{1}{1}+\int_{0}^{t}\binom{1}{2} d s=\binom{1+t}{1+2 t} \\
X_{2}(t)=\binom{1}{1}+\int_{0}^{t} F\binom{1+t}{1+2 t} d s=\binom{1}{1}+\int_{0}^{t}\binom{1+2 t}{2} d s=\binom{1+t+t^{2}}{1+2 t} \\
X_{3}(t)=\binom{1}{1}+\int_{0}^{t} F\binom{1+t+t^{2}}{1+2 t} d s=\binom{1}{1}+\int_{0}^{t}\binom{1+2 t}{2} d s=\binom{1+t+t^{2}}{1+2 t}
\end{gathered}
$$

The sequence stabilizes: $X_{n+1}=X_{n}$ for all $n \geq 2$. Thus the limit of the Picard iteration is the function

$$
X(t)=\binom{1+t+t^{2}}{1+2 t}
$$

This solves the IVP since

$$
\frac{d}{d t} X(t)=\binom{1+2 t}{2}=F\binom{1+t+t^{2}}{1+2 t}=F(X(t)), \quad X(0)=\binom{1}{1}
$$

5. Delay Differential Equations are a type of ODE we haven't discussed, but local existence may be derived by the techniques from the class. Let $0<\alpha<1$. Consider the integral equation (IE). For a continuous function $y: \mathbf{R} \rightarrow \mathbf{R}$, let $J[y](t)=1+\int_{0}^{t} y(\alpha s) d s$. Let $y_{0}(t)=1$ and $y_{n+1}(t)=J\left[y_{n}\right](t)$. The first four iterations are given. Explain briefly why $\left\{y_{n}(t)\right\}$ converges to a continuous function $x(t)$ satisfying (IE) for $t \in I$ where $I=\left[0, \frac{1}{2}\right]$. Why is $x(t)$ continuously differentiable? State the initial value problem satisfied by $x(t)$. What do you expect the solution of (IE) to be?

$$
x(t)=1+\int_{0}^{t} x(\alpha s) d s . \quad\left\{\begin{array}{l}
y_{0}(t)=1 \tag{IE}\\
y_{1}(t)=1+t \\
y_{2}(t)=1+t+\frac{1}{2} \alpha t^{2} \\
y_{3}(t)=1+t+\frac{1}{2} \alpha t^{2}+\frac{1}{6} \alpha^{3} t^{3} \\
y_{4}(t)=1+t+\frac{1}{2} \alpha t^{2}+\frac{1}{6} \alpha^{3} t^{3}+\frac{1}{24} \alpha^{6} t^{4}
\end{array}\right.
$$

The solution is found in the space of continuous real functions on I with sup norm $\|x\|=$ $\sup _{t \in I}|x(t)|$. The sequence $\left\{y_{n}\right\}$ is shown to be a Uniformly Cauchy Sequence, hence uniformly convergent to a continuous function x. This follows by showing $y_{n+1}-y_{n}$ decay geometrically. Uniform convergence $y_{n} \rightarrow x$ implies $y_{n+1}=J\left[y_{n}\right]$ may be taken to the limit to show x satisfies (IE). Since J applies to all continuous functions, there is no need to show that the y_{n} 's stay in a fixed ball. The y_{n} 's are a Uniformly Cauchy Sequence, hence bounded.
First we show that the y_{n} 's are continuous. This is done by induction. $y_{0}(t)=1$ which is continuous. For the induction step, assume that y_{n} is continuous on I for some n. Then

$$
y_{n+1}(t)=1+\int_{0}^{t} y_{n}(\alpha s) d s
$$

is the integral of the continuous function $y_{n}(\alpha s)$, hence is continuously differentiable.
Second, we show that consecutive terms $\left\{y_{n}\right\}$ are close to each other, namely we show for every n that

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \leq \frac{1}{2^{n+1}} \tag{1}
\end{equation*}
$$

By induction, the base case is from the first few iterates,

$$
\left|y_{1}(t)-y_{0}(t)\right|=|1+t-1|=|t|
$$

Taking sup over $t \in I$ yields

$$
\left\|y_{1}-y_{0}\right\| \leq \frac{1}{2}
$$

Assuming (1) for some $n \geq 0$ we have

$$
\begin{aligned}
\left|y_{n+2}(t)-y_{n+1}(t)\right| & =\left|J\left[y_{n+1}\right](t)-J\left[y_{n}\right](t)\right| \\
& =\left|1+\int_{0}^{t} y_{n+1}(\alpha s) d s-1-\int_{0}^{t} y_{n}(\alpha s) d s\right| \\
& \leq \int_{0}^{t}\left|y_{n+1}(\alpha s)-y_{n}(\alpha s)\right| d s \\
& \leq \int_{0}^{t}\left\|y_{n+1}-y_{n}\right\| d s \\
& =t\left\|y_{n+1}-y_{n}\right\| \\
& \leq \frac{1}{2} \cdot \frac{1}{2^{n+1}}
\end{aligned}
$$

