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Gauß Curvature in Terms of the First Fundamental Form

Andrejs Treibergs

Abstract. In these notes, we develop acceleration formulae for a general frame for a surface in three space. We
prove Gauß’s Theorem and compute some examples for a general metric. This is a supplement to the Oprea’s text
[O] which only treats the special case that the cross terms vanish. We show how that case follows from the general
one, and derive the simplified expression for the Gauß curvature.

We first recall the definitions of the first and second fundamental forms of a surface in three space. We
develop some tensor notation, which will serve to shorten the expressions. We then compute the Gauß and
Weingarten equations for the surface. We find the Codazzi Equation and show Gauß’s Theorema Egregium.
Finally we work some examples and write the simplified expression in lines of curvature coordinates.

1. First and Second Fundamental Forms of a Surface.
Met M ⊂ R3 denote a smooth regular surface. We suppose that a local parameterization for M be

given by a cordinate patch X(u, v) : Ω → M where Ω ⊂ R2 is an open domain. Tangent vectors are the
partial derivatives of the position function, giving vector functions Xu and Xv which are independent for all
(u, v) ∈ Ω by the assumption of regularity. The normal vector field on the surface is given locally by the
vector function

U(u, v) =
Xu × Xv

|Xu × Xv|
.

For simplicity we shall denote u1 = u, u2 = v, and differentiation fi =
∂f

∂ ui
so that

X1 =
∂

∂ u1
X = Xu, X2 =

∂

∂u2
X = Xv.

The shape operator is the linear transformation on tangent vectors W ∈ TpM given by the formula

S(W ) = −∇W U.

A general vector can be written in terms of the basis, W = w1X1 + w2X2 where wi(u1, u2), i = 1, 2, are
functions on Ω. By linearity,

(1) S(W ) = S(w1X1 + w2X2) = w1S(X1) + w2S(X2).

Using the fact that the normal vector field has unit length, U · U = 1, we find by differentiating, Ui · U = 0
so that

(2) S(Xi) = −∇Xi
U = − ∂

∂ui
U = −Ui

is perpendicular to U , thus in TpM . Hence by (1), S(W ) ∈ TpM is a tangent vector. Similarly, since tangent
and normal vectors are perpendicular, U · Xj = 0 implies by differentiating

(3) Ui · Xj + U · Xij = 0
1
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The first and second fundamental forms are the matrix functions, which by (2) and (3) are

(4) gij = Xi · Xj, hij = S(Xi) · Xj = −Ui · Xj = U · Xij .

By the independence of X1, X2, we see that gij is a positive definite matrix function. Also (4) implies that
both matrix functions are symmetric gij = gji and hij = hji because cross partial derivatives are equal
Xij = Xji. Thus also gij = gji.

2. Some Tensor Notation.
For compactifying the formulas, it is convenient to introduce some manipulations of functions, vectors,

matricies and other multiindex functions, which are all tensors. The indices are assumed to take the values
i, j, k, . . . ∈ {1, 2}. The components of the identity matrix function I are given by the Kronecker-delta

δi
j =

{

1, if i = j,

0, if i 6= j.
, I =

(

δ1
1 δ1

2

δ2
1 δ2

2

)

=

(

1 0
0 1

)

.

The Kronecker delta may appear with indices up or down: δij = δi
j = δij = δi

j . If we denote the matrix

whose entries are gij by G =

(

g11 g12

g21 g22

)

, then it is convenient to denote the determinant by g = g11g22−g12
2

and the entries of G−1 by gij . That is

(

g11 g12

g21 g22

)

=
1

g

(

g22 −g12

−g21 g11

)

.

Let us also denote the matrix whose entries are hij by H.
We shall assume the Einstein Summation Convention, which is that whenever an index is repeated in a

formula, the formula is to be summed over that index. Thus, the expression hijg
jk really means

hijg
jk =

2
∑

j=1

hijg
jk.

This is just matrix multiplication. Thus the (i, k) components of the matrix equations GG−1 = I and HI = H
are

gijg
jk = δi

k, hijδ
j
k = hik.

Finally, this enables formulas like
hijg

jkgkℓ = hijδ
j
ℓ = hiℓ.

