Math $5410 \S 1$.	Second Midterm Exam
Treibergs	

1. Find $e^{t A}$.

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

First method to transform to canonical form. The characteristic equation is

$$
0=\left|\begin{array}{ccc}
-\lambda & 1 & 1 \\
0 & -\lambda & 0 \\
0 & 1 & -\lambda
\end{array}\right|=-\lambda^{3}
$$

so $\lambda=0,0,0$. Computing eigenvectors and cyclic vectors we find

$$
\begin{aligned}
& 0=(A-\lambda I) v_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad v_{1}=(A-\lambda I) v_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& v_{2}=(A-\lambda I) v_{3}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
\end{aligned}
$$

Put

$$
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right), \quad T^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad J=T^{-1} A T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then

$$
e^{t A}=e^{t T J T^{-1}}=T e^{t J} T^{-1}=T\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right) T^{-1}=\left(\begin{array}{cccc}
1 & t+\frac{t^{2}}{2} & t \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right)
$$

Second method is to compute the power series. Indeed,

$$
A^{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad A^{3}=0
$$

so the exponential series terminates at the quadratic term, yielding
$e^{t A}=I+t A+\frac{t^{2}}{2} A^{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+t\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)+\frac{t^{2}}{2}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}1 & t+\frac{t^{2}}{2} & t \\ 0 & 1 & 0 \\ 0 & t & 1\end{array}\right)$.
2. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement: The set of matrices A that don't have π as an eigenvalue are open and dense in the set of real matrices.
True. Let U be the set of real $n \times n$ matrices whose eigenvalues all differ from π. The key fact is that the eigenvalues depend continuously on the matrix. A slick way to say that all eigenvalues are not π is

$$
f(A)=\prod_{k=1}^{n}\left(\lambda_{i}(A)-\pi\right) \neq 0
$$

Thus U is open because it is the preimage under a continuous function of an open set, namely,

$$
U=f^{-1}((-\infty, 0) \cup(0, \infty))
$$

Equivalently one could say since $\lambda_{i}(A)$ is continuous, for any $A \in U$, all eigenvalues are some positive distance ϵ away from π, so for sufficiently small $\delta>0$, if any matrix B satisfies $|B-A|<\delta$ then all $\left|\lambda_{i}(A)-\lambda_{i}(B)\right|<\epsilon$ so all $\lambda_{i}(B) \neq \pi$. Thus every matrix in U has a δ-neighborhood of matrices entirely contained in U. Thus U is open.
To see that U is dense, one has to prove that every matrix $A \in L\left(\mathbf{R}^{n}\right)$ can be arbitrarily closely approximated by a matrix in U. But one can choose a sequence $t_{i} \downarrow 0$ decreasing to zero and consider the approximating matrices $A_{i}=A+t_{i} I$ whose eigenvalues are $\lambda_{i}+t_{i}$ (why?) For all but finitely many i, the eigenvalues of A_{i} are not π so $A_{i} \in U$ and $\left|A_{i}-A\right| \rightarrow 0$ as $i \rightarrow \infty$. Thus U is dense.
(b) Statement: Let $a, b \in \mathbb{N}$ be positive integers. Then the solution $(x(t), y(t))$ of the harmonic oscillator equations $\ddot{x}+a x=0, \ddot{y}+b y=0$ s periodic.
FALSE. Writing in polar coordinates $x=r_{1}(t) \cos \theta_{1}(t), \dot{x}=r_{1}(t) \sin \theta_{1}(t), y=$ $r_{2}(t) \cos \theta_{2}(t), \dot{y}=r_{2}(t) \sin \theta_{2}(t)$, the system reduces to $\dot{\theta_{1}}=-\sqrt{a}$ and $\dot{\theta_{2}}=-\sqrt{b}$. The solutions of this system of oscillators is periodic if and only if the trajectory of $\left(\theta_{1}(t), \theta_{2}(t)\right)$ closes up in the two torus (the square $[0,2 \pi) \times[0,2 \pi) \subset \mathbf{R}^{2}$ with sides identified). This happens if and only if the ratio of angular frequencies \sqrt{b} / \sqrt{a} is rational. However, if one chooses $a=4$ and $b=5$ then this ratio is irrational and the solution is not periodic. The $x(t)$ and $y(t)$ are "out of sync."
(c) Statement: If $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuously differentiable, then the IVP $\dot{x}=f(x)$ and $x(0)=0$ has a solution $x(t)$ defined for $t \in \mathbf{R}$.
FALSE. The solution of $\dot{x}=f(x)$ and $x(0)=0$ may not exist for all of $t \in \mathbf{R}$. For example $f(x)=1+x^{2}$ is continuosly differentiable but the solution of the IVP is $x(t)=\tan t$ which exists only for $-\frac{\pi}{2}<t<\frac{\pi}{2}$, and tends to infinity as $t \rightarrow \pm \frac{\pi}{2}$.
3. Solve the initial value problem

$$
X^{\prime}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) X+\binom{0}{2 e^{t}}, \quad X(0)=\binom{3}{5}
$$

