
Math 5010 § 1.
Treibergs −−σιι

Second Midterm Exam Name: SomeSolutions
March 23, 2009

Solutions to the Extra Sample Problems.

1. Suppose that there are a amber and b beryl balls in an urn. Suppose that k ≤ a + b are
randomly withdrawn without replacement. Let X be the number of amber balls withdrawn.
Using the method of indicators or otherwise, find E(X) and Var(X).

X is distributed according to the hypergeometric distribution. If p = a/(a+b) is the fraction
of amber balls initially, then the answers can be compared to those for the bimonial rv with
Y ∼ bin(k, p). One way to do the problem is to take the pmf

fX(x) =

(
a
x

)(
b

k−x

)(
a+b

k

) , for 0 ≤ x ≤ k.

and use it to compute E(X) and Var(X) = E(X2) − E(X)2 in the usual way. However,
the method of indicators is far easier. Let Ij = 1 whenever the jth ball drawn is amber,
and Ij = 0 otherwise. Then

X =
k∑

j=1

Ij and E(X) =
k∑

j=1

E(Ij).

Without knowing anything else about the draws, the probabilities are the same for each
draw

E(Ij) = E(I1) =
a

a + b
= p

for all j. Hence

E(X) =
k∑

j=1

E(Ij) =
k∑

j=1

a

a + b
=

a k

a + p
= kp = E(Y ).

To compute E(X2) we shall need for i 6= j the probability E(IiIj) that both the ith and
the jth draws are amber. Again, since the probability for any two pairs is as likely as any
other two,

E(IiIj) = E(I1I2) =
a(a− 1)

(a + b)(a + b− 1)
.

for all i 6= j. Hence using X2 =
(∑k

i=1 Ii

)(∑k
j=1 Ij

)
=
∑k

i=1

∑k
j=1 IiIj ,

E(X2) = E

 k∑
i,j=1

IiIj

 =
k∑

i,j=1

E (IiIj) =
k∑
i

E
(
I2
i

)
+
∑
i 6=j

E (IiIj)

=
a k

a + b
+

a(a− 1) k(k − 1)
(a + b)(a + b− 1)

=
ak

a + b

(
a + b− 1 + (a− 1)(k − 1)

a + b− 1

)
since I2

i = Ii. The variance is thus

Var(X) = E(X2)−E(X)2 =
ak

a + b

(
b + ak − k

a + b− 1
− ak

a + b

)
=

abk(a + b− k)
(a + b)2(a + b− 1)

= kpq

(
a + b− k

a + b− 1

)
.

The variance of the hypergeometric is the same as the binomial Var(Y ) = kpq except for
the correction factor (a + b − k)/(a + b − 1) which is negligible when k is small compared
to a + b.

1



2. Let X and Y be independent random variables, such that X is uniform on {1, 2, 3, . . . ,m}
and Y is uniform on {1, 2, 3, . . . , n} where 1 ≤ m ≤ n. Let Z = X + Y . Find the pmf
fZ(z), E(Z) and Var(Z).

Since X and Y are uniform, their pmf’s are

fX(x) =

{
1
m , if 1 ≤ x ≤ m;
0, otherwise.

fY (y) =

{
1
n , if 1 ≤ y ≤ n;
0, otherwise.

Since X and Y are indepedent, the joint pmf f(x, y) = fX(x)fY (y). Using m ≤ n we see
that the pmf for Z = X + Y is given for z ∈ {2, 3, . . . ,m + n} by

fZ(z) = P(X + Y = z) =
∑

x+y=z

fX(x)fY (y)

=



∑z−1
j=1 fX(j)fY (z − j), if z ≤ m;

∑m
j=1 fX(j)fY (z − j), if m < z ≤ n;

∑m
j=z−n fX(j)fY (z − j), if n < z;

=



z−1
mn if z ≤ m;

1
n , if m + 1 ≤ z ≤ n + 1;

m+n−z+1
mn , if n + 1 < z;

Notice that the distribution is symmetric about (m+n+2)/2 so that E(Z) = (m+n+2)/2.
To see this, observe that fZ(z) = fZ(m + n + 2− z). Thus

2E(Z) = 2
m+n∑
k=2

kfZ(k) =
m+n∑
k=2

(kfZ(k) + kfZ(m + n + 2− k))

=
m+n∑
k=2

(
kfZ(k) + (m + n− k + 2)fZ(k)

)
= m + n + 2.

