| Math 5410 § 1. | Second Midterm Exam |
| :--- | :--- |
| Treibergs |  |

1. Find the general solution of

$$
X^{\prime}=\left(\begin{array}{cccc}
3 & 2 & 1 & 0 \\
-2 & 3 & 0 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & -2 & 3
\end{array}\right) X
$$

The matrix $A$ is the canonical form for repeated eigenvalues $\lambda=3 \pm 2 i, 3 \pm 2 i$. Write $A=B+N$ where the matrices are two by two blocks

$$
B=\left(\begin{array}{cc}
B_{2} & 0 \\
0 & B_{2}
\end{array}\right), \quad N=\left(\begin{array}{cc}
0 & I_{2} \\
0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{cc}
3 & 2 \\
-2 & 3
\end{array}\right), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Since the matrices commute $B N=N B$, we have $e^{t A}=e^{t B} e^{t N}=$

$$
\begin{aligned}
& =e^{3 t}\left(\begin{array}{cccc}
\cos 2 t & \sin 2 t & 0 & 0 \\
-\sin 2 t & \cos 2 t & 0 & 0 \\
0 & 0 & \cos 2 t & \sin 2 t \\
0 & 0 & -\sin 2 t & \cos 2 t
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & t & 0 \\
0 & 1 & 0 & t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =e^{3 t}\left(\begin{array}{cccc}
\cos 2 t & \sin 2 t & t \cos 2 t & t \sin 2 t \\
-\sin 2 t & \cos 2 t & -t \sin 2 t & t \cos 2 t \\
0 & 0 & \cos 2 t & \sin 2 t \\
0 & 0 & -\sin 2 t & \cos 2 t
\end{array}\right)
\end{aligned}
$$

The general solution is thus $X(t)=e^{t A} c$ or

$$
X(t)=c_{1}\left(\begin{array}{c}
e^{3 t} \cos 2 t \\
-e^{3 t} \sin 2 t \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
e^{3 t} \sin 2 t \\
e^{3 t} \cos 2 t \\
0 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
t e^{3 t} \cos 2 t \\
-t e^{3 t} \sin 2 t \\
e^{3 t} \cos 2 t \\
-e^{3 t} \sin 2 t
\end{array}\right)+c_{4}\left(\begin{array}{c}
t e^{3 t} \sin 2 t \\
t e^{3 t} \cos 2 t \\
e^{3 t} \sin 2 t \\
e^{3 t} \cos 2 t
\end{array}\right)
$$

2. Find a basis for both Ker $T$ and Range $T$ where $T$ is the matrix

$$
T=\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
2 & 4 & 1 & 2 \\
1 & 2 & 2 & -2 \\
3 & 6 & 2 & 2
\end{array}\right)
$$

Do row operations. The matrix $T$ becomes

$$
\rightarrow\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 1 & -2 \\
0 & 0 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=R
$$

There are two pivots and two free variables so each space has dimension two. Setting the free variables gives in $R x=0$ gives the basis $\mathcal{B}_{K}$ of $\operatorname{Ker} T$.

$$
\mathcal{B}_{K}=\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right)\right\}
$$

On the other hand, the columns one and three of the original matrix corresponding to the pivot variables gives a basis $\mathcal{B}_{R}$ for the range.

$$
\mathcal{B}_{R}=\left\{\left(\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right)\right\}
$$

3. Find a matrix $T$ such that puts $A$ into its canonical form. Find $e^{t A}$.

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

The characteristic equation is

$$
0=(2-\lambda)^{2}(1-\lambda)
$$

so the eigenvalues are $\lambda=2,2,1$. We find a chain of generalized eigenvectors of length two for $\lambda=2$. Namely, if $\lambda=2$ then

$$
0=(A-\lambda I) V_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; \quad V_{1}=(A-\lambda I) V_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

For $\lambda=1$ we have an eigenvector.

$$
0=(A-\lambda I) V_{3}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

The matrix $T$ is composed of the generalized eigenvectors. We check $A T=T C$ where $C$ is the canonical form

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 1 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then since $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=B+N$ and $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ we get

$$
e^{t(B+N)}=e^{t B} e^{t N}=\left(\begin{array}{rr}
e^{2 t} & 0 \\
0 & e^{2 t}
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

we have since $A=T C T^{-1}$ that $e^{t A}=e^{t T C T^{-1}}=T e^{t C} T^{-1}$ so

$$
e^{t A}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{2 t} & t e^{2 t} & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
e^{2 t} & t e^{2 t} & e^{t}-e^{2 t}+t e^{2 t} \\
0 & e^{2 t} & e^{2 t}-e^{t} \\
0 & 0 & e^{t}
\end{array}\right)
$$

4. it Determine which of the following properties of real $3 \times 3$ matrices are generic. Give a brief reason.
(a) Property: $A$ is not a diagonal matrix.