We have a real canonical form with eigenvalues $\lambda=1 \pm 2 i$ with

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right), \quad e^{t A}=e^{t}\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right), \quad f(t)=\binom{0}{2 e^{t}}
$$

Using the variation of constants formula,

$$
\begin{aligned}
X(t) & =e^{t A}\left(X(0)+\int_{0}^{t} e^{-s A} f(s) d s\right) \\
& =e^{t}\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right)\left\{\binom{3}{5}+\int_{0}^{t} e^{-s}\left(\begin{array}{cc}
\cos 2 s & -\sin 2 s \\
\sin 2 s & \cos 2 s
\end{array}\right)\binom{0}{2 e^{s}} d s\right\} \\
& =e^{t}\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right)\left\{\binom{3}{5}+\int_{0}^{t}\binom{-2 \sin 2 s}{2 \cos 2 s} d s\right\} \\
& =e^{t}\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right)\left\{\binom{3}{5}+\binom{\cos 2 t-1}{\sin 2 t}\right\} \\
& =e^{t}\binom{1+2 \cos 2 t+5 \sin 2 t}{5 \cos 2 t-2 \sin 2 s}
\end{aligned}
$$

4. Suppose $x_{0} \in \mathbf{R}$ and $x: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function that satisfies the equation.

$$
x(t)=x_{0}+\int_{0}^{t} \sin (s+x(s)) d s
$$

Why is $x(t)$ continuously differentiable? State the initial value problem satisfied by $x(t)$. Estimate the magnitude of $x(t)$ as a function of t. For a continuous function $y: \mathbf{R} \rightarrow \mathbf{R}$, let

$$
J[y](t)=x_{0}+\int_{0}^{t} \sin (s+y(s)) d s
$$

Let $y_{0}(t)=x_{0}$ and $y_{n+1}(t)=J\left[y_{n}\right](t) . I s\left\{y_{n}(t)\right\}$ convergent for $t \in \mathbf{R}$? Is it convergent on $t \in\left[0, \frac{1}{2}\right]$? Hint: $|\sin z-\sin w| \leq|z-w|$.
Since we assume that $x(t)$ is continuous, $\sin (s+x(s))$ is a continuous function of s. So $x(t)$ is the definite integral of a continuous function, thus continuously differentiable. Differentiating using the Fundamental Theorem of Calculus, and evaluating at $t=0$,

$$
\begin{aligned}
\dot{x}(t) & =\sin (t+x(t)), \\
x(0) & =x_{0} .
\end{aligned}
$$

The estmate is the same one used to show that the solution of the integral equation stays inside a rectangle. Namely, because $|\sin (s+x(s))| \leq 1$ for any $x(t)$ and s, we have for any $t \geq 0$,

$$
\begin{aligned}
|x(t)| & =\left|x_{0}+\int_{0}^{t} \sin (s+x(s)) d s\right| \\
& \leq\left|x_{0}\right|+\int_{0}^{t}|\sin (s+x(s))| d s \\
& \leq\left|x_{0}\right|+\int_{0}^{t} 1 d s \\
& \leq\left|x_{0}\right|+t
\end{aligned}
$$

We get similarly $|x(t)| \leq\left|x_{0}\right|-t$ for any $t \leq 0$. Putting these together, $|x(t)| \leq\left|x_{0}\right|+|t|$ for all $t \in \mathbf{R}$.
The Picard Sequence $y_{0}(t)=x_{0}$ and $y_{n+1}(t)=J\left[y_{n}\right](t)$ converges if we can show the sequence $\left\{y_{n}(t)\right\}$ is a Uniformly Cauchy Sequence on \mathbf{R} or on $\left[0, \frac{1}{2}\right]$. This will follow if we can show $\left\|y_{n+1}(t)-y_{n}(t)\right\|_{0} \leq \frac{1}{2}\left\|y_{n}-y_{n-1}\right\|_{0}$ for $n \geq 1$ in the continuous functions $\mathcal{C}(\mathbf{R})$ or in $\mathcal{C}\left(\left[0, \frac{1}{2}\right]\right)$. Recall that $\|f\|_{0}=\sup \{|f(t)|: t \in$ domain. $\}$. For the first step, we have