Of course, we could have seen this using linearity

E(Z) = E(X + Y ) = E(X) + E(Y ) =
m + 1

2
+

n + 1
2

.

Similarly, by independence,

Var(Z) = Var(X + Y ) = Var(X) + Var(Y ) =
m2 − 1

12
+

n2 − 1
12

.

3. Suppose that there are n dice whose six sides instead of being numbered are labeled by an
apple on one side, a banana on two sides and a cherry on three sides. Suppose all n dice
are rolled. Let X be the number of apples showing, Y the number of bananas and Z the
number of cherries. Find the joint probability f(x, y). Find the marginal probability fX(x).

This is the multinomial distribution. Each roll of a die is independent. Also, for each roll,
p = P(apple) = 1

6 , q = P(banana) = 1
3 and r = P(cherry) = 1

2 such that p + q + r = 1. If
there are x ≥ 0 apples, y ≥ 0 bananas and z ≥ 0 cherries, such that x + y + z = n,

f(x, y, z) = P(X = x and Y = y and Z = z) =
(

n

x, y, z

)
pxqyrz =

n!
x! y! z!

2y3z

6n

The joint probability for x ≥ 0, y ≥ 0 and x + y ≤ n is

f(x, y) = P(X = x and Y = y) = f(x, y, n− x− y)

=
n!

x! y! (n− x− y)!

(
1
6

)x(1
3

)y (1
2

)n−x−y

.
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Thus using the binomial formula, the marginal probability

fX(x) =
∑

y

f(x, y) =
n!

x! (n− x)!

(
1
6

)x n−x∑
y=0

(n− x)!
y! (n− x− y)!

(
1
3

)y (1
2

)n−x−y

=
n!

x! (n− x)!

(
1
6

)x (1
3

+
1
2

)n−x

=
(

n

x

)(
1
6

)x(5
6

)n−x

.

This is no surprise. If a “success” means an apple is rolled and “failure” means a banana
or cherry is rolled, then the number of apples has the binomial disrtribution X ∼ bin(n, 1

6 ).

4. Let X and Y be random variables whose joint probability is f(1, 1) = f(3, 2) = .2,
f(1, 2) = .5, f(2, 2) = .1 and f(i, j) = 0 for other (i, j). Find fX|Y (x | y) and E(X | Y ).

We obtain the marginal probabilities by summing rows of the pmf table using

fX(x) =
∑

y

f(x, y), fY (y) =
∑

x

f(x, y).

x = 1 x = 2 x = 3 fY (y)

y = 1 .2 0 0 .2

y = 2 .5 .1 .2 .8

fX(x) .7 .1 .2 1

The conditional probability mass function

fX|Y (x | y) = P(X = x |Y = y) =
f(x, y)
fY (y)

so that

fX|Y (1 | 1) =
f(1, 1)
fY (1)

=
.2
.2

= 1, fX|Y (2 | 1) =
f(2, 1)
fY (1)

= 0,

fX|Y (3 | 1) =
f(3, 1)
fY (1)

= 0, fX|Y (1 | 2) =
f(1, 2)
fY (2)

=
.5
..8

= .625,

fX|Y (2 | 2) =
f(2, 2)
fY (2)

=
.1
.8

= .125, fX|Y (3 | 2) =
f(3, 2)
fY (2)

=
.2
.8

= .25.

The conditional expectation E(X |Y ) is thus

E(X |Y = 1) =
∑

x

x fX|Y (x | 1) = (1)(1) + (2)(0) + (3)(0) = 1,

E(X |Y = 2) =
∑

x

x fX|Y (x | 2) = (1)(.625) + (2)(.125) + (3)(.25) = 1.625.
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5. Suppose that E(|X|α) = 0 for some α > 0. Show that P(X = 0) = 1.

This follows from a version of Chebychov’s Inequality. Let h(x) = |x|α in the basic inequality
Theorem 4.6.1. Then for a = εα > 0,

P(|X| ≥ ε) = P(|X|α ≥ εα) ≤ E(|X|α)
εα

. (1)

Let An denote the event that |X| ≥ 1
n . Then the events are monotone An ⊂ An+1 for all n

and the event

{X 6= 0} = {|X| > 0} =
∞⋃

n=1

An.

