1. Let
$$f(x,y) = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Is f is continuous at (0,0)? Why? Do the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0)? Why?

Is f differentiable at (0,0)? Why?

f is continuous at (0,0). Choose $\epsilon > 0$. Let $\delta = \epsilon$. For any $(x,y) \in \mathbb{R}^2$ such that $0 < ||(x,y) - (0,0)|| < \delta$ we have

$$\begin{split} |f(x,y) - f(0,0)| &= \left| \frac{x^3 - xy^2}{x^2 + y^2} - 0 \right| = \frac{|x^2 - y^2| |x|}{x^2 + y^2} \le \frac{(|x^2| + |y^2|)|x|}{x^2 + y^2} \\ &= |x| \le \sqrt{x^2 + y^2} = \|(x,y) - (0,0)\| < \delta = \epsilon. \end{split}$$

Thus $f(x, y) \to 0 = f(0, 0)$ as $(x, y) \to (0, 0)$ so f is continuous at (0, 0).

The partial derivatives exist everywhere. At the origin, since f(x,0) = x we have $f_x(0,0) = 1$ and since f(0,y) = 0 we have $f_y(0,0) = 0$. If $(x,y) \neq (0,0)$ then f(x,y) is a quotient of polynomials whose denominator is not zero, hence admits partial derivatives everywhere.

f is not differentiable at (0,0). If it were, then the differential would be $df(0,0)(h,k) = f_x(0,0)h + f_y(0,0)k = h$. But the corresponding difference quotient does not converge to zero. Indeed, if $(h,k) \neq (0,0)$,

$$q(h,k) = \frac{f(0+h,0+k) - f(0,0) - df(0,0)(h,k)}{\|(0+h,0+k)\|} = \frac{\frac{h^3 - hk^2}{h^2 + k^2} - h}{\sqrt{h^2 + k^2}}$$
$$= \frac{h^3 - hk^2 - (h^2 + k^2)h}{(h^2 + k^2)^{3/2}}$$
$$= \frac{-2hk^2}{(h^2 + k^2)^{3/2}}$$

q(t,0) = 0 and $q(t,t) = -\frac{1}{\sqrt{2}}$ so $\lim_{t \to 0} q(t,0) = 0$ does not equal $\lim_{t \to 0} q(t,t) = -\frac{1}{\sqrt{2}}$. Thus q(h,k) does not have a limit as $(h,k) \to (0,0)$ so f is not differentiable at (0,0).

2. Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be a function. Define: f is continuous on \mathbf{R}^2 . Define: $E \subset \mathbf{R}^2$ is a closed set. Using only your definitions, prove that the pull-back $f^{-1}(E)$ is a closed set whenever $E \subset \mathbf{R}^2$ is a closed set.

f is continuous on \mathbf{R}^2 if for every $\mathbf{a} \in \mathbf{R}^2$ and for every $\epsilon > 0$ there is a $\delta > 0$ so that if $\mathbf{x} \in \mathbf{R}^2$ is any point such that $\|\mathbf{x} - \mathbf{a}\| < \delta$ then $\|f(\mathbf{x}) - f(\mathbf{a})\| < \epsilon$.

 $E \subset \mathbf{R}^2$ is closed if the complement $E^c = \mathbf{R}^2 \setminus E$ is open. E^c is open if for every $\mathbf{b} \in E^c$ there is an $\epsilon > 0$ such that the open ball about \mathbf{b} of radius ϵ is in E^c , that is $B_{\epsilon}(\mathbf{b}) \subset E^c$. Let $E \subset \mathbf{R}^2$ be a closed set. To show that $f^{-1}(E)$ is closed we show its complement $(f^{-1}(E))^c$ is open, according to our definition. Choose a point $\mathbf{a} \in (f^{-1}(E))^c$. Then $\mathbf{b} = f(\mathbf{a}) \in E^c$. Since E^c is open, there is $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{b}) \subset E^c$. By continuity, there is $\delta > 0$ so that $||f(\mathbf{x}) - f(\mathbf{a})|| < \epsilon$ whenever $\mathbf{x} \in \mathbf{R}^2$ is any point such that $||\mathbf{x} - \mathbf{a}|| < \delta$. In other words $f(B_{\delta}(\mathbf{a})) \subset B_{\epsilon}(\mathbf{b}) \subset E^c$. It follows that $B_{\delta}(\mathbf{a}) \subset (f^{-1}(E))^c$. Thus every point of the complement $\mathbf{a} \in (f^{-1}(E))^c$ is surrounded by a $\delta > 0$ ball entirely in the complement $B_{\delta}(\mathbf{a}) \subset (f^{-1}(E))^c$ which is the definition that $(f^{-1}(E))^c$ is open, hence its complement $f^{-1}(E)$ is closed.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT. Let $f(x,y) : \mathbf{R}^2 \to \mathbf{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}(x,y)$ and $\frac{\partial f}{\partial y}(x,y)$ exist and are continuous for all (x,y). If $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ exists then $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ exists and satisfies $\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0)$. FALSE. If we knew in addition that $f_{\rm ex}(x,y)$ existed in a neighborhood of the origin

