
Math 5010 § 1.
Treibergs

Solutions to Eighth Homework
March 13, 2009

151[14] Suppose X is a random variable that is uniform on 1 ≤ x ≤ m. What is
P(X = k | a ≤ X ≤ b)? In particular, find P(X > n + k | X > n).

The random variable X takes values in the set D = {1, 2, 3, . . . ,m}. The pmf of the
uniform random variable is fX(x) = 1/m for x ∈ D and fX(x) = 0 if x /∈ D. The answer
is simpler if we make the assumption that a, k, b are integers and 1 ≤ a ≤ k ≤ b ≤ m.
Under this condition, all the numbers between a and b, inclusive, are in D so that there are
b − a + 1 such numbers and P(a ≤ X ≤ b) = (b − a + 1)/m. Similarly a ≤ k ≤ b implies
P({X = k} ∩ {a ≤ X ≤ b}) = P(X = k) = 1/m. Thus

P(X = k | a ≤ X ≤ b) =
P({X = k} ∩ {a ≤ X ≤ b})

P(a ≤ X ≤ b)
=

1
b− a + 1

.

Assuming the conditions 0 ≤ n < m and n ≤ n+k ≤ m, the set of numbers in D that satisfy
X > n is {n + 1 ≤ X ≤ m} so there are m− n such numbers and P(X > n) = (m− n)/m.
Also the set of numbers in D that satisfy {X > n + k} ∩ {X > n} = {X > n + k} is
{n + k + 1 ≤ X ≤ m} so there are m − n − k such numbers and P({X > n + k} ∩ {X >
n}) = (m− n− k)/m. Thus

P(X > n + k | X > n) =
P({X > n + k} ∩ {X > n})

P(X > n)
=

m− n− k

m− n
.

We also give a solution in case we make weaker hypotheses on the numbers a, b, k which are
not specified in this problem. Since we are conditioning on the event {a ≤ X ≤ b}, which
must have positive probability, at least one of the numbers from D have to be included
between a and b. In other words, we can assume the weaker conditions a ≤ b, a ≤ m and
b ≥ 1. Thus the numbers in D that are between a and b are exactly

max(a, 1),max(a, 1) + 1, . . . ,min(b, m).

For example if m = 6 as in X is the number on one roll of a die, and a = 2, b = 9, then
the possible values of X between a and b are max(2, 1) = 2, 3, 4, 5, 6 = min(9, 6). The
probability is thus the number of numbers times the probability of any one of them, or

P(a ≤ X ≤ b) =
min(b, m)−max(a, 1) + 1

m
. (1)

For example on the standard die with a = 2, b = 9 this is (6 − 2 + 1)/6. The intersection
event {X = k} ∩ {a ≤ X ≤ b} = {X = k} if max(a, 1) ≤ k ≤ min(b, m) and the empty set
if not. Thus the conditional probability

P(X = k | a ≤ X ≤ b) =
P({X = k} ∩ {a ≤ X ≤ b})

P(a ≤ X ≤ b)

=


P(X = k)

P(a ≤ X ≤ b)
, if max(a, 1) ≤ k ≤ min(b, m);

0, otherwise.

=


1

min(b, m)−max(a, 1) + 1
, if max(a, 1) ≤ k ≤ min(b, m);

0, otherwise.
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For the second problem, we assume n < m so that {X > n} ∩ D 6= ∅ so it has positive
probability. Using (1),

P(X > n + k | X > n) =
P({X > n + k} ∩ {X > n})

P(X > n)
=

P(X > n + k)
P(X > n)

=


P(n + k < X ≤ m)

P(n < X ≤ m)
, if m > n + k;

0, otherwise.

=


m−max(n + k + 1, 1) + 1

m−max(n + 1, 1) + 1
, if m > n + k;

0, otherwise.

151[42] Prove Chebychev’s Inequality, that for a random variable X with mean µ and variance σ2,

P(|X − µ| ≤ hσ) ≥ 1− 1
h2

for any h > 0. (2)

When an unbiased coin is tossed n times, let the number of heads be m. Show that

P
(
0.4 ≤ m

n
≤ 0.6

)
≥ 0.75

when n ≥ 100. Given that n = 100, show that the actual probability is

P
(
0.49 ≤ m

n
≤ 0.51

)
' 3

5
√

2π
.

You may assume Stirling’s Formula n! '
√

2π nn+ 1
2 e−n.

Applying Theorem 4.6.1 to h(x) = (x−E(X))2, we get the version of Chebychev’s inequality
given in class,

P(|X −E(X)| ≥ a) ≤ Var(X)
a2

, for any a > 0. (3)

The desired inequality reverses signs, so we expect to apply it to the complementary event.
Furthermore, we replace a = hσ, use the fact that the event {|X−µ| > hσ} ⊂ {|X−µ| ≥ hσ}
and (3),

1−P(|X − µ| ≤ hσ) = P({|X − µ| ≤ hσ}c)
= P(|X − µ| > hσ)
≤ P(|X − µ| ≥ hσ)

≤ σ2

(hσ)2
=

1
h2

.

Rearranging gives (2).

The second question asks us to apply the inequality to the random variable m, the num-
ber of heads in n tosses, whch has the distribution of a binomial random variable m ∼
binomial(n, p = 1

2 ). From Table 4.1, µ = E(m) = np = 0.5n and σ2 = Var(m) = npq =
0.25n so σ = 0.5

√
n. We may rewrite the event using equivalent inequalities on m,{

0.4 ≤ m

n
≤ 0.6

}
= {0.4n ≤ m ≤ 0.6n} = {−0.1n ≤ m−0.5n ≤ 0.1n} = {|m−µ| ≤ 0.1n}.

