Math 5210 \S 1.	First Midterm Exam	Name: Solutions
Treibergs		Feb. 9, 2022

1. Let $A \subset \mathbf{R}$ be a nonempty subset. Define: A is sequentially compact (what our author calls compact.) Define: A is closed. Using just your definitions and elementary facts about sequences, but without quoting results from the text or elsewhere, show that if A is sequentially compact, then it is closed.

A set $A \subset \mathbf{R}$ is sequentially compact if every sequence $\{x_i\}$ in A has a limit point $a \in A$. That is, for every $\epsilon > 0$ there is an infinite number of terms x_i that satisfy $|x_i - a| < \epsilon$.

A set $A \subset \mathbf{R}$ is closed if it contains all of its limit points. x is a limit point (cluster point) of A if for any $\epsilon > 0$ there is $y \in A$ not equal to x such that $|x - y| < \epsilon$.

Suppose y is a limit point of A, to show $y \in A$. This means for every $n \in \mathbb{N}$ there is $y_n \in A$ so that $0 < |y_n - y| < 1/n$. Thus $\{y_n\}$ is a sequence in A which converges to y. By sequential compactness, the sequence $\{y_n\}$ has a limit point $a \in A$. But since the sequence is converging, there is only one limit point, so y = a which is a point in A. Thus A contains its limit points, thus is closed.

2. Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. Let $v \in X$ be any unit vector.

Let $\mathcal{H} = \{x \in X : \langle x, v \rangle > 0\}$. For $x, y \in X$ describe the norm ||x|| and distance d(x, y) associated to the inner product $\langle \cdot, \cdot \rangle$. Define: \mathcal{H} is open. Show that \mathcal{H} is open. Define: x is a limit point (same as cluster point) of \mathcal{H} . Determine the limit points of \mathcal{H} and prove your result.

The norm and distance are given by $||x|| = \sqrt{\langle x, x \rangle}$ and d(x, y) = ||x - y||.

 \mathcal{H} is open if for every point $x \in \mathcal{H}$ there is an r > 0 so that the ball $B_r(x) \subset \mathcal{H}$, where $B_r(x) = \{y \in X : ||x - y|| < r\}.$

So see that \mathcal{H} is open, we choose $x \in \mathcal{H}$ and show that for $r = \langle x, v \rangle > 0$ we have $B_r(x) \subset \mathcal{H}$. To see it, pick $z \in B_r(x)$ so ||x - z|| < r. Then, using the Cauch Schwartz inequality and ||v|| = 1,

$$\begin{split} \langle z, v \rangle &= \langle x + (z - x), v \rangle \\ &= \langle x, v \rangle + \langle z - x, v \rangle \\ &\geq \langle x, v \rangle - |\langle z - x, v \rangle| \\ &\geq \langle x, v \rangle - \|z - x\| \|v\| \\ &> r - r \cdot 1 = 0. \end{split}$$

Thus $z \in \mathcal{H}$ so $B_r(x) \subset \mathcal{H}$.

x is a limit point (cluster point) of \mathcal{H} if for any $\epsilon > 0$ there is $y \in \mathcal{H}$ not equal to x such that $||x - y|| < \epsilon$.

The limit points of \mathcal{H} is the set $\mathcal{L} = \{x \in X : \langle x, v \rangle \ge 0\}$. To see all points in $z \in \mathcal{L}$ are limit points, consider the sequences

$$z_n = z + \frac{1}{2n}v$$

 $z_n \in \mathcal{H}$ because

$$\langle z_n, v \rangle = \left\langle z + \frac{1}{2n} v, v \right\rangle$$

= $\langle z, v \rangle + \frac{1}{2n} \langle v, v \rangle$
= $0 + \frac{1}{2n} \cdot 1 > 0.$

For any $n \in \mathbb{N}$ we have

$$||z - z_n|| = \left|\left|\frac{1}{2n}v\right|\right| = \frac{1}{2n} \le \frac{1}{n}$$

so z is a limit point.

To see that no other points are limit points, we suppose $w \notin \mathcal{L}$ or $\langle x, v \rangle < 0$. But this says $\langle x, -v \rangle > 0$. Using -v as the unit vector instead of v, we showed that $\mathcal{L}' = \{x \in X : \langle x, -v \rangle > 0\}$ is open, so there is r > 0 so that $B_r(w) \subset \mathcal{L}'$. Now $\mathcal{H} \subset \mathcal{L}$ so in particular, $B_r(w) \cap \mathcal{H} = \emptyset$ so w is not a limit point of \mathcal{H} .

