Math 3220 § 2. Third Midterm Exam Name: Golutions
Treibergs April 1, 2020

1. Suppose a € R™ and f : R™ — R is a function all of whose second partial derivatives exist
and are continuous. Prove that there are positive numbers M and r such that

|f(z) = f(a) — df (a)(z — a)| < M|z — a|? for all z € R" such that |z —a| < 7.

This is an application of Taylor’s Formula.

Choose r > 1, say r = 1. First, let’s get a bound on the second derivatives in the closed
r-ball B,.(a) C R™ about q,
M= sup [d*f(x)ls,
z€B,(a)

where ||Li;||3 = 3=, ; €7 ; denotes L? norm of the matrix L. The L? norm is polynomial in

L so ||d?f(x)||2 is a continuous function which is bounded on the compact set B,.(a).
Second, apply Taylor’s formula up to the first order with remainder. This requires that f

be differentiable up to second order in B, (a), which follows from the assumption that all
second order partial derivatives exist and are continuous in B,.(a). For z € B,(a) we have

£(&) - f(@) ~ df(a)(z ~ o) = 3 () ~ a)?

where ¢ is a point on the line segment from a to = so ¢ € B,(a). Taking absolute values,
we have

F(@) ~ Fa) ~ df(@) @ — a)| = |3 () ~ a)*| < 5 M|z~ al”,

as to be shown. The last inequality follows from a matrix inequality. If L is an n X n matrix
and v € R™ then by the Schwartz Inequality and operator norm inequality

[Lv?| = |v- Lo| < [l [ Lol < [lollIE] o]l < L]z [v]1%,
where ||L]|| is the operator norm.

2. Let E={(t,t) eR?:t € Q and 0 < t < 1} be the set consisting rational points of the line
segment from (0,0) to (1,1). What is The upper volume V(E) of E? For each € > 0,
describe a partition P such that

U(xe,P) <V(E)+e.

Is E a Jordan Region? Ezxplain.

V(E) = 0. Consider the partition P, of R = [0,1] x [0,1] into n? subsquare of sides 1.
If the partition coordinates are z; = y; = % for ¢ = 0,...,n then denote the subsquare
Pij = [Ti—1, @) X [yj—1,y;] for ¢,j = 1,...,n. Since the set E is located on the diagonal,
only the subsquares that touch the diagonal contain points of E. These are the diagonal
squares p;; where ¢ = j and the off-diagonal squares p;; where |i — j| = 1. Note that the
diagonal corners of the off-diagonal squares are rational points, so they are all members of
E. The characteristic function takes values xg C {0,1}. Thus we find

. 1, ifli—j <1
mijzll)anEZO; Mij_SUPXE_{ | |
ij

pij 0, otherwise.



because all subsquares contain points not in E, and only the diagonal and off diagonal
squares contain points of F.

Thus the sums may be computed
L(xE, Pn) = Zmij dV(pi;) =0,
j
U(xe, Pn) = Z M;; dV (piz)
j
> Y 1

=1 j,]j—1|<1

3 & 3n 3
< =N 1=""==
— n2 ; nZ n

because there are at most three j’s that satisfy |j — ¢ < 1 for every i. It follows that for
every € > 0, for n > % we have a partition P, such that

U(XE7P7L) - L(XE7P7L) <

3
— <€
n

By the principal integrability condition, x g is integrable so E is a Jordan Region. We also
have

0 Lixe P2) < V(E) ST(B) = [ xp(e)dV () < Ulxe Po) < 2

so that as n — oo, we see that V(E) = 0. Another reason F is integrable is that it’s upper
volume is zero. It is a set of volume zero, so a Jordan Region.

. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT. Let D C R? be an open set and f(z,y) : D — R? be a map all of whose
first partial derivatives exist and are continuous on D. If df (x,y) is in invertible for
all (z,y) € D then there exists an C inverse function f=': f(D) — D.

FALse.  The condition only guarantees local invertibility by the Inverse Function
Theorem. If we write the function

-3
Y 2y
which is f(z) = 22 where z = z + iy, we get a function whose Jacobian matrix is

everywhere nonsingular on the punctured plane D = R?\{(0,0)} but is not one to one,
so not globally invertible. Indeed, if (z,y) # (0,0),

20 —2y
det(dF(z,y)) = =4(z*+4%) >0

2y 2z

and



(b)

STATEMENT. Let f: R? — R? be given by f(z,y) = (e +y+v3,e® —y —y3). Then
F(W) is open for every open W C R2.
TRUE. Computing the Jacobian determinant we find

for all (x,y) € R%. The map f is smooth defined on the open set V = R?. Thus f is
an open map follows from the Open Mapping Theorem.

