Math 5010 § 1. Solutions to Eighth Homework
Treibergs March 13, 2009

151[14] Suppose X is a random variable that is uniform on 1 < x < m. What is
P(X =k |a< X <b)? In particular, find P(X >n+k | X >n).

The random variable X takes values in the set D = {1,2,3,...,m}. The pmf of the
uniform random variable is fx(x) = 1/m for x € D and fx(x) =0if x ¢ D. The answer
is simpler if we make the assumption that a,k,b are integers and 1 < a < k < b < m.
Under this condition, all the numbers between a and b, inclusive, are in D so that there are
b — a+ 1 such numbers and P(a < X <b) = (b—a+ 1)/m. Similarly a < k < b implies
P{X=k}n{a <X <b})=P(X =k)=1/m. Thus

P{X =k} n{a <X <b}) 1

( las X <b) Pla< X <b) b—a+1

Assuming the conditions 0 < n < m and n < n+k < m, the set of numbers in D that satisfy
X >nis{n+1< X < m} so there are m — n such numbers and P(X > n) = (m —n)/m.
Also the set of numbers in D that satisfy {X > n+k}N{X > n} = {X > n+k}is
{n+k+1<X <m} so there are m — n — k such numbers and P({X > n+k} Nn{X >
n}) = (m —n—k)/m. Thus

{X>n+k}n{X>n}) m-n—k

P
PX>n+k|X>n)= ( PX > 1) i —

We also give a solution in case we make weaker hypotheses on the numbers a, b, k which are
not specified in this problem. Since we are conditioning on the event {a < X < b}, which
must have positive probability, at least one of the numbers from D have to be included
between a and b. In other words, we can assume the weaker conditions a < b, a < m and
b > 1. Thus the numbers in D that are between a and b are exactly

max(a, 1), max(a,1) + 1,...,min(b, m).

For example if m = 6 as in X is the number on one roll of a die, and a = 2, b = 9, then
the possible values of X between a and b are max(2,1) = 2,3,4,5,6 = min(9,6). The
probability is thus the number of numbers times the probability of any one of them, or

min(b, m) — max(a,1) + 1

Pla< X <b) = (1)

m

For example on the standard die with a = 2, b =9 this is (6 — 2 + 1)/6. The intersection
event {X =k} N{a <X <b} ={X =k} if max(a,1) <k < min(b,m) and the empty set
if not. Thus the conditional probability

{(X=k}n{a <X <b})

P(X:k\aﬁXSb)zP(

Pla< X <b)
P(X =k
= P((§X§)b) if max(a, 1) < k < min(b, m);
0, otherwise.
1
if 1) < k < min(b .
= min(b, m) — InaX(a,7 1) + 17 1 max(a, ) ~ < mln( ,m)’
0, otherwise.



151[42] Prove Chebychev’s Inequality, that for a random variable X with mean p and variance o,

For the second problem, we assume n < m so that {X > n} N D # () so it has positive
probability. Using (1),

P{X>n+kIn{X>n}) PX>n+k)
PX>n+k|X>n)= PX > 1) = PX > 1)
Pn+ k<X <m)

= Pn<X<m) ’

0, otherwise.

m—max(n+k+1,1)+1
= m—max(n+1,1)+1

0, otherwise.

if m>n+k;

, ifm>n+k;

2

1
P(|X —p[<ho)>1~ 72 for any h > 0. (2)
When an unbiased coin is tossed n times, let the number of heads be m. Show that
P(04<™ <06) =075
n

when n > 100. Given that n = 100, show that the actual probability is

o PR
You may assume Stirling’s Formula n! ~ /27 n"tz e™™,

Applying Theorem 4.6.1 to h(x) = (z—E(X))?, we get the version of Chebychev’s inequality

given in class,
< Var(X)

P(|X - E(X)| > a) , for any a > 0. (3)

2
a
The desired inequality reverses signs, so we expect to apply it to the complementary event.
Furthermore, we replace a = ho, use the fact that the event {|X —pu| > ho} C {|X—p| > ho}
and (3),

1=P(|X — | < ho) = P{|X — p| < ho})
P(|X — p| > ho)

< P(IX — p| > ho)
<o 1
S o)z ~ 12

Rearranging gives (2).