3. Acceleration Formulæ and Christoffel Symbols.
It is useful to compute the expressions of the change of the local vector field basis {X1, X2, U} as points

change along the surface. This is the surface analog of the Frenet Equations for the moving frame {T,N,B}
along a space curve which expresses derivatives of the frame vectors in terms of the vectors and the curvature
and torsion. Since U ·U = 1 implies that its derivatives Ui ·U = 0 so Ui is tangent to the surface. Thus the
acceleration vectors may be decomposed in terms of the basis as

(5)
Ui = − ai

j Xj ,

Xij = Γij
k Xk + bijU,

where the ai
j , bij and Γij

k are unknown coefficient functions defined on Ω. The first of these equations is
called the Gauß Equation. The second is called the Weingarten Equation. We have already seen the Gauß

Equation. The matrix of the shape operator is

(

a b

c d

)

, which means by (2),

S(X1) = − U1 = aX1 + bX2

S(X2) = − U2 = cX1 + dX2
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By (5.1) this means
(

a b

c d

)

=

(

a1
1 a1

2

a2
1 a2

2

)

.

Let us rederive the formula for ai
j as was done in the text. Taking an inner product of (5.1) with Xk, we

find using (4),

−hik = Ui · Xk = −ai
jXj · Xk = −ai

jgjk.

Postmultiplying by −gkℓ gives the desired formula

(6) ai
ℓ = ai

jδj
ℓ = ai

jgjk gkℓ = hik gkℓ.

The principal curvatures ki are the eigenvalues of the shape operator, which are functions on Ω. At each
point there are two independent unit eigenvector functions Vi such that S(Vi) = kiVi on Ω. The, Gauß
curvature K and the mean curvature H are the determinant and trace of the shape operator. In terms of
its matrix (ai

j) in the {X1, X2} basis these have the expressions

K = k1k2 = det(ai
k) = det(hijg

jk) =
det(hij)

det(gij)
,

H = 1

2
(k1 + k2) = 1

2
tr(ai

j) = 1

2
tr(hijg

jk) = 1

2
hijg

ij .

Using (4), U · U = 1, U · Xk = 0 and taking the inner product (5.2) with U yields the second formula

(7) hij = Xij · U = Γij
k Xk · U + bijU · U = bij

Finding the Christoffel Symbols requires a little trick. Taking inner products of (5.2) with Xℓ we find

(8) Xij · Xℓ = Γij
k Xk · Xℓ + bijU · Xℓ = Γij

k gkℓ.

It follows that Γij
m = Xij · Xk gkm so Γij

m = Γji
m for all i, j, m. To find the left hand side, we observe

that the derivative gives desired term plus a garbage term

∂

∂uj
giℓ =

∂

∂uj
(Xi · Xℓ) = Xij · Xℓ + Xi · Xℓj .

To cancel off the garbage term we add three such derivatives in which the indices are cyclically permuted

∂

∂uj
giℓ = Xij · Xℓ + Xi · Xℓj

∂

∂ui
gℓj = Xℓi · Xj + Xℓ · Xji

− ∂

∂uℓ
gji = −Xjℓ · Xi − Xj · Xiℓ

∂

∂uj
giℓ +

∂

∂ui
gℓj −

∂

∂uℓ
gji = 2Xij · Xℓ

Postmultiplying (8) by gℓm yields

(9) Γij
m = Γij

kgkℓg
ℓm =

1

2
gℓm

{

∂

∂uj
giℓ +

∂

∂ui
gℓj −

∂

∂uℓ
gji

}

.

(5), (6), (7) and (9) are summarized as follows.
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Acceleration Formulæ. The frame {X1, X2, U} of a surface changes according to

(10)
Ui = − hij gjk Xk,

Xij = Γij
k Xk + hijU,

where the Christoffel symbols are given by equation(9).

4. The Codazzi Equation and Gauß’s Theorem.
It all follows from 0 = Xijk − Xikj . Differentiating (5.2) we find using (5) and renaming a dummy index

0 =
∂

∂uk
Xij −

∂

∂uj
Xik

=
∂

∂uk

(

Γij
ℓ Xℓ + hijU

)

− ∂

∂uj

(

Γik
ℓ Xℓ + hikU

)

=

(

∂

∂uk
Γij

ℓ − ∂

∂uj
Γik

ℓ

)

Xℓ + Γij
ℓ Xℓk − Γik

ℓ Xℓj +

(

∂

∂uk
hij −

∂

∂uj
hik

)

U + hijUk − hikUj

=

(

∂

∂uk
Γij

m − ∂

∂uj
Γik

m

)

Xm + Γij
ℓ (Γℓk

m Xm + hℓkU) − Γik
ℓ (Γℓj

m Xm + hℓjU)

+

(

∂

∂uk
hij −

∂

∂uj
hik

)

U −
(

hijhkℓg
ℓm − hikhjℓg

ℓm
)

Xm.