Generic. If $A$ is non-diagonal then some entry $a_{i j} \neq 0$ where $i \neq j$. If $\|A-B\|$ is sufficiently small then $B_{i j} \neq 0$ so non diagonal matrices are open. Similarly if $A$ is any matrix, then one can choose arbitrarily small $\epsilon$ to make $A_{1,2}+\epsilon \neq 0$. Thus every $A$ is arbitrarilyy close to a non-diagonal matrix, thus non-diagonal matrices are dense.
(b) Property: All solutions of $X^{\prime}=A X$ tend to zero as $t \rightarrow \infty$.

Not Generic. Solutions tend to zero if and only if $\Re \mathrm{e} \lambda<0$ for all eigenvalues of $A$. However, such matrices are not dense. If $A$ is a matrix that has an eigenvalue with $\Re \mathrm{e} \lambda=\alpha>0$, because the eigenvalues depend continuously on the matrices, all matrices sufficiently close to $A$ will have an eigenvalue with real parts close to $\alpha$ so positive.
(c) Property: A is diagonalizable: there is a possibly complex change of coordinates $T$ for which $T^{-1} A T=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ where some $\lambda_{i}$ may be complex.
Not-Generic. The diagonalizable matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is arbitrarily close to the non-diagonalizable matrices $\left(\begin{array}{ccc}1 & \epsilon & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ where $\epsilon \neq 0$ but arbitrarily small. Thus the diagonalizable matrices are not open. However, they are dense because matrices with distinct eigenvalues are dense and are diagonalizable.
5. Let $c \in \mathbf{R}$. Consider the initial value problem. Find the first three Picard Iterates. Guess the limit of your iterates. Check that your guess is correct by solving the IVP.

$$
\begin{array}{ll}
x^{\prime}=1 & x(0)=0 \\
y^{\prime}=x-y & y(0)=0
\end{array}
$$

The Picard Iterates are the following sequence of approximations.

$$
\left.\begin{array}{rl}
\binom{x_{0}(t)}{y_{0}(t)} & =X_{0}(t)
\end{array}=x_{0}=\binom{0}{0}, ~ \begin{array}{l}
x_{k+1}(t) \\
y_{k+1}(t)
\end{array}\right)=X_{k+1}(t)=x_{0}+\int_{0}^{t} f\left(X_{k}(s)\right) d s=\binom{0}{0}+\int_{0}^{t}\binom{1}{x_{k}(s)-y_{k}(s)} d s
$$

Computing,

$$
\begin{aligned}
& \binom{x_{1}(t)}{y_{1}(t)}=\binom{0}{0}+\int_{0}^{t}\binom{1}{0-0} d s=\binom{t}{0} \\
& \binom{x_{2}(t)}{y_{1}(t)}=\binom{0}{0}+\int_{0}^{t}\binom{1}{s-0} d s=\binom{t}{\frac{1}{2} t^{2}} \\
& \binom{x_{3}(t)}{y_{1}(t)}=\binom{0}{0}+\int_{0}^{t}\binom{1}{s-\frac{1}{2} s^{2}} d s=\binom{t}{\frac{1}{2} t^{2}-\frac{1}{3!} t^{3}}
\end{aligned}
$$

From the pattern we guess $X_{k}$ converges to

$$
\binom{x(t)}{y(t)}=\binom{t}{e^{-t}+t-1}
$$

To check, the system decouples:

$$
x^{\prime}=1 ; \quad x(0)=0
$$

so $x(t)=t$. Then

$$
y^{\prime}+y=t, \quad y(0)=0
$$

so multiplying by the integrating factor

$$
\left(e^{t} y\right)^{\prime}=t e^{t}
$$

so

$$
e^{t} y(t)-y(0)=\int_{0}^{t} s e^{s} d s=t e^{t}-e^{t}+1
$$

Hence

$$
y(t)=e^{-t}+t-1
$$