$$
\left|y_{1}(t)-y_{0}(t)\right|=\left|\int_{0}^{t} \sin \left(s+y_{0}\right) d s\right|=\left|1-\cos \left(t+y_{0}\right)\right| \leq 2
$$

for all $t \in \mathbf{R}$. Using the hint $|\sin z-\sin w| \leq|z-w|$, that $\sin (x)$ is 1-Lipschitz, we estimate
the case $t \geq 0$ for simplicity

$$
\begin{aligned}
\left|y_{n+1}(t)-y_{n}(t)\right| & =\left|\int_{0}^{t} \sin \left(s+y_{n}(s)\right) d s-\int_{0}^{t} \sin \left(s+y_{n-1}(s)\right) d s\right| \\
& \leq \int_{0}^{t}\left|\sin \left(s+y_{n}(s)\right)-\sin \left(s+y_{n-1}(s)\right)\right| d s \\
& \leq \int_{0}^{t}\left|s+y_{n}(s)-s-y_{n-1}(s)\right| d s \\
& =\int_{0}^{t}\left|y_{n}(s)-y_{n-1}(s)\right| d s \\
& \leq \int_{0}^{t}\left\|y_{n}-y_{n-1}\right\|_{0} d s \\
& =t\left\|y_{n}-y_{n-1}\right\|_{0}
\end{aligned}
$$

This is not a bounded quantity if t is allowed to be unbounded as for $t \in \mathbf{R}$. Thus this estimate fails in \mathbf{R} case. However, if $0 \leq t \leq \frac{1}{2}$ we get

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \frac{1}{2}\left\|x_{n}-x_{n-1}\right\|_{0}
$$

Taking sup over $\left[0, \frac{1}{2}\right]$ we get

$$
\left\|x_{n+1}-x_{n}\right\|_{0} \leq \frac{1}{2}\left\|x_{n}-x_{n-1}\right\|_{0}
$$

in $\mathcal{C}\left(\left[0, \frac{1}{2}\right]\right)$. Thus, with a little work we can deduce that $\left\{x_{n}\right\}$ is a Cauchy Sequence in $\mathcal{C}\left(\left[0, \frac{1}{2}\right]\right)$ and so converges to a solution of the integral equation.
5. Find the first few Picard iterates of the system. Show that they converge to a solution of the IVP.

$$
\frac{d}{d t}\binom{x}{y}=F\binom{x}{y}=\binom{1}{x}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}
$$

First find the solution of the IVP. The first equation is independent of the second.

$$
\dot{x}=1, \quad x(0)=1
$$

Integrating, its solution is $x(t)=1+t$. Then the second equation becomes

$$
\dot{y}=x=1+t, \quad y(0)=1
$$

Its solution is $y(t)=1+t+\frac{t^{2}}{2}$.
Let's do Picard Iteration. It can start with any arbitrary continuous $Z_{0} \in \mathcal{C}\left(\left[0, \frac{1}{2}\right]\right)$, so we choose $Z_{0}(t)=\binom{3}{4}$.

$$
\begin{aligned}
& Z_{0}(t)=\binom{3}{4} \\
& Z_{1}(t)=\binom{1}{1}+\int_{0}^{t} F\left(Z_{0}(s)\right) d s=\binom{1}{1}+\int_{0}^{t}\binom{1}{3} d s=\binom{1+t}{1+3 t} \\
& Z_{2}(t)=\binom{1}{1}+\int_{0}^{t} F\left(Z_{1}(s)\right) d s=\binom{1}{1}+\int_{0}^{t}\binom{1}{1+s} d s=\binom{1+t}{1+t+\frac{t^{2}}{2}} \\
& Z_{3}(t)=\binom{1}{1}+\int_{0}^{t} F\left(Z_{2}(s)\right) d s=\binom{1}{1}+\int_{0}^{t}\binom{1}{1+s} d s=\binom{1+t}{1+t+\frac{t^{2}}{2}}
\end{aligned}
$$

The sequence stabilizes $Z_{2}(t)=Z_{3}(t)=Z_{4}(t)=\cdots$ and has converged in two steps to the solution of the system.