Open Mapping Theorem. Let U C RP be an open set and f : U — RP be a
C! map such that f is nonsingular at every point of an open subset V C U, then
f:V — RP is an open map.

STATEMENT.  Let f and g be bounded functions on the aligned rectangle R C R?.

Then the upper integrals satisfy fR(f +g9) = TRf + TRg.
FALSE. Let R =[0,1] x [0, 1],

1, if (z,y) € Q x Q are rational points;
[l y) = :
0, otherwise.

and g(z,y) =1 — f(z,y). Then f(x,y) + g(z,y) = 1 for all (z,y). This gives

1=/R(f+g)7é/Rf+/Rg=1+1

because M;; = sup,, . h =1 for every subrectangle with V(p;;) > 0 for every partition
Pandforh=f,h=gorh=/f+g.

Complete the statement of the following theorem:

Theorem. Let R C R? be an aligned rectangle and f : R — R be a bounded function.
Then f is integrable on R if and only if .....

Using just your theorem, prove that f(xz1,z2) = 1 + x1 + 2x9 is integrable on R =
[0,1] x [0, 1].

Theorem. Let R C R? be an aligned rectangle and f : R — R be a bounded
function. Then f is integrable on R if and only if there exists a sequence of
partitions P,, such that

U(f,Pn)—L(f,Prn) =0 as n — 00.

Consider the partition P, of R into n? subsquare of sides % If the partition coordinates
are ;1 = Tj2 = % for ¢ = 0,...,n then denote the subsquare p;; = [z;—1,1,2i1] X
[zj_1,2,%j2] fori,j =1,...,n. Since Vf(z1,22) = (1,2) for all (z1,22) € R the func-

tion is increasing in the northeast direction so the maximum of f occurs in the northeast

corner of p;; and the minimum in the southwest corner. Thus for any ¢,j5 = 1,...,n
we have
mij; = 1pnff =1+ Ti—1,1 + 21‘]‘_1,2; Mij = supf =1+ T;1 + 237]‘72
gl Pij

It follows that
Mij—m;=1+a1+2x52) — (1+xi-11 +225-1,2)

= (zi1 —ic11) +2(7j2 —2j-12)



Computing the sum,
U(fvpn) _L(fvpn) =

1
[(%,1 —Zi—11) +2(zj2 — %‘j—l,z)} —
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since the inside sums telescoped. It follows that
U(f,Pn) — L(f,Pn) =0 as n — o0o.

Hence, by the boxed theorem, f is integrable.

5. Let F(z,y,z,u,v) = (x — 22+ 3u — 4v, =+ yz + wv).

Prove that the level set S = {(z,y, z,u,v) : F(z,y,z,u,v) = (=3,9)} is a locally parameter-
ized surface near the point P = (1,2,3,2,1) € S. [Hint: show that near the point S is the
graph of some functions and nothing more.] What is the tangent space to S at (1,2,3,2,1)%

The map f: D =R> — R? is C! since it is polynomial. Its Jacobian is

10 -2 3 —4 10 -2 3 —4
df (z,y,2,u,v) = o df(1,2,3,2,1) =

1 2 y v w 1 3 2 1 2

The determinant of the last two columns

det (M> I B
d(u,v) L o

is nonzero. Thus we may apply the Implicit Function Theorem which says that if for
open D C R® there is a C' map f(,y,z,u,v) : D — R? such that at the point P =

fi, f2)
O(u,v)
W € D such that P € W and an open set V € R3 such that (xq,y0,20) € V and a C*
function g = (g1,92) : V — R? such that G(z,v, 2) = (z,v, z, 91 (2,9, 2), g2(x,y, 2)) € W for
all (IL’,y,Z) € Va g(‘ranO,ZO) - (Uo,vo) and

(0, Y0, 20, uo, vo) € D the Jacobian (P) is nonsingular, then there is an open set

(z,y,z,u,0) ESNW — (u,v) = g(z,y, z) for some (z,y,2) € V.

Hence, S is locally (in W) a C* parameterized three dimensional surface. In fact, G : V — W
is the parameterization.



We know that the tangent space at P is dG(zo, yo, 20)(R3) = ker df (x¢, yo, 20, U0, Vo) trans-
lated to P. Computing the null space, we find by subtracting the first row from the second
that

10 -2 3 —4 10 -2 3 -4
13 2 1 2 03 4 -2 6
The last three columns are free. Setting z = r, u = s and v = ¢t where r, s and t are arbitrary,

we solve for x and y in terms of r, s and ¢ in the homogeneous equation. Translating to P
we get that the tangent space is

142r —3s+4t
24 % (—4r + 25 — 6t)
Tp(S) = P+ kerdf(P) = 347 :rys,t €R

2+s

1+t