Collecting the coefficients of the U basis vector yields the Codazzi Equation

∂

∂uk
hij −

∂

∂uj
hik = Γik

ℓ hℓj − Γij
ℓ hℓk.

Collecting the coefficients of the Xm basis vector yields

0 =

(

∂

∂uk
Γij

m − ∂

∂uj
Γik

m

)

+ Γij
ℓ Γℓk

m − Γik
ℓ Γℓj

m − (hijhkℓ − hikhjℓ) gℓm.

Postmultiplying by gmp and rearranging gives

hijhkp − hikhjp = (hijhkℓ − hikhjℓ) gℓm gmp =

(

∂

∂uk
Γij

m − ∂

∂uj
Γik

m + Γij
ℓ Γℓk

m − Γik
ℓ Γℓj

m

)

gmp.

Finally, we can use this formula with i = j = 1, k = p = 2 to deduce a formula for the Gauss Curvature

(11) K =
h11h22 − h12

2

g11g22 − g12
2

=
1

g

(

∂

∂u2
Γ11

m − ∂

∂u1
Γ12

m + Γ11
ℓ Γℓ2

m − Γ12
ℓ Γℓ1

m

)

gm2.

This expression depends only on gij and its first and second derivatives. Thus we have proved Gauß’s
Gregarious (Egregious?) Theorem. (The Latin word egregius means “separated from the herd.”)

Theorema Egregium. [Gauß, 1827] The Gauß Curvature of a surface K is an intrinsic quantity. It
depends only on the first fundamental form gij and its first and second derivatives. K is given by (11), where
the Christoffel symbols are computed using (9).

5. Example: the curvature of the weaver’s metric.
The computation of the curvature just in terms of gij is done systematically, by listing all of the Christoffel

symbols in turn using (9), and then using (11). We shall do another computation in case then metric has
g12 = 0 on all of Ω in Section 6.

An abstract piece of woven cloth can be thought of vertical and horizontal threads (the warp and the
woof.) If the cloth is to be draped over a surface without tearing or bunching up, then the little squares of
the fabric can distort to little rhombuses with angle ϕ(u1, u2) ∈ (0, π). The fabric stretches along the bias
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but not along the threads. The mathematical way to say this is to require that the mapping X : Ω → M ,
the laying on of the cloth, does not stretch distances along ui, but allows angular distortion. So the weaver’s
metric satisfies the equation

(

g11 g12

g21 g22

)

=

(

1 cosϕ

cosϕ 1

)

.

A coordinate system in which the metric takes this form is also called Chebyshev coordinates. This matrix
is positive definite and g = 1 − cos2 ϕ = sin2 ϕ. Its inverse is given by

(

g11 g12

g21 g22

)

=

(

csc2 ϕ − cotϕ cscϕ

− cotϕ cscϕ csc2 ϕ

)

.

Writing gij,k = ∂
∂uk gij , we see that g11,i = g22,i = 0 and g12,i = − sin(ϕ)ϕi. Hence the Christoffel symbols

are computed according to (9)

(12)

Γ11
1 = 1

2
g1i (2g1i,1 − g11,i) = 1

2
g11g11,1 + g12

(

g12,1 − 1

2
g11,2

)

= cot(ϕ)ϕ1

Γ21
1 = Γ12

1 = 1

2
g1i (g1i,2 + g2i,1 − g12,i) = 1

2
g11 g11,2 + 1

2
g12 g22,1 = 0

Γ22
1 = 1

2
g1i (2g2i,2 − g22,i) = g11

(

g21,2 − 1

2
g22,1

)

+ 1

2
g12 g22,2 = − csc(ϕ)ϕ2

Γ11
2 = 1

2
g2i (2g1i,1 − g11,i) = 1

2
g21g11,1 + g22

(

g12,1 − 1

2
g11,2

)

= − csc(ϕ)ϕ1

Γ21
2 = Γ12

2 = 1

2
g2i (g1i,2 + g2i,1 − g12,i) = 1

2
g21 g11,2 + 1

2
g22 g22,1 = 0

Γ22
2 = 1

2
g2i (2g2i,2 − g22,i) = g21

(

g21,2 − 1

2
g22,1

)

