An urn contains \(n \) balls such that each of the consecutive \(n \) integers 1, 2, 3, \ldots, \(n \) is carried by one ball. If \(k \) balls are removed at random, find the mean and variance of the total of their numbers in two cases:

(a) They are not replaced.
(b) They are replaced.

Find also the distribution of the largest number removed in each case.

Following the hint, let \(S_i \) be the number drawn on the \(i \)th ball, and \(M \) the maximum of the numbers drawn. Thus, the sum of the numbers is given by

\[
T = \sum_{i=1}^{k} S_i.
\]

(a.) To compute the expectations we’ll need \(E(S_i) \) and \(E(S_i S_j) \). Without knowing anything else about the value of the other numbers drawn, \(S_i \) is equally likely to be any of the \(n \) numbers, so that

\[
E(S_i) = \frac{\sum_{j=1}^{n} j}{n} = \frac{n(n+1)}{2} \cdot \frac{1}{n} = \frac{n+1}{2}.
\]

Hence

\[
E(T) = E\left(\sum_{i=1}^{k} S_i\right) = \sum_{i=1}^{k} E(S_i) = \frac{k(n+1)}{2}.
\]

Similarly,

\[
E(S_i^2) = \frac{\sum_{j=1}^{n} j^2}{n} = \frac{n(n+1)(2n+1)}{6} \cdot \frac{1}{n} = \frac{(n+1)(2n+1)}{6}.
\]

If \(i \neq j \) then the balls have different numbers and so each of the \(\binom{n}{2} \) pairs is equally likely. Hence,

\[
E(S_i S_j) = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} ij = \frac{1}{n(n-1)} \cdot \frac{1}{2} \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} ij - \sum_{i=1}^{n} i^2}{n} \right)
\]

\[
= \frac{2}{n(n-1)} \cdot \frac{1}{2} \left(\frac{\sum_{i=1}^{n} i^2}{n} \right) - \frac{n(n+1)(2n+1)}{6}
\]

\[
= \frac{2}{n(n-1)} \cdot \frac{(n-1)n(n+1)(3n+2)}{24} = \frac{(n+1)(3n+2)}{12}.
\]

Thus we may compute the variance using the computational formula

\[
\text{Var}(T) = E(T^2) - E(T)^2 = E\left(\left[\sum_{i=1}^{n} S_i\right]^2\right) - \frac{k^2(n+1)^2}{4} = \sum_{i,j=1}^{k} E(S_i S_j) - \frac{k^2(n+1)^2}{4}
\]

\[
= k(n+1)(2n+1) \quad + \frac{(k-1)k(n+1)(3n+2)}{12} \quad - \frac{k^2(n+1)^2}{4} = \frac{k(n+1)(n-k)}{12}.
\]
To get the pmf for \(M = \max\{S_1, \ldots, S_k\} \), we observe that the cumulative distribution function
\[
F_M(m) = P(M \leq m) = P(S_i \leq m \text{ for all } 1 \leq i \leq k).
\]
Since all the subsets of \(k \) are equally likely, the probability is just gotten by counting the number of subsets in \(\{1, 2, 3, \ldots, m\} \). Thus
\[
F_M(m) = \frac{{m \choose k}}{{n \choose k}}.
\]
It follows from Pascal’s triangle that for \(k \leq m \leq n \),
\[
f_M(m) = F_M(m) - F_M(m-1) = \frac{{m \choose k}}{{n \choose k}} - \frac{{m-1 \choose k}}{{n \choose k}}.
\]

(b.) Now assume that the draws are made with replacement so now the draws are independent uniform variables. \(S_i \) is equally likely to be any of the \(n \) numbers, so that
\[
E(S_i) = \sum_{j=1}^{n} \frac{j}{n} = \frac{n(n+1)}{2} \cdot \frac{1}{n} = \frac{n+1}{2}.
\]
Hence, again,
\[
E(T) = E\left(\sum_{i=1}^{k} S_i \right) = \sum_{i=1}^{k} E(S_i) = \frac{k(n+1)}{2}.
\]
Similarly,
\[
E(S_i^2) = \sum_{j=1}^{n} \frac{j^2}{n} = \frac{n(n+1)(2n+1)}{6} \cdot \frac{1}{n} = \frac{(n+1)(2n+1)}{6}.
\]
If \(i \neq j \) then by independence,
\[
E(S_iS_j) = E(S_i)E(S_j) = \frac{(n+1)^2}{4}.
\]
Thus we may compute the variance using the computational formula
\[
\text{Var}(T) = E(T^2) - E(T)^2 = \frac{\left(\sum_{i=1}^{n} S_i \right)^2}{4} - \frac{k^2(n+1)^2}{4} = E\left(\sum_{i=1}^{k} S_i \right)^2 - \frac{k^2(n+1)^2}{4}.
\]
\[
= \left(\sum_{i=1}^{k} S_i^2 + \sum_{i \neq j} S_iS_j \right) - \frac{k^2(n+1)^2}{4} = \sum_{i=1}^{n} E(S_i^2) + \sum_{i \neq j} E(S_iS_j) - \frac{k^2(n+1)^2}{4}
\]
\[
= \frac{k(n+1)(2n+1)}{6} + \frac{k(k-1)(n+1)^2}{4} - \frac{k^2(n+1)^2}{4} = \frac{k(n-1)(n+1)}{12}.
\]
Of course this is just the formula for the variance of a sum for independent variables
\[
\text{Var}(T) = \text{Var}\left(\sum_{i=1}^{k} S_i \right) = \sum_{i=1}^{k} \text{Var}(S_i) = \frac{k(n^2-1)}{12}.
\]
To get the pmf for \(M = \max\{S_1, \ldots, S_k\} \), we observe that the cumulative distribution function
\[
F_M(m) = P(M \leq m) = P(S_i \leq m \text{ for all } 1 \leq i \leq k).
\]
By independence, the probability is just gotten by multiplying the $P(S_i \leq m)$. Thus