FALSE. If we knew in addition that $f_{yx}(x, y)$ existed in a neighborhood of the origin and was continuous at (0,0) then f_{xy} would exist at (0,0) and $f_{xy}(0,0) = f_{xy}(0,0)$. To answer the question, we must provide a counterexample. The function

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

has partial derivatives at all points, but the second cross partials are not equal at the origin. We have f(x,0) = 0 and f(0,y) = 0 so $f_x(0,0) = f_y(0,0) = 0$. For $(x,y) \neq (0,0)$,

$$f_x(x,y) = \frac{x^4y + 4x^2y^3 - y^5}{\left(x^2 + y^2\right)^2}, \qquad f_y(x,y) = \frac{x^5 - 4x^3y^2 - xy^4}{\left(x^2 + y^2\right)^2}.$$

These are rational functions thus are continuous away from the origin where the denominators vanish. Since the numerators are bounded by $6(x^2 + y^2)^{5/2}$ we see that $f_x(x, y)$ and $f_y(x, y)$ tend to zero as $(h, k) \to (0, 0)$ thus are continuous at the origin also. Also, $f_x(0, y) = -y$ and $f_y(x, 0) = x$ so $f_{xy}(0, 0) = -1 \neq 1 = f_{yx}(0, 0)$. Thus we have the desired counterexample: for f, both f_x and f_y are continuous everywhere and $f_{yx}(0, 0)$ exists, but, although $f_{xy}(0, 0)$ exists, it does not equal $f_{yx}(0, 0)$.

(b) STATEMENT. Let $\overline{B_1(0,0)}$ be the closed ball in the plane and $f: \overline{B_1(0,0)} \to \mathbf{R}$ be continuous. Then $f(\overline{B_1(0,0)})$ is a closed and bounded interval.

TRUE. $K = B_1(0,0)$ is a closed and bounded set, therefore compact. A continuous function maps a compact set to a compact set. Also, K is convex, therefore connected. A continuous function also maps a connected set to a connected set. Therefore, f(K) is a compact connected subset of **R**, hence it is a closed, bounded interval.

(c) STATEMENT. Let $f_n : \mathbf{R}^2 \to \mathbf{R}$ be functions such that $f_n \to 0$ pointwise on \mathbf{R}^2 . Then $f_n(\mathbf{x}_n) \to 0$ as $n \to \infty$ for every sequence $\{\mathbf{x}_n\}$ of \mathbf{R}^2 . FALSE. The functions $\frac{1}{1+x^2+(y-n)^2}$ converge to zero pointwise but not unifol-

rmly. Fix $(x, y) \in \mathbf{R}^2$.

$$\lim_{n \to \infty} f_n(x, y) = \lim_{n \to \infty} \frac{1}{1 + x^2 + (y - n)^2} = \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^2} + \frac{x^2}{n^2} + \left(\frac{y}{n} - 1\right)^2} = \frac{0}{0 + 0 + (0 + 1)^2} = 0.$$

But for the sequence $\mathbf{x}_n = (0, n)$ we have $f_n(\mathbf{x}_n) = f_n(0, n) = 1$ so $f_n(\mathbf{x}_n)$ does not converge to zero as $n \to \infty$.