The second question asks us to apply the inequality to the random variable m, the num-

ber of heads in n tosses, whch has the distribution of a binomial random variable m ~
binomial(n,p = 3). From Table 4.1, 1 = E(m) = np = 0.5n and ¢? = Var(m) = npq =

0.25n so o = 0.5y/n. We may rewrite the event using equivalent inequalities on m,
{oa< =< 0.6} = {0.4n <m <060} = {~0.1n < m—05n < 0.1n} = {m— pu| < 0.1n}.

Thus 0.1n = ho = 0.5hy/n so h = 0.2y/n. Thus applying (2),

1 1 1
§0.6>:P(\m—u|§0.1n=ha)21——:1 >1—--=0.75

P (0.4 < b
= 12 0.04n — 4



if n > 100.

The third question asks to compute the exact probability in case m ~ bin(n = 100,p = %)
The desired event m
B= {0.49 <M< 0.51} = {49 < m < 51},
n

The pmf for x € D = {0,1,2,...,100} is

Qe () ) ()= (s

Thus the probability is approximated using Stirling’s Formula (and answer uses 151/51 = 3).
P(B) = fm(49) + fm(50) + fm(51)

1 100 1 100 1 100
~ 9100 \ 49 + 2100 \ 50 + 9100 \ 51
_ 1 100! n 100! n 100!
T 92100 \ 491511 © 50!50!  51!49!

_ 100! 50 50
2100 (5012 \ 51 51

V21 100100:5.-100 {57

~ 5100 (V27 50505 ¢=50)2 51
10 151 151

V250 51 2552

Let X be a random variable with finite second moment. Let i = E(X) and 0? = Var(X).
LetY = (X —p)/o. Find E(Y) and Var(Y).

Finiteness of second moment implies the variance and expectation are defined. We are given
Y = aX + b where a = 1/0 and b = —pu/o. Using the formula for a linear change in the
expectation,

=~ 0.236.

1
E(Y):E(aX—H)):aE(X)-H):;u—g:O.

Similarly, using the formula for a linear change of variable for the variance,

2
Var(Y) = Var(aX + b) = a* Var(X) = <i> o? =1.

Roll five dice. Let X be the smallest of the numbers rolled.
Find, P(X > z), fx(z) and E(X).
The sample space Q = {(z1,...,25) € N°: z; <6 for all i}, five-tuples of numbers one to
six. Each outcome of five rolls are equally likely and |©2] = 6°. The set of possible values
taken by the random variable X is D = {1,2,3,4,5,6}. The key observation is that the
event Fy = {X > k}, that the least number on all rolls is k, is equivalent to each of the dice
showing a number at least k, or Ey, = {(z1,...,25) € Q: k <z; <6 for all i}. It follows
that |Ex| = (7 — k)° since there are 6 — k + 1 numbers between k and 6 inclusive. Thus for
ke D,
(7— k)

65
To find the pmf, observe that the event {X =k} = {X >k} \ {X > k+1}. It follows that
the pmf for k£ € D is

P(X >k) =

fx(B)=P(X=k)=P(X>k) —-P(X>k+1) = (7 gsk)f’ (71— (lg: 1))°




Using the alternative formula for expectation of a nonnegative integer valued random vari-
able Theorem 4.3.11,

~ 1.5609.

6 6
(7— k 65+55+45+3+25+15 12201
E(X)=> P(X >k) Z & = 7776
k=1 =1

[C.] Suppose the random wvariable X is distributed according to the Poisson distribution with
mean X. Find fx(x | X is odd ) and BE(X | X is odd ).

The values of the Poisson variable are taken in D = {0,1,2,3,...} and for A > 0, the pmf

forx € D is
e~ \T
fx(@)=PX=2)= i
We need to consider the event
{Xisodd} ={X =1} U{X =3} U{X =5}U-- = [ J{X =2k +1}.

k=0

Its probability of being odd turns out to be less than one half

i i o= \2k+1 \ N 1— 2
P(X isodd) =) fx(2k+1)= =e “sinhA =e” ( ) =
P = (2k + 1)! 2 2

To compute the conditional mass function, we use the usual formula for conditional proba-
bility. If x € D,

P{X =2} Nn{X is odd})

fx(@]Xisodd)=P(X =z | X isodd) =

P(X is odd)
P(X =x) e
— if dd;
—{P(Xisodd) =P
0, if = is even.
A® T
B m, lf T 18 Odd7
0, if x is even.
The conditional expectation is given by the formula
E(X | X isodd) = > zfx(z | X is odd)
zeD
o (2K 1) AL A o= A* Xcosh A

(2k + 1)l sinh A~ sinh X £~ (2k)! ~ sinh X «©

=0



