
Math 5210 § 1.
Treibergs

First Midterm Exam Name: Solutions
Feb. 9, 2022

1. Let A ⊂ R be a nonempty subset. Define: A is sequentially compact (what our author
calls compact.) Define: A is closed. Using just your definitions and elementary facts
about sequences, but without quoting results from the text or elsewhere, show that if A is
sequentially compact, then it is closed.

A set A ⊂ R is sequentially compact if every sequence {xi} in A has a limit point a ∈ A.
That is, for every ε > 0 there is an infinite number of terms xi that satisfy |xi − a| < ε.

A set A ⊂ R is closed if it contains all of its limit points. x is a limit point (cluster point)
of A if for any ε > 0 there is y ∈ A not equal to x such that |x− y| < ε.

Suppose y is a limit point of A, to show y ∈ A. This means for every n ∈ N there is yn ∈ A
so that 0 < |yn − y| < 1/n . Thus {yn} is a sequence in A which converges to y. By
sequential compactness, the sequence {yn} has a limit point a ∈ A. But since the sequence
is converging, there is only one limit point, so y = a which is a point in A. Thus A contains
its limit points, thus is closed.

2. Let (X, 〈·, ·〉) be a real inner product space. Let v ∈ X be any unit vector.
Let H = {x ∈ X : 〈x, v〉 > 0}. For x, y ∈ X describe the norm ‖x‖ and distance d(x, y)
associated to the inner product 〈·, ·〉. Define: H is open. Show that H is open. Define: x is
a limit point (same as cluster point) of H. Determine the limit points of H and prove your
result.

The norm and distance are given by ‖x‖ =
√
〈x, x〉 and d(x, y) = ‖x− y‖.

H is open if for every point x ∈ H there is an r > 0 so that the ball Br(x) ⊂ H, where
Br(x) = {y ∈ X : ‖x− y‖ < r}.
So see thatH is open, we choose x ∈ H and show that for r = 〈x, v〉 > 0 we have Br(x) ⊂ H.
To see it, pick z ∈ Br(x) so ‖x − z‖ < r. Then, using the Cauch Schwartz inequality and
‖v‖ = 1,

〈z, v〉 = 〈x+ (z − x), v〉
= 〈x, v〉+ 〈z − x, v〉
≥ 〈x, v〉 − |〈z − x, v〉|
≥ 〈x, v〉 − ‖z − x‖ ‖v‖
> r − r · 1 = 0.

Thus z ∈ H so Br(x) ⊂ H.

x is a limit point (cluster point) of H if for any ε > 0 there is y ∈ H not equal to x such
that ‖x− y‖ < ε.

The limit points of H is the set L = {x ∈ X : 〈x, v〉 ≥ 0}. To see all points in z ∈ L are
limit points, consider the sequences

zn = z +
1

2n
v

zn ∈ H because

〈zn, v〉 =

〈
z +

1

2n
v, v

〉
= 〈z, v〉+

1

2n
〈v, v〉

= 0 +
1

2n
· 1 > 0.
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For any n ∈ N we have

‖z − zn‖ =

∥∥∥∥ 1

2n
v

∥∥∥∥ =
1

2n
≤ 1

n

so z is a limit point.

To see that no other points are limit points, we suppose w /∈ L or 〈x, v〉 < 0. But this
says 〈x,−v〉 > 0. Using −v as the unit vector instead of v, we showed that L′ = {x ∈ X :
〈x,−v〉 > 0} is open, so there is r > 0 so that Br(w) ⊂ L′. Now H ⊂ L so in particular,
Br(w)

⋂
H = ∅ so w is not a limit point of H.

3. The real numbers were defined to be equivalence classes R = C/ ∼, where C is the set of
Cauchy Sequences of rational numbers, and where two sequences are equivalent, (ai) ∼ (bi),
if for every positive rational number ε, there is N ∈ N so that

|ai − bi| < ε whenever i ≥ N .

If [(ai)] ∈ R, define [(ai)] > 0. Let P = {[(ai)] ∈ R : [(ai)] > 0} denote the positive cone in
R. Show that if [(ai)], [(bi)] ∈ P then so is their product [(ai)][(bi)] ∈ P.

[(ai)] > 0 means that there is a rational number ε > 0 and an m ∈ N such that

ai > ε whenever i ≥ m.

Now suppose [(ai)] > 0 and [(bi)] > 0. There are rational number ε1 > 0, ε2 > 0 and
m1,m2 ∈ N such that

ai > ε1 whenever i ≥ m1 and bi > ε2 whenever i ≥ m2.

Let m
max{m1,m2}. By multiplying, there is ε1ε2 > 0 and m ∈ N so that

aibi > ε1ε2 whenever i ≥ m.

It follows that [(ai)][(bi)] = [(aibi)] > 0, using the definition of multiplication in R.

4. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement The middle thirds Cantor set C is uncountable.

True. The Cantor set may be realized as all ternary expansions involving only zeros
and twos, namely,

C =

{ ∞∑
k=1

di
3i

: di ∈ {0, 2}

}
Thus C is in one-to-one correspondence with the set of infinite strings of zeros and
twos which is the Cartesian product

∏
k∈N{0, 2}. But this is uncountable by Cantor’s

diagonal argument.

(b) Statement. Let X be a nonempty set. Define d(x, y) = 1 if x = y and d(x, y) = 0
otherwise. Then (X, d) is a metric space.

False. A metric has to satisfy d(x, x) = 0 but here d(x, x) = 1.

If the d were defined instead by d(x, y) = 0 if x = y and d(x, y) = 1 otherwise, then
that is a metric, called the discrete metric.

(c) Statement. Let Bα ⊂ R be open sets for each α ∈ I, where I is any index set. Then
the intersection

⋂
α∈I Bα is open.

False. Consider Bn = (− 1
n ,

1
n ) in the reals. Then

⋂
n∈NBn = {0} which is not open.
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5. Suppose that real numbers are partitioned into two nonempty subsets L and U such that
each element of L is less that each element of U . Show that either L has a greatest element
or U has a least element.

Conpleteness of the reals gives the answer using “divide and conquer,” the bisection proce-
dure.

Since they are nonempty, one can pick x1 ∈ L and y1 ∈ U so x1 < y1. Supposing that
x1, . . . , xn and y1, . . . , yn have been chosen we set mk = 1

2xk + yk. Then we let

xn+1 = xn, yn+1 = mn, if mn ∈ U ;

xn+1 = mn, yn+1 = yn, if mn ∈ L;

This gives xk ∈ L, yk ∈ U , [xk+1, yk+1] ⊂ [xk, yk] and |yk − xk| = 21−n|y1 − x1| for all k.
Thus {xn} and {yn} are equivalent Cauchy sequences. By completeness, both sequences
converge to c ∈ R,

lim
k→∞

xn = c = lim
k→∞

yn.

It remains to argue that c is a maximum of L or a minimum of U . c is in one of the sets.

In case c ∈ L, then c is a maximum of L. Indeed, we have ` < yn for every ` ∈ L, thus yn
is an upper bound of L. Since yn → c then c is an upper bound of L. As c ∈ L, it is the
maximum of L.

In case c ∈ U , then c is a minimum of U . Since xn ∈ L the xn’s are lower bounds of U . No
smaller number than c can be a lower bound
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