Taking sup over $t \in I$ yields

$$
\left\|y_{n+2}-y_{n+1}\right\| \leq \frac{1}{2^{n+2}}
$$

and the induction step is proved.
Third we show that $\left\{y_{n}\right\}$ is a Uniformly Cauchy Sequence. Choose $\epsilon>0$. Let $N \in \mathbf{R}$ satisfy $\frac{1}{2^{N}}=\epsilon$. Then for every $p, q \in \mathbb{N}$ such that $p>N$ and $q>N$, we may suppose that $p>q$. If $p=q$ then $\left\|y_{p}-y_{q}\right\|=0<\epsilon$. If $p<q$ then we swap the roles of p and q. Then by the telescoping sum trick,

$$
\begin{aligned}
\left\|y_{p}-y_{q}\right\| & =\left\|\left(y_{p}-y_{p-1}\right)+\left(y_{p-1}-y_{p-2}\right)+\cdots+\left(y_{q+1}-y_{q}\right)\right\| \\
& \leq\left\|y_{p}-y_{p-1}\right\|+\left\|y_{p-1}-y_{p-2}\right\|+\cdots+\left\|y_{q+1}-y_{q}\right\| \\
& \leq \frac{1}{2^{p}}+\frac{1}{2^{p-1}}+\cdots+\frac{1}{2^{q+1}} \\
& =\frac{1}{2^{q+1}} \sum_{\ell=0}^{p-q-1} \frac{1}{2^{\ell}} \\
& =\frac{1}{2^{q+1}} \frac{1-\frac{1}{2^{p-q}}}{1-\frac{1}{2}} \\
& <\frac{1}{2^{q}}<\frac{1}{2^{N}}=\epsilon .
\end{aligned}
$$

It follows that $y_{n} \rightarrow x$ uniformly to some function $x: I \rightarrow \mathbf{R}$. Since the y_{n} are continuous, and the convergence is uniform, x must also be continuous.
Fourth we show that (IE) holds for x. Note that $y_{n}(\alpha t) \rightarrow x(\alpha t)$ as $n \rightarrow \infty$ converges uniformly on I. But since the convergence is uniform, we may exchange limit and integral

$$
\begin{aligned}
x(t) & =\lim _{n \rightarrow \infty} y_{n+1}(t)=\lim _{n \rightarrow \infty}\left(1+\int_{0}^{t} y_{n}(\alpha s) d s\right) \\
& =1+\int_{0}^{t}\left(\lim _{n \rightarrow \infty} y_{n}(\alpha s)\right) d s=1+\int_{0}^{t} x(\alpha s) d s
\end{aligned}
$$

Fifth, $x(t)$ is continuously differentiable for $t \in I$ because in (IE),

$$
x(t)=1+\int_{0}^{t} x(\alpha s) d s
$$

it is the integral of a continuous function.
Sixth, it satisfies an IVP. Using the Fundamental Theorem of Calculus on (IE) and evaluating at $t=0$,

$$
\frac{d x}{d t}(t)=x(\alpha t) ; \quad x(0)=1
$$

Seventh, we see that the Picard Iterates are the partial sums of a power series that actually converges faster than the exponential series for all $t \in \mathbf{R}$. The only missing detail is what is the correct power of α ? Let us write the integer valued function $m(k)$, where according to the first few iterates takes the values $m(0)=0, m(1)=0, m(2)=1, m(3)=3$ and $m(4)=6$. We claim

$$
y_{n}(t)=\sum_{k=0}^{n} \frac{\alpha^{m(k)}}{k!} t^{k}
$$

Arguing by induction, the base case is true because it agrees with the first few listed y_{n} 's. For the induction case, assume this is true for some $n \in \mathbb{N}$. Substituting into

$$
y_{n+1}(t)=1+\int_{0}^{t} y_{n}(\alpha s) d s
$$

we find that

$$
y_{n+1}(t)=1+\int_{0}^{t}\left(\sum_{\ell=0}^{n} \frac{\alpha^{m(\ell)}}{\ell!}(\alpha s)^{\ell}\right) d s=1+\sum_{\ell=0}^{n} \frac{\alpha^{m(\ell)} \alpha^{\ell}}{(\ell+1) \ell!} t^{\ell+1}=\sum_{k=0}^{n+1} \frac{\alpha^{m(k-1)} \alpha^{k-1}}{k!} t^{k}
$$

proving the claim. The $k=n+1$ term says

$$
m(n+1)=m(n)+n
$$

Each new term is gotten by adding n to the old term. Thus we see that for $n \geq 1$,

$$
m(n)=\sum_{\ell=0}^{n-1} \ell=\frac{1}{2} n(n-1)
$$

which agrees with the first few $m(n)$'s. It follows that the solution of the IVP is

$$
x(t)=\sum_{k=0}^{\infty} \frac{\alpha^{\frac{1}{2} k(k-1)}}{k!} t^{k}
$$

Note that this power series is majorized by the exponential series, thus converges for all t. Or, we see it by applying the ratio test

$$
\lim _{n \rightarrow \infty} \frac{\frac{\alpha^{\frac{1}{2}(n+1) n}}{(n+1)!} t^{n+1}}{\frac{\alpha^{\frac{1}{2} n(n-1)}}{n!} t^{n}}=\lim _{n \rightarrow \infty} \frac{\alpha^{n} t}{n+1}=0
$$