$$F_M(m) = \left(\frac{m}{n} \right)^k.$$

It follows that for $1 \leq m \leq n$,

$$f_M(m) = F_M(m) - F_M(m-1) = \left(\frac{m}{n} \right)^k - \left(\frac{m-1}{n} \right)^k.$$

226[36] An urn contains m white balls and $M - m$ black balls. $n \leq M$ balls are chosen at random without replacement. Let X denote the number of white balls among these. Show that the probability that there are exactly k white balls, $0 \leq k \leq m$ is given by

$$f_X(k) = P(X = k) = \frac{\binom{M-m}{n-k}}{\binom{M}{n}}.$$

Show that $X = I_1 + \cdots + I_n$ where $I_i = 0$ or 1 according to whether or not the ith ball is black or white. Show that for $i \neq j$,

$$P(I_i = 1) = \frac{m}{M}, \quad P(I_i = 1 \text{ and } I_j = 1) = \frac{m(m-1)}{M(M-1)}.$$

By computing $E(X)$ and $E(X^2)$ or otherwise, find the mean and variance of X. [In other words, given a hypergeometric variable $X \sim \text{hyp}(M, m, n)$, use the method of indicators to derive the mean and variance of X.]

$I_i = 1$ exactly when the ith ball is white, so that $\sum_{i=1}^n I_i$ is the number of white balls chosen. Knowing nothing else about the other I_j, by symmetry $E(I_i) = P(\text{ith ball is white}) = P(\text{first ball is white}) = E(I_1)$. Since each choice of the first balls equally likely,

$$E(I_i^2) = E(I_i) = E(I_1) = \frac{m}{M},$$

since $I_i^2 = I_i$. Similarly, by symmetry, the chances of both the ith and jth balls being white is the same as the first two drawn being white. Thus, for $i \neq j$,

$$E(I_i I_j) = P(I_i = 1 \text{ and } I_j = 1) = P(I_i = 1 \text{ and } I_2 = 1) = P(I_i = 1) P(I_2 = 1 | I_1 = 1) = \frac{m(m-1)}{M(M-1)}.$$

Now, by linearity,

$$E(X) = E\left(\sum_{i=1}^n I_i \right) = \sum_{i=1}^n E(I_i) = \frac{mn}{M}.$$

Similarly,

$$E(X^2) = E\left(\left(\sum_{i=1}^n I_i \right)^2 \right) = E\left(\sum_{i,j=1}^n I_i I_j \right) = E\left(\sum_{i=1}^n I_i^2 + \sum_{i \neq j} I_i I_j \right) = \sum_{i=1}^n E(I_i^2) + \sum_{i \neq j} E(I_i I_j) = \frac{mn}{M} + \frac{n(n-1)m(m-1)}{M(M-1)}.$$

Finally,

$$\text{Var}(X) = E(X^2) - E(X)^2 = \frac{mn}{M} + \frac{n(n-1)m(m-1)}{M(M-1)} - \frac{m^2n^2}{M^2} = \frac{m(M-m)n(M-n)}{M^2(M-1)}.$$
[A.] \(N \) people arrive separately to a professional dinner. Upon arrival, each person looks to see if he or she has any friends among those present. That person then sits at a table of a friend, or at an unoccupied table if none of those present is a friend. Assuming that each of the \(\binom{n}{2} \) pairs of people are, independently, friends with probability \(p \), find the expected number of occupied tables. [S. Ross, “A First Course in Probability,” Ch. 7 Prob. 8.]

According to the hint, using the method of indicators, we let \(I_i = 1 \) or 0 according to whether or not the \(i \)th arrival sits at a previously unoccupied table. Then the number of occupied tables is \(X = I_1 + \cdots + I_n \). Since no one else has arrived when the first person arrives, always \(I_1 = 1 \) so \(\mathbb{E}(I_1) = 1 \). For \(i \geq 2 \), there are \(i - 1 \) people present, so that the probability that none of them is a friend of \(i \) is, by independence, \(q^{i-1} \). Thus

\[
\mathbb{E}(I_i) = \mathbb{P}(I_i = 1) = q^{i-1}.
\]

This holds for \(i = 1 \) also. Thus the expectation

\[
\mathbb{E}(X) = \mathbb{E} \left(\sum_{i=1}^{n} I_i \right) = \sum_{i=1}^{n} \mathbb{E}(I_i) = \sum_{i=1}^{n} q^{i-1} = \frac{1 - q^n}{1 - q} = \frac{1 - q^n}{p}.
\]

Note that \(0 < \mathbb{E}(I_i) < 1 \) for \(i \geq 2 \) so \(1 < \mathbb{E}(X) < n \), as we would expect with \(n \geq 2 \) arrivals.