+ 1

2
g22 g22,2 = cot(ϕ)ϕ2

Substituting into (10) using Γ12
k = 0 yields

K =
1

g

(

∂

∂u2
Γ11

m − ∂

∂u1
Γ12

m + Γ11
ℓ Γℓ2

m − Γ12
ℓ Γℓ1

m

)

gm2

=
g12

g

(

∂

∂u2
Γ11

1 + Γ11
2 Γ22

1

)

+
g22

g

(

∂

∂u2
Γ11

2 + Γ11
2 Γ22

2

)

= cotϕ cscϕ
(

− csc2(ϕ)ϕ1ϕ2 + cot(ϕ)ϕ12 + csc2(ϕ)ϕ1ϕ2

)

+ csc2 ϕ (cot(ϕ) csc(ϕ)ϕ1ϕ2 − csc(ϕ)ϕ12 − cot(ϕ) csc(ϕ)ϕ1ϕ2)

=
(

cot2 ϕ csc ϕ − csc3 ϕ
)

ϕ12

= csc(ϕ)ϕ12.

6. The curvature in orthogonal coordinates.
A local coordinate system is called orthogonal if the cross term g12 = 0 on all of Ω. One such system, the

lines of curvature coordinates, shall be described in Section 8. There are several other coordinate systems with
this property, for example the geodesic polar coordinates, the Fermi coordinates or isothermal coordinates.
The first two require knowledge about geodesic curves on the surface; the third is deeper requiring solution
of the Beltrami equations on the surface.

Let us assume that g12 = 0 on all of our coordinate patch Ω. Thus also g12 = 0. Then using (12), the
Christoffel symbols take the form

Γ11
1 = 1

2
g11g11,1 + g12

(

g12,1 − 1

2
g11,2

)

=
g11,1

2g11

Γ21
1 = Γ12

1 = 1

2
g11 g11,2 + 1

2
g12 g22,1 =

g11,2

2g11

Γ22
1 = g11

(

g21,2 − 1

2
g22,1

)

+ 1

2
g12 g22,2 = − g22,1

2g11

Γ11
2 = 1

2
g21g11,1 + g22

(

g12,1 − 1

2
g11,2

)

= − g11,2

2g22

Γ21
2 = Γ12

2 = 1

2
g21 g11,2 + 1

2
g22 g22,1 =

g22,1

2g22

Γ22
2 = g21

(

g21,2 − 1

2
g22,1

)

+ 1

2
g22 g22,2 =

g22,2

2g22

.
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Thus, the curvature (11) becomes

K =
1

g11

(

∂

∂u2
Γ11

2 − ∂

∂u1
Γ12

2 + Γ11
1 Γ12

2 + Γ11
2 Γ22

2 − Γ12
1 Γ11

2 − Γ12
2 Γ21

2

)

=
1

2g11

(

− ∂

∂u2

(

g11,2

g22

)

− ∂

∂u1

(

g22,1

g22

)

+
g11,1 g22,1

2g11 g22

− g11,2 g22,2

2g2

22

+
g11,2

2

2g11 g22

− g22,1
2

2g22
2

)

= − 1

2g11

(

∂

∂u1

(

g22,1

g22

)

− g11,1 g22,1

2g11 g22

+
g22,1

2

2g22
2

)

− 1

2g11

(

∂

∂u2

(

g11,2

g22

)

+
g11,2 g22,2

2g2

22

− g11,2
2

2g11 g22

)

Observing that

∂

∂u1

(

g22,1

g22

)

=
∂

∂u1

(

g22,1√
g11g22

√

g11

g22

)

=
∂

∂u1

(

g22,1√
g11g22

)
√

g11

g22

+
g22,1√
g11g22

∂

∂u1

(
√

g11

g22

)

=
∂

∂u1

(

g22,1√
g11g22

) √

g11

g22

+
g11,1 g22,1

2g11 g22

− g22,1
2

2g22
2

and

∂

∂u2

(

g11,2

g22

)

=
∂

∂u2

(

g11,2√
g11 g22

√

g11

g22

)

=
∂

∂u2

(

g11,2√
g11 g22

) √

g11

g22

+
g11,2√
g11 g22

∂

∂u2

(√

g11

g22

)

=
∂

∂u2

(

g22,1√
g11 g22

) √

g11

g22

+
g11,2

2

2g11 g22

− g11,2 g22,2

2g22
2

we obtain

(12) K = − 1

2
√

g11 g22

[

∂

∂u1

(

g22,1√
g11g22

)

+
∂

∂u2

(

g11,2√
g11 g22

)]

.

