
Math 3220 § 2.
Treibergs

Third Midterm Exam Name: Solutions
April 1, 2020

1. Suppose a ∈ Rn and f : Rn → R is a function all of whose second partial derivatives exist
and are continuous. Prove that there are positive numbers M and r such that

|f(x)− f(a)− df(a)(x− a)| ≤M‖x− a‖2 for all x ∈ Rn such that |x− a| < r.

This is an application of Taylor’s Formula.

Choose r > 1, say r = 1. First, let’s get a bound on the second derivatives in the closed
r-ball Br(a) ⊂ Rn about a,

M = sup
x∈Br(a)

‖d2f(x)‖2,

where ‖Lij‖22 =
∑
i,j `

2
i,j denotes L2 norm of the matrix L. The L2 norm is polynomial in

L so ‖d2f(x)‖2 is a continuous function which is bounded on the compact set Br(a).

Second, apply Taylor’s formula up to the first order with remainder. This requires that f
be differentiable up to second order in Br(a), which follows from the assumption that all
second order partial derivatives exist and are continuous in Br(a). For x ∈ Br(a) we have

f(x)− f(a)− df(a)(x− a) =
1

2
d2f(c)(x− a)2

where c is a point on the line segment from a to x so c ∈ Br(a). Taking absolute values,
we have

|f(x)− f(a)− df(a)(x− a)| =
∣∣∣∣12d2f(c)(x− a)2

∣∣∣∣ ≤ 1

2
M‖x− a‖2,

as to be shown. The last inequality follows from a matrix inequality. If L is an n×n matrix
and v ∈ Rn then by the Schwartz Inequality and operator norm inequality

|Lv2| = |v · Lv| ≤ ‖v‖ ‖Lv‖ ≤ ‖v‖ ‖L‖ ‖v‖ ≤ ‖L‖2 ‖v‖2,

where ‖L‖ is the operator norm.

2. Let E = {(t, t) ∈ R2 : t ∈ Q and 0 ≤ t ≤ 1} be the set consisting rational points of the line
segment from (0, 0) to (1, 1). What is The upper volume V (E) of E? For each ε > 0,
describe a partition P such that

U(χE ,P) < V (E) + ε.

Is E a Jordan Region? Explain.

V (E) = 0. Consider the partition Pn of R = [0, 1] × [0, 1] into n2 subsquare of sides 1
n .

If the partition coordinates are xi = yi = i
n for i = 0, . . . , n then denote the subsquare

pij = [xi−1, xi] × [yj−1, yj ] for i, j = 1, . . . , n. Since the set E is located on the diagonal,
only the subsquares that touch the diagonal contain points of E. These are the diagonal
squares pij where i = j and the off-diagonal squares pij where |i − j| = 1. Note that the
diagonal corners of the off-diagonal squares are rational points, so they are all members of
E. The characteristic function takes values χE ⊂ {0, 1}. Thus we find

mij = inf
pij
χE = 0; Mij = sup

pij

χE =

{
1, if |i− j| ≤ 1;

0, otherwise.
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because all subsquares contain points not in E, and only the diagonal and off diagonal
squares contain points of E.

Thus the sums may be computed

L(χE , Pn) =
∑
ij

mij dV (pij) = 0,

U(χE , Pn) =
∑
ij

Mij dV (pij)

=

n∑
i=1

∑
j,|j−i|≤1

1 · 1

n2

≤ 3

n2

n∑
i=1

1 =
3n

n2
=

3

n
.

because there are at most three j’s that satisfy |j − i| ≤ 1 for every i. It follows that for
every ε > 0, for n > 3

ε we have a partition Pn such that

U(χE , Pn)− L(χE , Pn) ≤ 3

n
< ε.

By the principal integrability condition, χE is integrable so E is a Jordan Region. We also
have

0 ≤ L(χE , Pn) ≤ V (E) ≤ V (E) =

∫
R

χE(x) dV (x) ≤ U(χE , Pn) ≤ 3

n

so that as n→∞, we see that V (E) = 0. Another reason E is integrable is that it’s upper
volume is zero. It is a set of volume zero, so a Jordan Region.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let D ⊂ R2 be an open set and f(x, y) : D → R2 be a map all of whose
first partial derivatives exist and are continuous on D. If df(x, y) is in invertible for
all (x, y) ∈ D then there exists an C1 inverse function f−1 : f(D)→ D.

False. The condition only guarantees local invertibility by the Inverse Function
Theorem. If we write the function

F

(
x

y

)
=

(
x2 − y2

2xy

)
,

which is f(z) = z2 where z = x + iy, we get a function whose Jacobian matrix is
everywhere nonsingular on the punctured plane D = R2\{(0, 0)} but is not one to one,
so not globally invertible. Indeed, if (x, y) 6= (0, 0),

det(dF (x, y)) =

∣∣∣∣∣∣∣∣
2x −2y

2y 2x

∣∣∣∣∣∣∣∣ = 4(x2 + y2) > 0

and

F

(
0

1

)
= F

(
0

−1

)
=

(
−1

0

)
.
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(b) Statement. Let f : R2 → R2 be given by f(x, y) = (ex + y + y3, ex − y − y3). Then
f(W ) is open for every open W ⊂ R2.

True. Computing the Jacobian determinant we find∣∣∣∣∣∣∣∣
ex 1 + 3y2

ex −1− 3y2

∣∣∣∣∣∣∣∣ = −2e2x(1 + 3y2) < 0

for all (x, y) ∈ R2. The map f is smooth defined on the open set V = R2. Thus f is
an open map follows from the Open Mapping Theorem.

Open Mapping Theorem. Let U ⊂ Rp be an open set and f : U → Rp be a
C1 map such that f is nonsingular at every point of an open subset V ⊂ U , then
f : V → Rp is an open map.

