Math 5010 § 1. Solutions to tenth Homework
Treibergs March 27, 2009

226[31] An urn contaains n balls such that each of the consecutive n integers 1,2,3,...,n is carried
by one ball. If k balls are removed at random, find the mean and variance of the total of
their numbers in two cases:

(a) They are not replaced.
(b) They are replaced.

Find also the distribution of the largest number removed in each case.

Following the hint, let S; be the number drawn on the ith ball, and M the maximum of the
numbers drawn. Thus, the sum of the numbers is given by

(a.) To compute the expectations we’ll need E(S;) and E(S;S;). Without knowing anything
else about the value of the other numbers drawn, S; is equally likely to be any of the n
numbers, so that
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If i # j then the balls have different numbers and so each of the (g) pairs is equally likely.
Hence,
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Thus we may compute the variance using the computational formula
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To get the pmf for M = max{Si,..., Sk}, we observe that the cumulative distribution
function
Fy(m)=P(M <m)=P(S; <mforall 1 <i<k).

Since all the subsets of k are equally likely, the probability is just gotten by counting the
number of subsets in {1,2,3,...,m}. Thus
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It follows from Pascal’s triangle that for £k < m
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(b.) Now assume that the draws are made with replacement so now the draws are indepen-
dent uniform variables. S; is equally likely to be any of the n numbers, so that
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Thus we may compute the variance using the computational formula
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Of course this is just the formula for the variance of a sum for independent variables
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To get the pmf for M = max{Si,..., Sk}, we observe that the cumulative distribution
function
Fry(m)=P(M <m)=P(S; <m forall 1 <i<k).
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By independence, the probability is just gotten by multiplying the P(S; < m). Thus

Far(m) = (T)k.
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It follows that for 1 < m < n,

hNMzEMM—me—DZ(mY—(m_wé

n n

An urn contains m white balls and M — m black balls. n < M balls are chosen at random
without replacement. Let X denote the number of white balls among these. Show that the
probability that there are exactly k white balls, 0 < k < m is given by
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Show that X = I +---+ I, where I; =0 or 1 according to whether or not the ith ball is
black or white. Show that for i # j,
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By computing E(X) and E(X?) or otherwise, find the mean and variance of X. [In other
words, given a hypergeometric variable X ~ hyp(M,m,n), use the method of indicators to
derive the mean and variance of X .J

I; = 1 exactly when the ¢th ball is white, so that Z?:l I; is the number of white balls chosen.
Knowing nothing else about the other I;, by symmetry E(I;) = P(ith ball is white) =
P(first ball is white) = E(I). Since each choice of the first ballis equally likely,
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since I? = I;. Similarly, by symmetry, the chances of both the ith and jth balls being white
is the same as the first two drawn being white. Thus, for i # j,
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Now, by linearity,
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[A.] N people arrive separately to a professional dinner. Upon arrival, each person looks to see if
he or she has any friends among those present. That person then sits at a table of a friend,
or at an unoccupied table if none of those present is a friend. Assuming that each of the
(Z) pairs of people are, independently, friends with probability p, find the expected number
of occupied tables. [S. Ross, “A First Course in Probability,” Ch. 7 Prob. 8.]

According to the hint, using the method of indicators, we let I; = 1 or 0 according to
whether or not the ith arrival sits at a previously unoccupied table. Then the number of
occupied tables is X = I; + --- + I,,. Since noone else has arrived when the first person
arrives, always Iy = 1 so E(I;) = 1. For i > 2, there are i — 1 people present, so that the
probability that none of them is a friend of i is, by independence, ¢*~'. Thus
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This holds for ¢ = 1 also. Thus the expectation
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Note that 0 < E(I;) < 1fori>2so01 < E(X) < n, as we would expect with n > 2 arrivals.