 The real numbers were defined to be equivalence classes R = C/ ~, where C is the set of Cauchy Sequences of rational numbers, and where two sequences are equivalent, (a_i) ~ (b_i), if for every positive rational number ε, there is N ∈ N so that

$$|a_i - b_i| < \epsilon$$
 whenever $i \ge N$.

If $[(a_i)] \in \mathcal{R}$, define $[(a_i)] > 0$. Let $\mathcal{P} = \{[(a_i)] \in \mathcal{R} : [(a_i)] > 0\}$ denote the positive cone in \mathcal{R} . Show that if $[(a_i)], [(b_i)] \in \mathcal{P}$ then so is their product $[(a_i)][(b_i)] \in \mathcal{P}$.

 $[(a_i)] > 0$ means that there is a rational number $\epsilon > 0$ and an $m \in \mathbb{N}$ such that

 $a_i > \epsilon$ whenever $i \ge m$.

Now suppose $[(a_i)] > 0$ and $[(b_i)] > 0$. There are rational number $\epsilon_1 > 0$, $\epsilon_2 > 0$ and $m_1, m_2 \in \mathbb{N}$ such that

$$a_i > \epsilon_1$$
 whenever $i \ge m_1$ and $b_i > \epsilon_2$ whenever $i \ge m_2$

Let m

 $max\{m_1, m_2\}$. By multiplying, there is $\epsilon_1 \epsilon_2 > 0$ and $m \in \mathbb{N}$ so that

$$a_i b_i > \epsilon_1 \epsilon_2$$
 whenever $i \ge m$.

It follows that $[(a_i)][(b_i)] = [(a_i b_i)] > 0$, using the definition of multiplication in \mathcal{R} .

- 4. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT The middle thirds Cantor set C is uncountable.

TRUE. The Cantor set may be realized as all ternary expansions involving only zeros and twos, namely,

$$C = \left\{ \sum_{k=1}^{\infty} \frac{d_i}{3^i} : d_i \in \{0, 2\} \right\}$$

Thus C is in one-to-one correspondence with the set of infinite strings of zeros and twos which is the Cartesian product $\prod_{k \in \mathbb{N}} \{0, 2\}$. But this is uncountable by Cantor's diagonal argument.

(b) STATEMENT. Let X be a nonempty set. Define d(x, y) = 1 if x = y and d(x, y) = 0 otherwise. Then (X, d) is a metric space.

FALSE. A metric has to satisfy d(x, x) = 0 but here d(x, x) = 1.

If the d were defined instead by d(x,y) = 0 if x = y and d(x,y) = 1 otherwise, then that is a metric, called the discrete metric.

(c) STATEMENT. Let $B_{\alpha} \subset \mathbf{R}$ be open sets for each $\alpha \in \mathcal{I}$, where \mathcal{I} is any index set. Then the intersection $\bigcap_{\alpha \in \mathcal{I}} B_{\alpha}$ is open.

FALSE. Consider $B_n = (-\frac{1}{n}, \frac{1}{n})$ in the reals. Then $\bigcap_{n \in \mathbb{N}} B_n = \{0\}$ which is not open.

5. Suppose that real numbers are partitioned into two nonempty subsets L and U such that each element of L is less that each element of U. Show that either L has a greatest element or U has a least element.

Conpleteness of the reals gives the answer using "divide and conquer," the bisection procedure.

Since they are nonempty, one can pick $x_1 \in L$ and $y_1 \in U$ so $x_1 < y_1$. Supposing that x_1, \ldots, x_n and y_1, \ldots, y_n have been chosen we set $m_k = \frac{1}{2}x_k + y_k$. Then we let

$$x_{n+1} = x_n, \quad y_{n+1} = m_n, \quad \text{if } m_n \in U;$$

 $x_{n+1} = m_n, \quad y_{n+1} = y_n, \quad \text{if } m_n \in L;$

This gives $x_k \in L$, $y_k \in U$, $[x_{k+1}, y_{k+1}] \subset [x_k, y_k]$ and $|y_k - x_k| = 2^{1-n}|y_1 - x_1|$ for all k. Thus $\{x_n\}$ and $\{y_n\}$ are equivalent Cauchy sequences. By completeness, both sequences converge to $c \in \mathbf{R}$,

$$\lim_{k \to \infty} x_n = c = \lim_{k \to \infty} y_n.$$

It remains to argue that c is a maximum of L or a minimum of U. c is in one of the sets.

In case $c \in L$, then c is a maximum of L. Indeed, we have $\ell < y_n$ for every $\ell \in \mathcal{L}$, thus y_n is an upper bound of L. Since $y_n \to c$ then c is an upper bound of L. As $c \in L$, it is the maximum of L.

In case $c \in U$, then c is a minimum of U. Since $x_n \in L$ the x_n 's are lower bounds of U. No smaller number than c can be a lower bound