Math 5210 § 1.
Treibergs

First Midterm Exam

1. Let $A \subset \mathbf{R}$ be a nonempty subset. Define: A is sequentially compact (what our author calls compact.) Define: A is closed. Using just your definitions and elementary facts about sequences, but without quoting results from the text or elsewhere, show that if A is sequentially compact, then it is closed.
A set $A \subset \mathbf{R}$ is sequentially compact if every sequence $\left\{x_{i}\right\}$ in A has a limit point $a \in A$. That is, for every $\epsilon>0$ there is an infinite number of terms x_{i} that satisfy $\left|x_{i}-a\right|<\epsilon$.
A set $A \subset \mathbf{R}$ is closed if it contains all of its limit points. x is a limit point (cluster point) of A if for any $\epsilon>0$ there is $y \in A$ not equal to x such that $|x-y|<\epsilon$.
Suppose y is a limit point of A, to show $y \in A$. This means for every $n \in \mathbb{N}$ there is $y_{n} \in A$ so that $0<\left|y_{n}-y\right|<1 / n$. Thus $\left\{y_{n}\right\}$ is a sequence in A which converges to y. By sequential compactness, the sequence $\left\{y_{n}\right\}$ has a limit point $a \in A$. But since the sequence is converging, there is only one limit point, so $y=a$ which is a point in A. Thus A contains its limit points, thus is closed.
2. Let $(X,\langle\cdot, \cdot\rangle)$ be a real inner product space. Let $v \in X$ be any unit vector.

Let $\mathcal{H}=\{x \in X:\langle x, v\rangle>0\}$. For $x, y \in X$ describe the norm $\|x\|$ and distance $d(x, y)$ associated to the inner product $\langle\cdot, \cdot\rangle$. Define: \mathcal{H} is open. Show that \mathcal{H} is open. Define: x is a limit point (same as cluster point) of \mathcal{H}. Determine the limit points of \mathcal{H} and prove your result.
The norm and distance are given by $\|x\|=\sqrt{\langle x, x\rangle}$ and $d(x, y)=\|x-y\|$.
\mathcal{H} is open if for every point $x \in \mathcal{H}$ there is an $r>0$ so that the ball $B_{r}(x) \subset \mathcal{H}$, where $B_{r}(x)=\{y \in X:\|x-y\|<r\}$.
So see that \mathcal{H} is open, we choose $x \in \mathcal{H}$ and show that for $r=\langle x, v\rangle>0$ we have $B_{r}(x) \subset \mathcal{H}$. To see it, pick $z \in B_{r}(x)$ so $\|x-z\|<r$. Then, using the Cauch Schwartz inequality and $\|v\|=1$,

$$
\begin{aligned}
\langle z, v\rangle & =\langle x+(z-x), v\rangle \\
& =\langle x, v\rangle+\langle z-x, v\rangle \\
& \geq\langle x, v\rangle-|\langle z-x, v\rangle| \\
& \geq\langle x, v\rangle-\|z-x\|\|v\| \\
& >r-r \cdot 1=0 .
\end{aligned}
$$

Thus $z \in \mathcal{H}$ so $B_{r}(x) \subset \mathcal{H}$.
x is a limit point (cluster point) of \mathcal{H} if for any $\epsilon>0$ there is $y \in \mathcal{H}$ not equal to x such that $\|x-y\|<\epsilon$.
The limit points of \mathcal{H} is the set $\mathcal{L}=\{x \in X:\langle x, v\rangle \geq 0\}$. To see all points in $z \in \mathcal{L}$ are limit points, consider the sequences

$$
z_{n}=z+\frac{1}{2 n} v
$$

$z_{n} \in \mathcal{H}$ because

$$
\begin{aligned}
\left\langle z_{n}, v\right\rangle & =\left\langle z+\frac{1}{2 n} v, v\right\rangle \\
& =\langle z, v\rangle+\frac{1}{2 n}\langle v, v\rangle \\
& =0+\frac{1}{2 n} \cdot 1>0 .
\end{aligned}
$$

For any $n \in \mathbb{N}$ we have

$$
\left\|z-z_{n}\right\|=\left\|\frac{1}{2 n} v\right\|=\frac{1}{2 n} \leq \frac{1}{n}
$$

so z is a limit point.
To see that no other points are limit points, we suppose $w \notin \mathcal{L}$ or $\langle x, v\rangle<0$. But this says $\langle x,-v\rangle>0$. Using $-v$ as the unit vector instead of v, we showed that $\mathcal{L}^{\prime}=\{x \in X$: $\langle x,-v\rangle>0\}$ is open, so there is $r>0$ so that $B_{r}(w) \subset \mathcal{L}^{\prime}$. Now $\mathcal{H} \subset \mathcal{L}$ so in particular, $B_{r}(w) \bigcap \mathcal{H}=\emptyset$ so w is not a limit point of \mathcal{H}.
3. The real numbers were defined to be equivalence classes $\mathcal{R}=\mathcal{C} / \sim$, where \mathcal{C} is the set of Cauchy Sequences of rational numbers, and where two sequences are equivalent, $\left(a_{i}\right) \sim\left(b_{i}\right)$, if for every positive rational number ϵ, there is $N \in \mathbb{N}$ so that