7. Example: the curvature of a sphere.
To illustrate formula (12), consider the usual latitude-longitude coordinates of the unit sphere

X(u1, u2) =
(

cosu1 cosu2, cosu1 sin u2, sin u1
)

.

Then the first fundamental form is found by

X1 =
(

− sinu1 cosu2,− sinu1 sin u2, cosu1
)

X2 =
(

− cosu1 sin u2, cosu1 cosu2, 0
)

g11 = X1 · X1 = 1, g12 = X1 · X2 = 0, g22 = cos2 u1,

making (u1, u2) an orthogonal coordinate system. Hence

√
g11 g22 = cosu1, g22,1 = −2 cosu1 sin u1, g11,2 = 0.

Thus the formula (12) gives

K = − 1

2 cosu1

∂

∂u1

(−2 cosu1 sin u1

cosu1

)

= 1.

8. Lines of curvature coordinates.
We sketch the argument that in the neighborhood of a non-umbillic point P ∈ M , it is possible to find a

change of coordinates such that in these new coordinates, both h12 = 0 and g12 = 0 near P .
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Lemma. [Lines of curvature coordinates.] Suppose that a point P ∈ M of a smooth regular surface in
three space is not an umbillic (the principal curvatures satisfy k1(P ) 6= k2(P ).) Then there is a coordinate
patch X : Ω′ → M in the neighborhood of P ∈ X(Ω′) which has the following properties. Denoting the patch
by X(z1, z2) for (z1, z2) ∈ Ω′, the coordinate lines are lines of curvature, which means that they go in the
principal directions. This means that Xi(z

1, z2) = fi(z
1, z2)Vi(z

1, z2), where fi > 0 are positive functions
and Vi are the principal directions corresponding to ki, namely the eigenvector Vi of the shape operator
S(Vi) = kiVi. Moreover, the first and second fundamental forms satisfy g12 = h12 = 0 on all of Ω′.

Sketch of the argument. Choose any patch in the neighborhood of P : X(u1, u2) : Ω → M where P ∈ X(Ω).
Since the principal curvatures are continuous functions, there is a possibly smaller subneighborhood Ω′′ ⊂ Ω
with P ∈ X(Ω′′) consisting entirely of non-umbillic points, namely such that k1 < k2 for all points of Ω′′.
The corresponding unit tangent vector fields Vi may be chosen to be well-defined continuous functions in
Ω′′. Define new vector functions Wj(t; u

1

0
, u2

0
) ∈ Ω′′ by solving the initial value problem for the system of

ordinary differential equations

∂

∂t
X(Wj(t)) =Vj(X(Wj(t))),

Wj(0) =(u1

0
, u2

0
).

The curves t 7→ X(Wj(t; u
1

0
, u2

0
)) are lines of curvature since they are in the Vj direction. When t = 0 then

Wj(0) = (u2

0
, u2

0
) ∈ Ω′′ is the initial point. There are two families of curves that foliate Ω′′, corresponding to

the two principal directions. The idea of the argument is to make these families of curves the new coordinate
curves.

Suppose X(u1

0
, u2

0
) = P is the center point of the patch. Through this point are curves from each of the

families. Call them σ(z1) = W1(z
1; u1

0
, u2

0
) and τ(z2) = W2(z

2; u1

0
, u2

0
). Thus σ(0) = τ(0) = (u1

0
, u2

0
). Now the

idea is the following. Any point Q = (u1, u2) sufficiently close to the center lies on exactly one integral curve
from each family. This curve from the first family must cross τ at exactly one point, say τ(z2). Similarly,
the curve through Q from the second family must cross σ at exactly one point, namely σ(z1). The desired
change of variables is then given by the mapping just described F : (u1, u2) 7→ (z1, z2). This is a smooth
mapping because the solutions of differential equations depend smoothly on initial points. The mapping is
invertible at the origin. One can check that dF = I at (u1

0
, u2

0
). By the implicit function theorem, there is a

neighborhood (u1

0
, u2

0
) ∈ Ω′ ⊂ Ω′′ on which F admits a smooth inverse function (u1, u2) = F−1(z1, z2). The

desired chart is given by X(z1, z2) = X(F−1(z1, z2)).
The rest of the argument is to verify the claims. The coordinate lines are in the principal directions, since

they follow the trajectories of the ODE. g12 = X1 · X2 = 0 because the principal directions are orthogonal.
In these coordinates, k1X1 = S(X1) = −h1jg

jkXk so that the X2 term is 0 = −h1jg
j2 = −h12g

22 because
g12 = 0 which implies h12 = 0.
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