(c) Statement. Let f and g be bounded functions on the aligned rectangle R ⊂ Rd.

Then the upper integrals satisfy
∫
R

(f + g) =
∫
R
f +

∫
R
g.

False. Let R = [0, 1]× [0, 1],

f(x, y) =

{
1, if (x, y) ∈ Q×Q are rational points;

0, otherwise.

and g(x, y) = 1− f(x, y). Then f(x, y) + g(x, y) = 1 for all (x, y). This gives

1 =

∫
R

(f + g) 6=
∫
R

f +

∫
R

g = 1 + 1

because Mij = suppij h = 1 for every subrectangle with V (pij) > 0 for every partition
P and for h = f , h = g or h = f + g.

4. (a) Complete the statement of the following theorem:

Theorem. Let R ⊂ R2 be an aligned rectangle and f : R→ R be a bounded function.
Then f is integrable on R if and only if .....

Using just your theorem, prove that f(x1, x2) = 1 + x1 + 2x2 is integrable on R =
[0, 1]× [0, 1].

Theorem. Let R ⊂ R2 be an aligned rectangle and f : R → R be a bounded
function. Then f is integrable on R if and only if there exists a sequence of
partitions Pn such that

U(f,Pn)− L(f,Pn)→ 0 as n→∞.

Consider the partition Pn of R into n2 subsquare of sides 1
n . If the partition coordinates

are xi,1 = xi,2 = i
n for i = 0, . . . , n then denote the subsquare pij = [xi−1,1, xi,1] ×

[xj−1,2, xj,2] for i, j = 1, . . . , n. Since ∇f(x1, x2) = (1, 2) for all (x1, x2) ∈ R the func-
tion is increasing in the northeast direction so the maximum of f occurs in the northeast
corner of pij and the minimum in the southwest corner. Thus for any i, j = 1, . . . , n
we have

mij = inf
pij
f = 1 + xi−1,1 + 2xj−1,2; Mij = sup

pij

f = 1 + xi,1 + 2xj,2

It follows that

Mij −mij = (1 + xi,1 + 2xj,2)− (1 + xi−1,1 + 2xj−1,2)

= (xi,1 − xi−1,1) + 2 (xj,2 − xj−1,2)
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Computing the sum,

U(f, Pn)− L(f, Pn) =
∑
ij

[Mij −mij ] dV (pij)

=
∑
ij

[
(xi,1 − xi−1,1) + 2 (xj,2 − xj−1,2)

]
1

n2

=
1

n2

n∑
j=1

n∑
i=1

(xi,1 − xi−1,1) +
2

n2

n∑
i=1

n∑
j=1

(xj,2 − xj−1,2)

=
1

n2

n∑
j=1

(xn,1 − x0,1) +
2

n2

n∑
i=1

(xn,2 − x0,2)

=
1

n2

n∑
j=1

(1− 0) +
2

n2

n∑
i=1

(1− 0)

=
n

n2
+

2n

n2
=

3

n
,

since the inside sums telescoped. It follows that

U(f,Pn)− L(f,Pn)→ 0 as n→∞.

Hence, by the boxed theorem, f is integrable.

5. Let F (x, y, z, u, v) = (x− 2z + 3u− 4v, x+ yz + uv).

Prove that the level set S = {(x, y, z, u, v) : F (x, y, z, u, v) = (−3, 9)} is a locally parameter-
ized surface near the point P = (1, 2, 3, 2, 1) ∈ S. [Hint: show that near the point S is the
graph of some functions and nothing more.] What is the tangent space to S at (1, 2, 3, 2, 1)?

The map f : D = R5 → R2 is C1 since it is polynomial. Its Jacobian is

df(x, y, z, u, v) =

1 0 −2 3 −4

1 z y v u

 , df(1, 2, 3, 2, 1) =

1 0 −2 3 −4

1 3 2 1 2

 .

The determinant of the last two columns

det

(
∂(f1, f2)

∂(u, v)

)
=

∣∣∣∣∣∣∣∣
3 −4

1 2

∣∣∣∣∣∣∣∣ = 10

is nonzero. Thus we may apply the Implicit Function Theorem which says that if for
open D ⊂ R5 there is a C1 map f(x, y, z, u, v) : D → R2 such that at the point P =

(x0, y0, z0, u0, v0) ∈ D the Jacobian
∂(f1, f2)

∂(u, v)
(P ) is nonsingular, then there is an open set

W ∈ D such that P ∈ W and an open set V ∈ R3 such that (x0, y0, z0) ∈ V and a C1
function g = (g1, g2) : V → R2 such that G(x, y, z) = (x, y, z, g1(x, y, z), g2(x, y, z)) ∈W for
all (x, y, z) ∈ V , g(x0, y0, z0) = (u0, v0) and

(x, y, z, u, v) ∈ S ∩W ⇐⇒ (u, v) = g(x, y, z) for some (x, y, z) ∈ V .

Hence, S is locally (in W ) a C1 parameterized three dimensional surface. In fact, G : V →W
is the parameterization.
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We know that the tangent space at P is dG(x0, y0, z0)(R3) = ker df(x0, y0, z0, u0, v0) trans-
lated to P . Computing the null space, we find by subtracting the first row from the second
that 1 0 −2 3 −4

1 3 2 1 2

→
1 0 −2 3 −4

0 3 4 −2 6

 .

The last three columns are free. Setting z = r, u = s and v = t where r, s and t are arbitrary,
we solve for x and y in terms of r, s and t in the homogeneous equation. Translating to P
we get that the tangent space is

TP (S) = P + ker df(P ) =





1 + 2r − 3s+ 4t

2 + 1
3 (−4r + 2s− 6t)

3 + r

2 + s

1 + t


: r, s, t ∈ R



.
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