Thus 0.1n = hσ = 0.5h
√

n so h = 0.2
√

n. Thus applying (2),

P
(
0.4 ≤ m

n
≤ 0.6

)
= P(|m− µ| ≤ 0.1n = hσ) ≥ 1− 1

h2
= 1− 1

0.04n
≥ 1− 1

4
= 0.75
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if n ≥ 100.

The third question asks to compute the exact probability in case m ∼ bin(n = 100, p = 1
2 ).

The desired event
B =

{
0.49 ≤ m

n
≤ 0.51

}
= {49 ≤ m ≤ 51}.

The pmf for x ∈ D = {0, 1, 2, . . . , 100} is

fm(x) =
(

n

x

)
pxqn−x =

(
100
x

) (
1
2

)x (
1
2

)100−x

=
(

100
x

)
1

2100
.

Thus the probability is approximated using Stirling’s Formula (and answer uses 151/51 ≈ 3).

P(B) = fm(49) + fm(50) + fm(51)

=
1

2100

(
100
49

)
+

1
2100

(
100
50

)
+

1
2100

(
100
51

)
=

1
2100

(
100!

49! 51!
+

100!
50! 50!

+
100!

51! 49!

)
=

100!
2100 (50!)2

(
50
51

+ 1 +
50
51

)
≈

√
2π 100100.5e−100

2100 (
√

2π 5050.5 e−50)2
· 151

51

=
10√
2π 50

· 151
51

=
151

255
√

2π
≈ 0.236.

[A.] Let X be a random variable with finite second moment. Let µ = E(X) and σ2 = Var(X).
Let Y = (X − µ)/σ. Find E(Y ) and Var(Y ).

Finiteness of second moment implies the variance and expectation are defined. We are given
Y = aX + b where a = 1/σ and b = −µ/σ. Using the formula for a linear change in the
expectation,

E(Y ) = E(aX + b) = aE(X) + b =
1
σ

µ− µ

σ
= 0.

Similarly, using the formula for a linear change of variable for the variance,

Var(Y ) = Var(aX + b) = a2 Var(X) =
(

1
σ

)2

σ2 = 1.

[B.] Roll five dice. Let X be the smallest of the numbers rolled.
Find, P(X ≥ x), fX(x) and E(X).

The sample space Ω = {(x1, . . . , x5) ∈ N5 : xi ≤ 6 for all i}, five-tuples of numbers one to
six. Each outcome of five rolls are equally likely and |Ω| = 65. The set of possible values
taken by the random variable X is D = {1, 2, 3, 4, 5, 6}. The key observation is that the
event Ek = {X ≥ k}, that the least number on all rolls is k, is equivalent to each of the dice
showing a number at least k, or Ek = {(x1, . . . , x5) ∈ Ω : k ≤ xi ≤ 6 for all i}. It follows
that |Ek| = (7− k)5 since there are 6− k + 1 numbers between k and 6 inclusive. Thus for
k ∈ D,

P(X ≥ k) =
(7− k)5

65
.

To find the pmf, observe that the event {X = k} = {X ≥ k} \ {X ≥ k +1}. It follows that
the pmf for k ∈ D is

fX(k) = P(X = k) = P(X ≥ k)−P(X ≥ k + 1) =
(7− k)5

65
− (7− (k + 1))5

65
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Using the alternative formula for expectation of a nonnegative integer valued random vari-
able Theorem 4.3.11,

E(X) =
6∑

k=1

P(X ≥ k) =
6∑

k=1

(7− k)5

65
=

65 + 55 + 45 + 3 + 25 + 15

65
=

12201
7776

≈ 1.5609.

[C.] Suppose the random variable X is distributed according to the Poisson distribution with
mean λ. Find fX(x | X is odd ) and E(X | X is odd ).

The values of the Poisson variable are taken in D = {0, 1, 2, 3, . . .} and for λ > 0, the pmf
for x ∈ D is

fX(x) = P(X = x) =
e−λ λx

x!
.

We need to consider the event

{X is odd} = {X = 1} ∪ {X = 3} ∪ {X = 5} ∪ · · · =
∞⋃

k=0

{X = 2k + 1}.

Its probability of being odd turns out to be less than one half

P(X is odd) =
∞∑

k=0

fX(2k+1) =
∞∑

k=0

e−λ λ2k+1

(2k + 1)!
= e−λ sinhλ = e−λ

(
eλ − e−λ

2

)
=

1− e−2λ

2

To compute the conditional mass function, we use the usual formula for conditional proba-
bility. If x ∈ D,

fX(x | X is odd) = P(X = x | X is odd) =
P({X = x} ∩ {X is odd})

P(X is odd)

=


P(X = x)

P(X is odd)
, if x is odd;

0, if x is even.

=


λx

x! sinhλ
, if x is odd;

0, if x is even.

The conditional expectation is given by the formula

E(X | X is odd) =
∑
x∈D

xfX(x | X is odd)

=
∞∑

k=0

(2k + 1) λ2k+1

(2k + 1)! sinhλ
=

λ

sinhλ

∞∑
k=0

λ2k

(2k)!
=

λ coshλ

sinhλ
= λ coth λ.
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