
Math 3220 § 2.
Treibergs

Second Midterm Exam Name: Solutions
February 26, 2020

1. Let f(x, y) =


x3 − xy2

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Is f is continuous at (0, 0)? Why?

Do the partial derivatives
∂f

∂x
and

∂f

∂y
exist at (0, 0)? Why?

Is f differentiable at (0, 0)? Why?

f is continuous at (0, 0). Choose ε > 0. Let δ = ε. For any (x, y) ∈ R2 such that
0 < ‖(x, y)− (0, 0)‖ < δ we have

|f(x, y)− f(0, 0)| =
∣∣∣∣x3 − xy2x2 + y2

− 0

∣∣∣∣ =
|x2 − y2| |x|
x2 + y2

≤ (|x2|+ |y2|)|x|
x2 + y2

= |x| ≤
√
x2 + y2 = ‖(x, y)− (0, 0)‖ < δ = ε.

Thus f(x, y)→ 0 = f(0, 0) as (x, y)→ (0, 0) so f is continuous at (0, 0).

The partial derivatives exist everywhere. At the origin, since f(x, 0) = x we have fx(0, 0) =
1 and since f(0, y) = 0 we have fy(0, 0) = 0. If (x, y) 6= (0, 0) then f(x, y) is a quotient of
polynomials whose denominator is not zero, hence admits partial derivatives everywhere.

f is not differentiable at (0, 0). If it were, then the differential would be df(0, 0)(h, k) =
fx(0, 0)h + fy(0, 0)k = h. But the corresponding difference quotient does not converge to
zero. Indeed, if (h, k) 6= (0, 0),

q(h, k) =
f(0 + h, 0 + k)− f(0, 0)− df(0, 0)(h, k)

‖(0 + h, 0 + k)‖
=

h3 − hk2

h2 + k2
− h

√
h2 + k2

=
h3 − hk2 −

(
h2 + k2

)
h

(h2 + k2)
3/2

=
−2hk2

(h2 + k2)
3/2

q(t, 0) = 0 and q(t, t) = − 1√
2

so lim
t→0

q(t, 0) = 0 does not equal lim
t→0

q(t, t) = − 1√
2

. Thus

q(h, k) does not have a limit as (h, k)→ (0, 0) so f is not dfferentiable at (0, 0).
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2. Let f : R2 → R2 be a function. Define: f is continuous on R2. Define: E ⊂ R2 is
a closed set. Using only your definitions, prove that the pull-back f−1 (E) is a closed set
whenever E ⊂ R2 is a closed set.

f is continuous on R2 if for every a ∈ R2 and for every ε > 0 there is a δ > 0 so that if
x ∈ R2 is any point such that ‖x− a‖ < δ then ‖f(x)− f(a)‖ < ε.

E ⊂ R2 is closed if the complement Ec = R2\E is open. Ec is open if for every b ∈ Ec
there is an ε > 0 such that the open ball about b of radius ε is in Ec, that is Bε(b) ⊂ Ec.
Let E ⊂ R2 be a closed set. To show that f−1(E) is closed we show its complement
(f−1(E))c is open, according to our definition. Choose a point a ∈ (f−1(E))c. Then
b = f(a) ∈ Ec. Since Ec is open, there is ε > 0 such that Bε(b) ⊂ Ec. By continuity, there
is δ > 0 so that ‖f(x)− f(a)‖ < ε whenever x ∈ R2 is any point such that ‖x− a‖ < δ. In
other words f(Bδ(a)) ⊂ Bε(b) ⊂ Ec. It follows that Bδ(a) ⊂ (f−1(E))c. Thus every point
of the complement a ∈ (f−1(E))c is surrounded by a δ > 0 ball entirely in the complement
Bδ(a) ⊂ (f−1(E))c which is the definition that (f−1(E))c is open, hence its complement
f−1(E) is closed.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let f(x, y) : R2 → R be a function such that the partial derivatives
∂f

∂x
(x, y) and

∂f

∂y
(x, y) exist and are continuous for all (x, y). If

∂2f

∂x∂y
(0, 0) exists then

∂2f

∂y∂x
(0, 0) exists and satisfies

∂2f

∂x∂y
(0, 0) =

∂2f

∂y∂x
(0, 0).

False. If we knew in addition that fyx(x, y) existed in a neighborhood of the origin
and was continuous at (0, 0) then fxy would exist at (0, 0) and fxy(0, 0) = fxy(0, 0).

To answer the question, we must provide a counterexample. The function

f(x, y) =


x3y − xy3

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

has partial derivatives at all points, but the second cross partials are not equal at
the origin. We have f(x, 0) = 0 and f(0, y) = 0 so fx(0, 0) = fy(0, 0) = 0. For
(x, y) 6= (0, 0),

fx(x, y) =
x4y + 4x2y3 − y5

(x2 + y2)
2 , fy(x, y) =

x5 − 4x3y2 − xy4

(x2 + y2)
2 .