$$
\left|a_{i}-b_{i}\right|<\epsilon \quad \text { whenever } i \geq N
$$

If $\left[\left(a_{i}\right)\right] \in \mathcal{R}$, define $\left[\left(a_{i}\right)\right]>0$. Let $\mathcal{P}=\left\{\left[\left(a_{i}\right)\right] \in \mathcal{R}:\left[\left(a_{i}\right)\right]>0\right\}$ denote the positive cone in \mathcal{R}. Show that if $\left[\left(a_{i}\right)\right],\left[\left(b_{i}\right)\right] \in \mathcal{P}$ then so is their product $\left[\left(a_{i}\right)\right]\left[\left(b_{i}\right)\right] \in \mathcal{P}$.
$\left[\left(a_{i}\right)\right]>0$ means that there is a rational number $\epsilon>0$ and an $m \in \mathbb{N}$ such that

$$
a_{i}>\epsilon \quad \text { whenever } i \geq m
$$

Now suppose $\left[\left(a_{i}\right)\right]>0$ and $\left[\left(b_{i}\right)\right]>0$. There are rational number $\epsilon_{1}>0, \epsilon_{2}>0$ and $m_{1}, m_{2} \in \mathbb{N}$ such that

$$
a_{i}>\epsilon_{1} \quad \text { whenever } i \geq m_{1} \quad \text { and } \quad b_{i}>\epsilon_{2} \quad \text { whenever } i \geq m_{2}
$$

Let m
$\max \left\{m_{1}, m_{2}\right\}$. By multiplying, there is $\epsilon_{1} \epsilon_{2}>0$ and $m \in \mathbb{N}$ so that

$$
a_{i} b_{i}>\epsilon_{1} \epsilon_{2} \quad \text { whenever } i \geq m
$$

It follows that $\left[\left(a_{i}\right)\right]\left[\left(b_{i}\right)\right]=\left[\left(a_{i} b_{i}\right)\right]>0$, using the definition of multiplication in \mathcal{R}.
4. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement The middle thirds Cantor set C is uncountable.

True. The Cantor set may be realized as all ternary expansions involving only zeros and twos, namely,

$$
C=\left\{\sum_{k=1}^{\infty} \frac{d_{i}}{3^{i}}: d_{i} \in\{0,2\}\right\}
$$

Thus C is in one-to-one correspondence with the set of infinite strings of zeros and twos which is the Cartesian product $\prod_{k \in \mathbb{N}}\{0,2\}$. But this is uncountable by Cantor's diagonal argument.
(b) Statement. Let X be a nonempty set. Define $d(x, y)=1$ if $x=y$ and $d(x, y)=0$ otherwise. Then (X, d) is a metric space.
False. A metric has to satisfy $d(x, x)=0$ but here $d(x, x)=1$.
If the d were defined instead by $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ otherwise, then that is a metric, called the discrete metric.
(c) Statement. Let $B_{\alpha} \subset \mathbf{R}$ be open sets for each $\alpha \in \mathcal{I}$, where \mathcal{I} is any index set. Then the intersection $\bigcap_{\alpha \in \mathcal{I}} B_{\alpha}$ is open.
False. Consider $B_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$ in the reals. Then $\bigcap_{n \in \mathbb{N}} B_{n}=\{0\}$ which is not open.
5. Suppose that real numbers are partitioned into two nonempty subsets L and U such that each element of L is less that each element of U. Show that either L has a greatest element or U has a least element.
Conpleteness of the reals gives the answer using "divide and conquer," the bisection procedure.

Since they are nonempty, one can pick $x_{1} \in L$ and $y_{1} \in U$ so $x_{1}<y_{1}$. Supposing that x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} have been chosen we set $m_{k}=\frac{1}{2} x_{k}+y_{k}$. Then we let

$$
\begin{array}{ll}
x_{n+1}=x_{n}, \quad y_{n+1}=m_{n}, & \text { if } m_{n} \in U \\
x_{n+1}=m_{n}, \quad y_{n+1}=y_{n}, & \text { if } m_{n} \in L
\end{array}
$$

This gives $x_{k} \in L, y_{k} \in U,\left[x_{k+1}, y_{k+1}\right] \subset\left[x_{k}, y_{k}\right]$ and $\left|y_{k}-x_{k}\right|=2^{1-n}\left|y_{1}-x_{1}\right|$ for all k. Thus $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are equivalent Cauchy sequences. By completeness, both sequences converge to $c \in \mathbf{R}$,

$$
\lim _{k \rightarrow \infty} x_{n}=c=\lim _{k \rightarrow \infty} y_{n}
$$

It remains to argue that c is a maximum of L or a minimum of $U . c$ is in one of the sets.
In case $c \in L$, then c is a maximum of L. Indeed, we have $\ell<y_{n}$ for every $\ell \in \mathcal{L}$, thus y_{n} is an upper bound of L. Since $y_{n} \rightarrow c$ then c is an upper bound of L. As $c \in L$, it is the maximum of L.
In case $c \in U$, then c is a minimum of U. Since $x_{n} \in L$ the x_{n} 's are lower bounds of U. No smaller number than c can be a lower bound