4. Let $\mathbf{a}, \mathbf{h} \in \mathbf{R}^3$ For the given $f : \mathbf{R}^2 \to \mathbf{R}^3$ and $g : \mathbf{R}^3 \to \mathbf{R}^2$, compute $d(f \circ g)(\mathbf{a})(\mathbf{h})$ in two ways, directly and using the chin rule.

$$\mathbf{a} = \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \quad \mathbf{h} = \begin{pmatrix} h\\k\\\ell \end{pmatrix}, \quad f\begin{pmatrix}u\\v \end{pmatrix} = \begin{pmatrix} u+3v\\v^2\\uv \end{pmatrix} = \begin{pmatrix} p\\q\\r \end{pmatrix}, \quad g\begin{pmatrix}x\\y\\z \end{pmatrix} = \begin{pmatrix} x+y\\yz \end{pmatrix} = \begin{pmatrix} u\\v \end{pmatrix}.$$

Let

$$\mathbf{b} = g(\mathbf{a}) = g \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0+1 \\ 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The differentials are given by the Jacobian matrices

$$df \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \frac{\partial p}{\partial u} & \frac{\partial p}{\partial v} \\ \frac{\partial q}{\partial u} & \frac{\partial q}{\partial v} \\ \frac{\partial r}{\partial u} & \frac{\partial r}{\partial v} \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 2v \\ v & u \end{pmatrix} \quad \text{so} \quad df(\mathbf{b}) = df \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 4 \\ 2 & 1 \end{pmatrix}$$

and

$$dg\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\ 0 & z & y \end{pmatrix} \quad \text{so} \quad dg(\mathbf{a}) = dg \begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\ 0 & 2 & 1 \end{pmatrix}.$$

It follows that

$$d(f \circ g)(\mathbf{a}) = df(\mathbf{b})dg(\mathbf{a}) = \begin{pmatrix} 1 & 3 \\ 0 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 7 & 3 \\ 0 & 8 & 4 \\ 2 & 4 & 1 \end{pmatrix}$$

The composite function is

$$f \circ g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = f\begin{pmatrix} x+y \\ yz \end{pmatrix} = \begin{pmatrix} (x+y)+3yz \\ (yz)^2 \\ (x+y)yz \end{pmatrix} = \begin{pmatrix} x+y+3yz \\ y^2z^2 \\ xyz+y^2z \end{pmatrix}.$$

Its differential is

$$d(f \circ g) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\partial p}{\partial x} & \frac{\partial p}{\partial y} & \frac{\partial p}{\partial z} \\ \frac{\partial q}{\partial x} & \frac{\partial q}{\partial y} & \frac{\partial q}{\partial z} \\ \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial z} \end{pmatrix} = \begin{pmatrix} 1 & 1+3z & 3y \\ 0 & 2yz^2 & 2y^2z \\ yz & xz+2yz & xy+y^2 \end{pmatrix}$$

 \mathbf{SO}

$$d(f \circ g)(\mathbf{a}) = d(f \circ g) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 7 & 3 \\ 0 & 8 & 4 \\ 2 & 4 & 1 \end{pmatrix}.$$

Both are the same, thus

$$d(f \circ g)(\mathbf{a})(\mathbf{h}) = df(\mathbf{b})dg(\mathbf{a})(\mathbf{h}) = \begin{pmatrix} 1 & 7 & 3 \\ 0 & 8 & 4 \\ 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} h \\ k \\ \ell \end{pmatrix}.$$

5. Let
$$f(x,y) = \sum_{k=0}^{\infty} \frac{\sin(nxy)}{1+n^3}$$
. Answer the following questions and provide a proof.

Does f(x, y) converge pointwise on \mathbb{R}^2 ?

Does f(x, y) converge uniformly on \mathbf{R}^2 ?

Is f(x, y) continuous on \mathbb{R}^2 ?

We will show that f(x, y) converges uniformly, thus as a consequence, it converges pointwise on \mathbb{R}^2 .

The uniform convergence follows from the Weierstrass *M*-test. Indeed, we see that the summands satisfy for all $(x, y) \in \mathbf{R}^2$,

$$\left|\frac{\sin(nxy)}{1+n^3}\right| \le \frac{1}{1+n^3} = b_n,$$

where

$$\sum_{n=1}^{\infty} b_n = \sum_{n=0}^{\infty} \frac{1}{1+n^3} < \infty$$

by the integral test: $\int_0^\infty \frac{dx}{1+x^3} < \infty$. So the partial sums

$$S_m(x,y) = \sum_{n=0}^m \frac{\sin(nxy)}{1+n^3}$$

converge $S_m(x,y) \to f(x,y)$ uniformly on \mathbf{R}^2 as $m \to \infty$.

The continuity of f(x, y) follows from the uniform convergence. The partial sums $S_m(x, y)$ are all continuous since they are finite trigonometric sums of smooth weighted sine functions $\sin(nxy)$. The uniform limit of continuous functions is continuous, hence f(x, y) is continuous on \mathbf{R}^2 .