These are rational functions thus are continuous away from the origin where the de-
nominators vanish. Since the numerators are bounded by 6(x2 + y2)5/2 we see that
fx(x, y) and fy(x, y) tend to zero as (h, k) → (0, 0) thus are continuous at the origin
also. Also, fx(0, y) = −y and fy(x, 0) = x so fxy(0, 0) = −1 6= 1 = fyx(0, 0). Thus
we have the desired counterexample: for f , both fx and fy are continuous everywhere
and fyx(0, 0) exists, but, although fxy(0, 0) exists, it does not equal fyx(0, 0).

(b) Statement. Let B1(0, 0) be the closed ball in the plane and f : B1(0, 0) → R be

continuous. Then f
(
B1(0, 0)

)
is a closed and bounded interval.

True. K = B1(0, 0) is a closed and bounded set, therefore compact. A continuous
function maps a compact set to a compact set. Also, K is convex, therefore connected.
A continuous function also maps a connected set to a connected set. Therefore, f(K)
is a compact connected subset of R, hence it is a closed, bounded interval.
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(c) Statement. Let fn : R2 → R be functions such that fn → 0 pointwise on R2. Then
fn(xn)→ 0 as n→∞ for every sequence {xn} of R2.

False. The functions
1

1 + x2 + (y − n)2
converge to zero pointwise but not unifol-

rmly. Fix (x, y) ∈ R2.

lim
n→∞

fn(x, y) = lim
n→∞

1

1 + x2 + (y − n)2
= lim
n→∞

1
n2

1
n2 + x2

n2 +
(
y
n − 1

)2
=

0

0 + 0 + (0 + 1)2
= 0.

But for the sequence xn = (0, n) we have fn(xn) = fn(0, n) = 1 so fn(xn) does not
converge to zero as n→∞.

4. Let a,h ∈ R3 For the given f : R2 → R3 and g : R3 → R2, compute d(f ◦ g)(a)(h) in two
ways, directly and using the chin rule.

a =


0

1

2

 , h =


h

k

`

 , f

u
v

 =


u+ 3v

v2

uv

 =


p

q

r

 , g


x

y

z

 =

x+ y

yz

 =

u
v

 .

Let

b = g(a) = g


0

1

2

 =

0 + 1

1 · 2

 =

1

2

 .

The differentials are given by the Jacobian matrices

df

u
v

 =


∂p

∂u

∂p

∂v
∂q

∂u

∂q

∂v
∂r

∂u

∂r

∂v

 =


1 3

0 2v

v u

 so df(b) = df

1

2

 =


1 3

0 4

2 1


and

dg


x

y

z

 =


∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z

 =

1 1 0

0 z y

 so dg(a) = dg


0

1

2

 =

1 1 0

0 2 1

 .

It follows that

d(f ◦ g)(a) = df(b)dg(a) =


1 3

0 4

2 1


1 1 0

0 2 1

 =


1 7 3

0 8 4

2 4 1


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The composite function is

f ◦ g


x

y

z

 = f

g

x

y

z



 = f

x+ y

yz

 =


(x+ y) + 3yz

(yz)2

(x+ y)yz

 =


x+ y + 3yz

y2z2

xyz + y2z

 .

Its differential is

d(f ◦ g)


x

y

z

 =



∂p

∂x

∂p

∂y

∂p

∂z
∂q

∂x

∂q

∂y

∂q

∂z
∂r

∂x

∂r

∂y

∂r

∂z

 =


1 1 + 3z 3y

0 2yz2 2y2z

yz xz + 2yz xy + y2


so

d(f ◦ g)(a) = d(f ◦ g)


0

1

2

 =


1 7 3

0 8 4

2 4 1

 .

Both are the same, thus

d(f ◦ g)(a)(h) = df(b)dg(a)(h) =


1 7 3

0 8 4

2 4 1




h

k

`

 .

5. Let f(x, y) =

∞∑
k=0

sin(nxy)

1 + n3
. Answer the following questions and provide a proof.

Does f(x, y) converge pointwise on R2?

Does f(x, y) converge uniformly on R2?

Is f(x, y) continuous on R2?

We will show that f(x, y) converges uniformly, thus as a consequence, it converges pointwise
on R2.

The uniform convergence follows from the Weierstrass M -test. Indeed, we see that the
summands satisfy for all (x, y) ∈ R2,∣∣∣∣ sin(nxy)

1 + n3

∣∣∣∣ ≤ 1

1 + n3
= bn,

where
∞∑
n=1

bn =

∞∑
n=0

1

1 + n3
<∞
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by the integral test:

∫ ∞
0

dx

1 + x3
<∞. So the partial sums

Sm(x, y) =

m∑
n=0

sin(nxy)

1 + n3

converge Sm(x, y)→ f(x, y) uniformly on R2 as m→∞.

The continuity of f(x, y) follows from the uniform convergence. The partial sums Sm(x, y)
are all continuous since they are finite trigonometric sums of smooth weighted sine func-
tions sin(nxy). The uniform limit of continuous functions is continuous, hence f(x, y) is
continuous on R2.
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