By the monotone convergence of probability, and (1) with ε = 1/n,

0 ≤ 1−P(X = 0) = P(|X| > 0) = P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An)

≤ lim
n→∞

nα E(|X|α) = lim
n→∞

0 = 0.

6. Let Xn be a sequence of independent Bernoulli trials (Xn ∈ {0, 1}) such that P(Xn = 1) = p
for all n. Show that the sample means converge in probability as n →∞,

1
n

(X1 + · · ·+ Xn) P−→ p.

Let Sn = X1+ · · ·+Xn as usual and observe that because of independence and the behavior
of variance under multiplication by a constant, the random variable Sn/n satisfies

E
(

1
n

Sn

)
=

1
n

E

 n∑
j=1

Xj

 =
1
n

n∑
j=1

E(Xj) =
1
n

n∑
j=1

p = p;

Var
(

1
n

Sn

)
=

1
n2

Var

 n∑
j=1

Xj

 =
1
n2

n∑
j=1

Var(Xj) =
1
n2

n∑
j=1

pq =
pq

n
.

Recall the version of Chebychov’s inequality, gotten by applying Theorem 4.6.1 to h(x) =
(x−E(X))2. For all a > 0,

P(|X −E(X)| ≥ a) ≤ Var(X)
a2

. (2)

Recall also the meaning of Zn
P−→ Z “convergence in probability.” It means for every ε > 0,

lim
n→∞

P (|Zn − Z| ≥ ε) = 0.

In our case, Zn = Sn/n, Z = p and apply (2) with a = ε, where ε > 0 is any positive
number. Then

P
(∣∣∣∣ 1nSn − p

∣∣∣∣ ≥ ε

)
≤

Var
(

1
nSn

)
ε2

=
pq

ε2 n
→ 0 as n →∞.

Thus the sample average converges in probability to its mean, as to be shown.
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7. Urn 1 contains 10 white and 3 black balls; urn 2 contains 3 white and 5 black balls. Two
randomly selected balls are transferred from No. 1 and placed in No. 2 and then 4 balls are
taken from the latter. Let the rv X be the number of white balls chosen. Find fX(x).

This is an exercise in the total probability formula. Let us condition on the colors of the
balls transferred from urn 1 to urn 2. Three mutually exclusive events are A, that both balls
are white, B that one was white and the other was black, and C that both were black. The
probabilities are computed as usual for drawing without replacement (i.e., hypergeometric)

P(A) =

(
10
2

)(
3
0

)(
13
2

) =
10 · 9
13 · 12

=
15
26

, P(B) =

(
10
1

)(
3
1

)(
13
2

) =
10 · 3 · 2
13 · 12

=
10
26

,

P(C) =

(
10
0

)(
3
2

)(
13
2

) =
3 · 2

13 · 12
=

1
26

.

The conditional pmf’s may be computed using the given constitution of the second urn.
For 0 ≤ x ≤ 4,

f(x |A) =

(
5
x

)(
5

4−x

)(
10
4

) , f(x |B) =

(
4
x

)(
6

4−x

)(
10
4

) , f(x |C) =

(
3
x

)(
7

4−x

)(
10
4

) .

Of course we interpret f(4 |C) = 0. Using the total probability formula for the pmf,

f(x) = P(A)f(x |A) + P(B)f(x |B) + P(C)f(x |C)

=
15

26 · 210

(
5
x

)(
5

4− x

)
+

10
26 · 210

(
4
x

)(
6

4− x

)
+

1
26 · 210

(
3
x

)(
7

4− x

)
.

8. Roll a die. Let X be the number showing. Then flip X fair coins. Let Y be the number of
heads. Find E(Y ).

We use the formula E(E(Y | X)) = E(Y ). The variable X is uniform on {1, 2, 3, 4, 5, 6} so
that for integral x such that 1 ≤ x ≤ 6,

fX(x) = P(X = x) =
1
6
, E(X) =

7
2
.

We assume that the coins are independent, thus the number of heads in X flips is distributed
binomially Y ∼ bin(X, 1

2 ). Thus the conditional pmf and expectations are for 1 ≤ y ≤ x,

fY |X(y |x) = P(Y = y | X = x) =
(

x

y

)
py qx−y =

(
x

y

)
1
2x

; E(Y | X = x) = px =
x

2
.

Thus

E(Y ) = E(E(Y | X)) = E
(

X

2

)
=

E(X)
2

=
7
4
.
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